Skip to main content
Log in

Twin-roll strip casting of advanced metallic materials

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Metallic materials have historic and served as critical enablers of human progress, wealth, and wellbeing over millennia. Recently, the global demand for the development of environment-friendly and energy-saving technology has been increasing, with the aim to support the sustainability of metallic materials. Twin-roll strip casting (TRC) is one of the most cutting-edge technologies and a near-net-shape manufacturing method in the steel industry, which conforms to the green fabrication trend of next-generation high-performance metallic materials. By utilizing the dominant characteristics of sub-rapid solidification, and integration of solidification, solid-state transformation, and deformation; TRC has become a meaningful way to deal with the most challenging issues in the processing of metallic materials, and made a significant contribution to materials manufacturing. Hence, we review the TRC process of various metallic materials, including plain carbon steels, stainless steels, Fe-Si electrical steels, high-strength steels, clad steels, aluminum alloys, magnesium alloys, metallic glasses, and so on This paper offers an outlook of future opportunities for various advanced metallic materials development through the TRC process, and inspires more in-depth research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plummer J. Metallurgy is key. Nat Mater, 2016, 15: 699–700

    Article  Google Scholar 

  2. Raabe D, Tasan C C, Olivetti E A. Strategies for improving the sustainability of structural metals. Nature, 2019, 575: 64–74

    Article  Google Scholar 

  3. Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature, 2015, 518: 77–79

    Article  Google Scholar 

  4. Nolli P. Initial solidification phenomena: Factors affecting heat transfer in strip casting. Dissertation for Doctoral Degree. Pittsburgh: Carnegie Mellon University, 2007

    Google Scholar 

  5. Zhu C, Wang W, Lu C. Sub-rapid solidification and its related interfacial heat-transfer behaviors in strip casting process. J Sust Metall, 2019, 5: 378–390

    Article  Google Scholar 

  6. Campbell P, Blejde W, Mahapatra R, et al. Recent progress on commercialization of castrip® direct strip casting technology at Nucor Crawfordsville. Metallurgist, 2004, 48: 507–514

    Article  Google Scholar 

  7. Dai Y, Xu Z, Luo Z, et al. Phase formation kinetics, hardness and magnetocaloric effect of sub-rapidly solidified LaFe11.6Si1.4 plates during isothermal annealing. J Magn Magn Mater, 2018, 454: 356–361

    Article  Google Scholar 

  8. Girgensohn A, Büchner A R. Twin roll strip casting of low carbon steels. Ironmak Steelmak, 2013, 27: 317–323

    Article  Google Scholar 

  9. Ge S, Isac M, Guthrie R I L. Progress of strip casting technology for steel: Historical developments. ISIJ Int, 2012, 52: 2109–2122

    Article  Google Scholar 

  10. Park J Y, Oh K H, Ra H Y. Texture and deformation behaviour through thickness direction in strip-cast 4.5wt% Si steel sheet. ISIJ Int, 2000, 40: 1210–1215

    Article  Google Scholar 

  11. Yamamoto K, Matsuura M, Sugimoto S. Microstructure formation in strip-cast RE-Fe-B alloys for magnets. Metall Mat Trans A, 2017, 48: 3482–3489

    Article  Google Scholar 

  12. Mizoguchi T, Miyazawa K. Formation of solidification structure in twin roll casting process of 18Cr-8Ni stainless steel. ISIJ Int, 1995, 35: 771–777

    Article  Google Scholar 

  13. Chen H, Xu W, Tang C, et al. Intragranular glass/crystal conjugated particles in strip cast Nd-Fe-B flakes. J Magn Magn Mater, 2020, 495: 165863

    Article  Google Scholar 

  14. Daamen M, Güvenç O, Bambach M, et al. Development of efficient production routes based on strip casting for advanced high strength steels for crash-relevant parts. CIRP Ann, 2014, 63: 265–268

    Article  Google Scholar 

  15. Zhang W, Yu Y, Fang Y, et al. Determination of interfacial heat flux of stainless steel solidification on copper substrate during the first 0.2 s. J Shanghai Jiaotong Univ (Sci), 2011, 16: 65–70

    Article  Google Scholar 

  16. Dou W X, Yuan G, Lan M F, et al. The significance of microstructure and texture on magnetic properties of non-oriented silicon steel: Strip casting versus conventional process. Steel Res Int, 2020, 91: 1900286

