Abstract
A serious problem in cloud computing is privacy information protection. This study proposes a new private comparison protocol using Einstein-Podolsky-Rosen (EPR) pairs. This protocol allows two parties to secretly compare their classical information. Quantum dense coding enables the comparison task to be completed with the help of a classical semi-honest center. A one-step transmission scheme and designed decoy photons can be used against various quantum attacks. The new protocol can ensure fairness, efficiency, and security. The classical semi-honest center cannot learn any information about the private inputs of the players. Moreover, this scheme can be easily generalized using the general EPR pairs in order to improve the transmission efficiency.
创新点
(1)本文设计一种新的公平、有效、安全的量子隐私对比协议。(2)与以前的诚实第三方和量子第三方不同, 本文的协议只依赖于经典的半诚实中心。(3)不像以前的协议可信第三方可能获取部分隐私信息, 本文中的经典半诚实中心不能获取对比双方的隐私消息。(4)本文的协议具有较好的扩展性, 可以拓展到基于多层量子态的隐私对比协议。
This is a preview of subscription content, access via your institution.
References
- 1
Fu Z J, Sun X M, Liu Q, et al. Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans Commun, 2015, 98: 190–200
- 2
Li J, Li X L, Yang B, et al. Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inform Forens Secur, 2015, 10: 507–518
- 3
Ren Y J, Shen J, Wang J, et al. Mutual verifiable provable data auditing in public cloud storage. J Internet Technol, 2015, 16: 317–324
- 4
Xia Z H, Wang X H, Sun X M, et al. A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parall Distrib Syst, 2015, 27: 340–352
- 5
Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, 1984. 175–179
- 6
Zhou C, Bao W S, Fu X Q. Decoy-state quantum key distribution for the heralded pair coherent state photon source with intensity fluctuations. Sci China Inf Sci, 2010, 53: 2485–2494
- 7
Qian X D, He G Q, Zeng G H. Realization of error correction and reconciliation of continuous quantum key distribution in detail. Sci China Ser-F: Inf Sci, 2009, 52: 1598–1604
- 8
Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899
- 9
Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390: 575–579
- 10
Furusawa A, Søensen J L, Braunstein S L, et al. Unconditional quantum teleportation. Science, 1998, 282: 706–709
- 11
Bennett C H, DiVincenzo D P, Shor P Q, et al. Remote state preparation. Phys Rev Lett, 2001, 87: 077902
- 12
Luo M X, Deng Y, Chen X B, et al. The faithful remote preparation of general quantum states. Quantum Inform Process, 2013, 12: 279–294
- 13
Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834
- 14
Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651
- 15
Guo G P, Guo G C. Quantum secret sharing without entanglement. Phys Lett A, 2003, 310: 247–251
- 16
Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307
- 17
Qin S J, Gao F, Wen Q Y, et al. Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys Lett A, 2006, 357: 101–103
- 18
Xu J, Chen H W, Liu W J, et al. Selection of unitary operations in quantum secret sharing without entanglement. Sci China Inf Sci, 2011, 54: 1837–1842
- 19
Wang T Y, Wen Q Y. Security of a kind of quantum secret sharing with single photons. Quantum Inform Comput, 2011, 11: 434–443
- 20
Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902
- 21
Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317
- 22
Wang C, Deng F-G, Li Y-S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305
- 23
Lin S, Wen Q Y, Gao F, et al. Quantum secure direct communication with χ-type entangled states. Phys Rev A, 2008, 78: 064304
- 24
Liu Z H, Chen H W, Liu W J, et al. Deterministic secure quantum communication without unitary operation based on highdimensional entanglement swapping. Sci China Inf Sci, 2012, 55: 360–367
- 25
Zheng C, Long G F. Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci China Phys Mech Astro, 2014, 57: 1238–1243
- 26
Zou X F, Qiu D W. Three-step semiquantum secure direct communication protocol. Sci China Phys Mech Astro, 2014, 57: 1696–1702
- 27
Qu Z G, Chen X B, Zhou X J, et al. Novel quantum steganography with large payload. Opt Commun, 2010, 283: 4782–4786
- 28
Qu Z G, Chen X B, Luo M X, et al. A large payload of novel quantum steganography with χ-type entangled state. Opt Commun, 2011, 284: 2075–2082
- 29
Xu S J, Chen X B, Niu X X, et al. High-efficiency quantum steganography based on the tensor product of Bell states. Sci China Phys Mech Astro, 2013, 56: 1745–1754
- 30
Yao A C. Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, Chicago, 1982. 160–164
- 31
Yao A C. How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, Toronto, 1986. 162–167
- 32
Boudot F, Schoenmakers B, Traore J. A fair and efficient solution to the socialist millionaires problem. Discret Appl Math, 2001, 111: 23–36
- 33
Lo H K. Insecurity of quantum secure computations. Phys Rev A, 1997, 56: 1154–1162
- 34
Yang Y G, Wen Q Y. An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J Phys A-Math Theor, 2009, 42: 055305
- 35
Yang Y G, Cao W F, Wen Q Y. Secure quantum private comparison. Phys Scr, 2009, 80: 065002
- 36
Lin J, Tseng H Y, Hwang T. Intercept-resend attacks on Chen et al.’s quantum private comparison protocol and the improvements. Opt Commun, 2011, 284: 2412–2414
- 37
Chen X B, Xu G, Niu X X, et al. An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt Commun, 2010, 283: 1561–1565
- 38
Liu W J, Liu C, Wang H B, et al. Secure quantum private comparison of equality based on asymmetric W state. Int J Theor Phys, 2014, 53: 1804–1813
- 39
Tseng H Y, Lin J, Hwang T. New quantum private comparison protocol using EPR pairs. Quantum Inf Proc, 2012, 11: 373–384
- 40
Liu W J, Liu C, Chen H W, et al. Cryptanalysis and improvement of quantum private comparison protocol based on bell entangled states. Commun Theor Phys, 2014, 62: 210–214
- 41
Liu W, Wang Y B, Jiang Z T, et al. A protocol for the quantum private comparison of equality with χ-type state. Int J Theor Phys, 2012, 51: 69–77
- 42
Xu G A, Chen X B, Wei Z H, et al. An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Int J Quantum Inf, 2012, 10: 1250045
- 43
Liu W, Wang Y B, Jiang Z T. An efficient protocol for the quantum private comparison of equality with W state. Opt Commun, 2011, 284: 3160–3163
- 44
Liu B, Gao F, Jia H Y, et al. Efficient quantum private comparison employing single photons and collective detection. Quantum Inf Proc, 2013, 12: 887–897
- 45
Li Y B, Qin S J, Yuan Z, et al. Quantum private comparison against decoherence noise. Quantum Inf Proc, 2013, 12: 2191–2205
- 46
Zhang W W, Zhang K J. Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf Proc, 2013, 12: 1981–1990
- 47
Chen X B, Su Y, Niu X X, et al. Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf Proc, 2013, 12: 2871–2875
- 48
Zukowski M, Zeilinger A, Horne M A, et al. Event-ready-detectors Bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71: 4287–4290
- 49
Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping: entangling photons that never interacted. Phys Rev Lett, 1998, 80: 3891–3894
- 50
Barencoa A, Ekerta A K. Dense coding based on quantum entanglement. J Mod Opt, 1995, 42: 1253–1259
- 51
Yeo Y, Chua W K. Teleportation and dense coding with genuine multipartite entanglement. Phys Rev Lett, 2006, 96: 060502
- 52
Shadman Z, Kampermann H, Macchiavello C, et al. Optimal super dense coding over noisy quantum channels. New J Phys, 2010, 12: 073042
- 53
Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23–25