    Article  Google Scholar 

  17. Wang W, Zhu C, Lu C, et al. Study of the heat transfer behavior and naturally deposited films in strip casting by using droplet solidification technique. Metall Mat Trans A, 2018, 49: 5524–5534

    Article  Google Scholar 

  18. Wu Y, Zhang L, Chen S, et al. A multiple twin-roller casting technique for producing metallic glass and metallic glass composite strips. Materials, 2019, 12: 3842

    Article  Google Scholar 

  19. Guo J, Liu Y, Liu L, et al. 3D stress simulation and parameter design during twin-roll casting of 304 stainless steel based on the Anand model. Int J Miner Metall Mater, 2014, 21: 666–673

    Article  Google Scholar 

  20. Vidoni M, Ackermann R, Richter S, et al. Production of clad steel strips by twin-roll strip casting. Adv Eng Mater, 2015, 17: 1588–1597

    Article  Google Scholar 

  21. Kikuchi D, Harada Y, Kumai S. Surface quality and microstructure of Al-Mg alloy strips fabricated by vertical-type high-speed twin-roll casting. J Manuf Process, 2019, 37: 332–338

    Article  Google Scholar 

  22. Chen M, Hu X D, Han B, et al. Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process. Appl Phys A, 2016, 122: 91

    Article  Google Scholar 

  23. Zapuskalov N. Comparison of continuous strip casting with conventional technology. ISIJ Int, 2003, 43: 1115–1127

    Article  Google Scholar 

  24. Ge S, Isac M, Guthrie R I L. Progress in strip casting technologies for steel: Technical developments. ISIJ Int, 2013, 53: 729–742

    Article  Google Scholar 

  25. Maleki A, Taherizadeh A, Hosseini N. Twin roll casting of steels: An overview. ISIJ Int, 2017, 57: 1–14

    Article  Google Scholar 

  26. Zhao J, Jiang Z. Thermomechanical processing of advanced high strength steels. Prog Mater Sci, 2018, 94: 174–242

    Article  Google Scholar 

  27. Dong H. Year 2020: 200th anniversary for alloy steel-preword of special issue for alloy steel (in Chinese). Acta Metall Sin, 2020, 56: 1–IV

    Google Scholar 

  28. Guillet A, Es-Sadiqi E, L’EspÉRance G, et al. Microstructure and mechanical properties of strip cast 1008 steel after simulated coiling, cold rolling and batch annealing. ISIJ Int, 1996, 36: 1190–1198

    Article  Google Scholar 

  29. Tavares R P, Isac M, Guthrie R I L. Roll-strip interfacial heat fluxes in twin-roll casting of low-carbon steels and their effects on strip microstructure. ISIJ Int, 1998, 38: 1353–1361

    Article  Google Scholar 

  30. Laleh M, Hughes A E, Xu W, et al. Unexpected erosion-corrosion behaviour of 316L stainless steel produced by selective laser melting. Corrosion Sci, 2019, 155: 67–74

    Article  Google Scholar 

  31. Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater, 2018, 17: 63–71

    Article  Google Scholar 

  32. Yasunaka H, Taniguchi K, Kokita M, et al. Surface quality of stainless steel type 304 cast by twin-roll type strip caster. ISIJ Int, 1995, 35: 784–789

    Article  Google Scholar 

  33. Choo D K, Moon H K, Kang T, et al. Analysis and prevention of cracking during strip casting of AISI 304 stainless steel. Metall Mat Trans A, 2001, 32: 2249–2258

    Article  Google Scholar 

  34. Ha M, Choi J, Jeong S, et al. Analysis and prevention of microcracking phenomenon occurring during strip casting of an AISI 304 stainless steel. Metall Mat Trans A, 2002, 33: 1487–1497

    Article  Google Scholar 

  35. Hunter A, Ferry M. Texture enhancement by inoculation during casting of ferritic stainless steel strip. Metall Mat Trans A, 2002, 33: 1499–1507

    Article  Google Scholar 

  36. Hunter A, Ferry M. Evolution of microstructure and texture during casting of AISI 304 stainless steel strip. Metall Mat Trans A, 2002, 33: 3747–3754

    Article  Google Scholar 

  37. Liu H T, Liu Z Y, Qiu Y Q, et al. Characterization of the solidification structure and texture development of ferritic stainless steel produced by twin-roll strip casting. Mater Charact, 2009, 60: 79–82

    Article  Google Scholar 

  38. Strezov L, Herbertson J. Experimental studies of interfacial heat transfer and initial solidification pertinent to strip casting.. ISIJ Int, 1998, 38: 959–966

    Article  Google Scholar 

  39. Spinelli J E, Tosetti J P, Santos C A, et al. Microstructure and solidification thermal parameters in thin strip continuous casting of a stainless steel. J Mater Processing Tech, 2004, 150: 255–262

    Article  Google Scholar 

  40. Strezov L, Herbertson J, Belton G R. Mechanisms of initial melt/substrate heat transfer pertinent to strip casting. Metall Materi Trans B, 2000, 31: 1023–1030

    Article  Google Scholar 

  41. Zhu C, Wang W, Zeng J, et al. Interactive relationship between the superheat, interfacial heat transfer, deposited film and microstructure in strip casting of duplex stainless steel. ISIJ Int, 2019, 59: 880–888

    Article  Google Scholar 

  42. Zhao Y, Zhang W, Liu X, et al. Development of TRIP-aided lean duplex stainless steel by twin-roll strip casting and its deformation mechanism. Metall Mat Trans A, 2016, 47: 6292–6303

    Article  Google Scholar 

  43. Hao Y, Cao G, Li C, et al. The aging precipitation behavior of 20Cr-24Ni-6Mo super-austenitic stainless steel processed by conventional casting and twin-roll strip casting. Mater Charact, 2019, 147: 21–30

    Article  Google Scholar 

  44. Hao Y, Cao G, Li C, et al. Solidification structures of Fe-Cr-Ni-Mo-N super-austenitic stainless steel processed by twin-roll strip casting and ingot casting and their segregation evolution behaviors. ISIJ Int, 2018, 58: 1801–1810

    Article  Google Scholar 

  45. Wang Z J, Huang X M, Li Y W, et al. Ultra-fine microstructure and excellent mechanical properties of high borated stainless steel sheet produced by twin-roll strip casting. Mater Sci Eng-A, 2019, 747: 185–196

    Article  Google Scholar 

  46. Sha Y H, Sun C, Zhang F, et al. Strong cube recrystallization texture in silicon steel by twin-roll casting process. Acta Mater, 2014, 76: 106–117

    Article  Google Scholar 

  47. Li H Z, Liu H T, Liu Z Y, et al. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt% Si electrical steel doped with cerium. Mater Charact, 2015, 103: 101–106

    Article  Google Scholar 

  48. Li H Z, Liu H T, Liu Z Y, et al. Characterization of microstructure, texture and magnetic properties in twin-roll casting high silicon non-oriented electrical steel Mater Charact, 2014, 88: 1–6

    Article  Google Scholar 

  49. Li H Z, Liu H T, Liu Y, et al. Effects of warm temper rolling on microstructure, texture and magnetic properties of strip-casting 6.5 wt% Si electrical steel. J Magn Magn Mater, 2014, 370: 6–12

    Article  Google Scholar 

  50. Xu Y, Jiao H, Qiu W, et al. Effect of cold rolling process on microstructure, texture and properties of strip cast Fe-2.6%Si steel. Materials, 2018, 11: 1161

    Article  Google Scholar 

  51. Li H Z, Wang X L, Liu H T, et al. Microstructure, texture evolution, and magnetic properties of strip-casting nonoriented 6.5 wt.% Si electrical steel sheets with different thickness. IEEE Trans Magn, 2015, 51: 1–4

    Google Scholar 

  52. Xu Y B, Zhang Y X, Wang Y, et al. Evolution of cube texture in strip-cast non-oriented silicon steels. Scripta Mater, 2014, 87: 17–20

    Article  Google Scholar 

  53. Liu H T, Li H Z, Li H L, et al. Effects of rolling temperature on microstructure, texture, formability and magnetic properties in strip casting Fe-6.5 wt% Si non-oriented electrical steel. J Magn Magn Mater, 2015, 391: 65–74

    Article  Google Scholar 

  54. Chen A, Li H. Microstructure and texture of 0.75%Si non-oriented electrical steel fabricated by strip casting process. Metallogr Microstruct Anal, 2016, 5: 428–434

    Article  Google Scholar 

  55. Liu H T, Wang Y P, An L Z, et al. Effects of hot rolled microstructure after twin-roll casting on microstructure, texture and magnetic properties of low silicon non-oriented electrical steel. J Magn Magn Mater, 2016, 420: 192–203

    Article  Google Scholar 

  56. Jiao H, Xu Y, Xu H, et al. Influence of hot deformation on texture and magnetic properties of strip cast non-oriented electrical steel. J Magn Magn Mater, 2018, 462: 205–215