- 54
Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys Rev A, 2006, 73: 049901
- 55
Qin S J, Wen Q Y, Zhu F C. Cryptanalysis of multiparty quantum secret sharing of quantum state using entangled states. Chin Phys Lett, 2008, 25: 3551–3554
- 56
Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302
- 57
Yang C W, Hwang T, Luo Y P. Enhancement on quantum blind signature based on two-state vector formalism. Quantum Inf Proc, 2013, 12: 109–117
- 58
Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett, 1996, 76: 722–725
- 59
Sheng Y B, Zhou L. Deterministic entanglement distillation for secure double-server blind quantum computation. Sci Rep, 2015, 5: 7815
- 60
Sheng Y B, Zhou L. Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys Lett, 2014, 11: 085203
- 61
Sheng Y B, Zhou L, Long G L. Hybrid entanglement purification for quantum repeaters. Phys Rev A, 2013, 88: 022302
- 62
Bennett C H, Bernstein H J, Popescu S, et al. Concentrating partial entanglement by local operations. Phys Rev A, 1996, 53: 2046–2052
- 63
Zhao Z, Yang T, Chen Y A, et al. Experimental realization of entanglement concentration and a quantum repeater. Phys Rev Lett, 2003, 90: 207901
- 64
Sheng Y B, Zhou L, Zhao S M, et al. Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys Rev A, 2012, 85: 012307
- 65
Ren B C, Du F F, Deng F G. Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys Rev A, 2013, 88: 012302
- 66
Zhao Z, Pan J W, Zhan M S. Practical scheme for entanglement concentration. Phys Rev A, 2001, 64: 014301
- 67
Sheng Y B, Deng F G, Zhou H Y. Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys Rev A, 2008, 77: 062325
- 68
Shi B S, Jiang Y K, Guo G C. Optimal entanglement purification via entanglement swapping. Phys Rev A, 2000, 62: 054301
- 69
Luo M X, Chen X B, Yang Y X, et al. Hyperentanglement concentration for n-photon 2n-qubit systems with linear optics. J Opt Soc Amer B-Opt Phys, 2014, 31: 67–74
- 70
Luo M X, Li H R, Wang X. Efficient atomic and photonic multipartite W state concentration via photonic faraday rotation. Eur Phys J D, 2014, 68: 190
- 71
Chrzanowski H M, Walk N, Assad S M, et al. Measurement-based noiseless linear amplification for quantum communication. Nat Photon, 2014, 8: 333–338
- 72
Eleftheriadou E, Barnett S M, Jeffers J. Quantum optical state comparison amplifier. Phys Rev Lett, 2013, 111: 213601
- 73
Kocsis S, Xiang G Y, Ralph T C, et al. Heralded noiseless amplification of a photon polarization qubit. Nat Phys, 2013, 9: 23–28
- 74
Zhou L, Sheng Y B. Recyclable amplification protocol for the single-photon entangled state. Laser Phys Lett, 2015, 12: 045203
Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant Nos. 61303039, 61373131), Natural Science Foundation of Shandong Province (Grant No. ZR2015FL024), Fundamental Research Funds for the Central Universities (Grant No. 2682014CX095), PAPD and CICAEET Funds, Open Foundation of Jiangsu Engineering Center of Network Monitoring (Nanjing University of Information Science & Technology) (Grant No. KJR1502), Open Foundation of China-USA Computer Science Center (Grant No. KJR16012), and Science Foundation Ireland (SFI) under the International Strategic Cooperation Award (Grant No. SFI/13/ISCA/2845).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, F., Luo, M., Li, H. et al. Quantum private comparison based on quantum dense coding. Sci. China Inf. Sci. 59, 112501 (2016). https://doi.org/10.1007/s11432-015-0616-9
Received:
Accepted:
Published:
Keywords
- private comparison
- multiparty secure computation
- classical semi-honesty center
- quantum dense coding
- general EPR pair
关键词
- 隐私消息对比
- 多方安全计算
- 经典半诚实中心
- 量子超幂编码
- 一般EPR对