    Article  Google Scholar 

  57. Xu Y, Jiao H, Zhang Y, et al. Effect of pre-annealing prior to cold rolling on the precipitation, microstructure and magnetic properties of strip-cast non-oriented electrical steels. J Mater Sci Tech, 2017, 33: 1465–1474

    Article  Google Scholar 

  58. Wang Y Q, Zhang X M, Zu G Q, et al. Effect of hot band annealing on microstructure, texture and magnetic properties of non-oriented electrical steel processed by twin-roll strip casting. J Magn Magn Mater, 2018, 460: 41–53

    Article  Google Scholar 

  59. Fang F, Xu Y B, Zhang Y X, et al. Evolution of recrystallization microstructure and texture during rapid annealing in strip-cast non-oriented electrical steels. J Magn Magn Mater, 2015, 381: 433–439

    Article  Google Scholar 

  60. Liu H T, Li H L, Schneider J, et al. Effects of coiling temperature after hot rolling on microstructure, texture, and magnetic properties of non-oriented electrical steel in strip casting processing route. Steel Res Int, 2016, 87: 1256–1263

    Article  Google Scholar 

  61. Song H Y, Liu H T, Lu H H, et al. Fabrication of grain-oriented silicon steel by a novel way: Strip casting process. Mater Lett, 2014, 137: 475–478

    Article  Google Scholar 

  62. Wang Y, Xu Y B, Zhang Y X, et al. Development of microstructure and texture in strip casting grain oriented silicon steel. J Magn Magn Mater, 2015, 379: 161–166

    Article  Google Scholar 

  63. Fang F, Zhang Y, Lu X, et al. Inhibitor induced secondary re-crystallization in thin-gauge grain oriented silicon steel with high permeability Mater Des, 2016, 105: 398–403

    Article  Google Scholar 

  64. Song H Y, Liu H T, Liu W Q, et al. Effects of two-stage cold rolling schedule on microstructure and texture evolution of strip casting grain-oriented silicon steel with extra-low carbon Metall Mat Trans A, 2016, 47: 1770–1781

    Article  Google Scholar 

  65. Song H Y, Liu H T, Lu H H, et al. Effect of hot rolling reduction on microstructure, texture and ductility of strip-cast grain-oriented silicon steel with different solidification structures. Mater Sci Eng-A, 2014, 605: 260–269

    Article  Google Scholar 

  66. Song H Y, Lu H H, Liu H T, et al. Microstructure and texture of strip cast grain-oriented silicon steel after symmetrical and asymmetrical hot rolling. Steel Res Int, 2014, 85: 1477–1482

    Article  Google Scholar 

  67. Song H Y, Liu H T, Wang Y P, et al. Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method. J Magn Magn Mater, 2017, 426: 32–39

    Article  Google Scholar 

  68. Wang Y P, Liu H T, Song H Y, et al. Ultra-thin grain-oriented silicon steel sheet fabricated by a novel way: Twin-roll strip casting and two-stage cold rolling. J Magn Magn Mater, 2018, 452: 288–296

    Article  Google Scholar 

  69. Fang F, Lu X, Zhang Y X, et al. Influence of cold rolling direction on texture, inhibitor and magnetic properties in strip-cast grain-oriented 3% silicon steel J Magn Magn Mater, 2017, 424: 339–346

    Article  Google Scholar 

  70. Fang F, Lu X, Lan M, et al. Effect of rolling temperature on the microstructure, texture, and magnetic properties of strip-cast grain-oriented 3% Si steel J Mater Sci, 2018, 53: 9217–9231

    Article  Google Scholar 

  71. Wang Y, Xu Y B, Zhang Y X, et al. Effect of annealing after strip casting on texture development in grain oriented silicon steel produced by twin roll casting. Mater Charact, 2015, 107: 79–84

    Article  Google Scholar 

  72. Fang F, Lan M F, Lu X, et al. The impact of niobium on the microstructure, texture and magnetic properties of strip-cast grain oriented silicon steel J Magn Magn Mater, 2017, 442: 1–7

    Article  Google Scholar 

  73. Lu X, Xu Y B, Fang F, et al. Characterization of microstructure and texture in grain-oriented high silicon steel by strip casting. Acta Metall Sin (Engl Lett), 2015, 28: 1394–1402

    Article  Google Scholar 

  74. Lu X, Xu Y, Fang F, et al. Microstructure, texture and precipitate of grain-oriented 4.5wt% Si steel by strip casting. J Magn Magn Mater, 2016, 404: 230–237

    Article  Google Scholar 

  75. Lu X, Fang F, Zhang Y X, et al. Microstructure and magnetic properties of strip-cast grain-oriented 4.5%Si steel under isochronal and isothermal secondary annealing. J Mater Sci, 2017, 53: 2928–2941

    Article  Google Scholar 

  76. Lu X, Fang F, Zhang Y X, et al. Evolution of microstructure and texture in grain-oriented 6.5%Si steel processed by strip-casting. Mater Charact, 2017, 126: 125–134

    Article  Google Scholar 

  77. Kuziak R, Kawalla R, Waengler Advanced high strength steels for automotive industry. Arch Civil Mech Eng, 2008, 8: 103–117

    Article  Google Scholar 

  78. Xiong Z P, Kostryzhev A G, Stanford N E, et al. Microstructures and mechanical properties of dual phase steel produced by laboratory simulated strip casting. Mater Des, 2015, 88: 537–549

    Article  Google Scholar 

  79. Xiong Z P, Kostryzhev A G, Stanford N E, et al. Effect of deformation on microstructure and mechanical properties of dual phase steel produced via strip casting simulation. Mater Sci Eng-A, 2016, 651: 291–305

    Article  Google Scholar 

  80. Xiong Z P, Saleh A A, Kostryzhev A G, et al. Strain-induced ferrite formation and its effect on mechanical properties of a dual phase steel produced using laboratory simulated strip casting. J Alloys Compd, 2017, 721: 291–306

    Article  Google Scholar 

  81. Xiong Z, Kostryzhev A G, Zhao Y, et al. Microstructure evolution during the production of dual phase and transformation induced plasticity steels using modified strip casting simulated in the laboratory Metals, 2019, 9: 449

    Article  Google Scholar 

  82. Wang H, Yuan G, Kang J, et al. Microstructural evolution and mechanical properties of dual phase steel produced by strip casting Mater Sci Eng-A, 2017, 703: 486–495

    Article  Google Scholar 

  83. Xiong Z P, Kostryzhev A G, Saleh A A, et al. Microstructures and mechanical properties of TRIP steel produced by strip casting simulated in the laboratory Mater Sci Eng-A, 2016, 664: 26–42

    Article  Google Scholar 

  84. Xiong Z P, Kostryzhev A G, Chen L, et al. Microstructure and mechanical properties of strip cast TRIP steel subjected to thermomechanical simulation. Mater Sci Eng-A, 2016, 677: 356–366

    Article  Google Scholar 

  85. Wang H S, Yuan G, Zhang Y X, et al. Microstructural evolution and mechanical properties of duplex TRIP steel produced by strip casting. Mater Sci Eng-A, 2017, 692: 43–52

    Article  Google Scholar 

  86. Xiong Z P, Saleh A A, Marceau R K W, et al. Site-specific atomic-scale characterisation of retained austenite in a strip cast TRIP steel. Acta Mater, 2017, 134: 1–15

    Article  Google Scholar 

  87. Daamen M, Wietbrock B, Richter S, et al. Strip casting of a high-manganese steel (FeMn22C0.6) compared with a process chain consisting of ingot casting and hot forming. Steel Res Int, 2011, 82: 70–75

    Article  Google Scholar 

  88. Daamen M, Nessen W, Pinard P T, et al. Deformation Behavior of High-manganese TWIP steels produced by twin-roll strip casting. Procedia Eng, 2014, 81: 1535–1540

    Article  Google Scholar 

  89. Daamen M, Haase C, Dierdorf J, et al. Twin-roll strip casting: A competitive alternative for the production of high-manganese steels with advanced mechanical properties. Mater Sci Eng-A, 2015, 627: 72–81

    Article  Google Scholar 

  90. Song C, Lu W, Xie K, et al. Microstructure and mechanical properties of sub-rapidly solidified Fe-18 wt%Mn-C alloy strip. Mater Sci Eng-A, 2014, 610: 145–153

    Article  Google Scholar 

  91. Yang Y, Zhang J, Hu C, et al. Structures and properties of Fe-(8–16) Mn-9Al-0.8C low density steel made by a centrifugal casting in near-rapid solidification. Mater Sci Eng-A, 2019, 748: 74–84

    Article  Google Scholar 

  92. Wang H, Zhang Y, Ran R, et al. A medium-Mn steel processed by novel twin-roll strip casting route. Mater Sci Tech, 2019, 35: 1227–1238

    Article  Google Scholar 

  93. Wang Z, Carpenter K, Chen Z, et al. The effect of cooling rate and coiling temperature on the niobium retention in Ultra-Thin Cast Strip steel. Mater Sci Eng-A, 2017, 700: 234–240

    Article  Google Scholar 

  94. Felfer P J, Killmore C R, Williams J G, et al. A quantitative atom probe study of the Nb excess at prior austenite grain boundaries in a Nb microalloyed strip-cast steel. Acta Mater, 2012, 60: 5049–5055

    Article  Google Scholar 

  95. Dorin T, Wood K, Taylor A, et al. Effect of coiling treatment on microstructural development and precipitate strengthening of a strip cast steel. Acta Mater, 2016, 115: 167–177

    Article  Google Scholar 

  96. Stanford N, Dorin T, Hodgson P D. The effect of Nb micro-alloying on the bainitic phase transformation under strip casting conditions. Metall Mat Trans A, 2018, 49: 1021–1025

    Article  Google Scholar 

  97. Dorin T, Wood K, Taylor A, et al. Quantitative examination of carbide and sulphide precipitates in chemically complex steels processed by direct strip casting. Mater Charact, 2016, 112: 259–268

    Article  Google Scholar 

  98. Sellamuthu P, Hodgson P, Stanford N. Effect of copper on microstructure, recrystallization and precipitation kinetics in strip cast low carbon steel. Mater Res Express, 2020, 6: 1265j5

    Article  Google Scholar 

  99. Sellamuthu P, Stanford N, Hodgson P D. Recrystallization kinetic behavior of copper-bearing strip cast steel. Steel Res Int, 2013, 84: 1273–1280

    Article  Google Scholar 

  100. Guan B, Hong S H, Schulz C, etal The microstructure, antimicrobial properties, and corrosion resistance of Cu-bearing strip cast steel. Adv Eng Mater, 2020, 22: 1901265

    Article  Google Scholar 

  101. Wang W, Zhu C, Zeng J, et al. MnS precipitation behavior of high-sulfur microalloyed steel under sub-rapid solidification process. Metall Mater Trans B, 2019, 51: 45–53

    Article  Google Scholar 

  102. Grydin O, Gerstein G, Nürnberger F, et al. Twin-roll casting of aluminum-steel clad strips. J Manuf Process, 2013, 15: 501–507

    Article  Google Scholar 

  103. Münster D, Zhang B, Hirt G. Processing of clad steel strips consisting of a high manganese and stainless steel pairing produced by twin-roll casting. Steel Res Int, 2017, 88: 1600285

    Article  Google Scholar 

  104. Stolbchenko M, Grydin O, Schaper M. Influence of surface roughness on the bonding quality in twin-roll cast clad strip. Mater Manufacturing Processes, 2017, 33: 727–734

    Article  Google Scholar 

  105. Grydin O, Stolbchenko M, Schaper M. Deformation zone length and plastic strain in twin-roll casting of strips of Al-Mg-Si alloy. JOM, 2017, 69: 2648–2652

    Article  Google Scholar 

  106. Haga T, Tkahashi K, Ikawaand M, et al. Twin roll casting of aluminum alloy strips. J Mater Process Tech, 2004, 153–154: 42–47

    Article  Google Scholar 

  107. Sahoo S, Ghosh S. Microstructure evolution ofeutectic Al-Cu strips by high-speed twin-roll strip casting process. Appl Phys A, 2015, 121: 45–50

    Article  Google Scholar 

  108. Wang H, Zhou L, Zhang Y, et al. Effects of twin-roll casting process parameters on the microstructure and sheet metal forming behavior of 7050 aluminum alloy. J Mater Process Tech, 2016, 233: 186–191

    Article  Google Scholar 

  109. Kim M S, Kim S H, Kim H W. Deformation-induced center segregation in twin-roll cast high-Mg Al-Mg strips. Scripta Mater, 2018, 152: 69–73

    Article  Google Scholar 

  110. Liu Y, Sun Y, Zhang L, et al. Microstructure and mechanical properties of Al-5Mg-0.8Mn alloys with various contents of Fe and Si cast under near-rapid cooling. Metals, 2017, 7: 428

    Article  Google Scholar 

  111. Song R, Harada Y, Kumai S. Influence of cooling rate on primary particle and solute distribution in high-speed twin-roll cast Al-Mn based alloy strip. Mater Trans, 2018, 59: 110–116

    Article  Google Scholar 

  112. Al-Helal K, Patel J, Fan Z. Melt conditioning twin roll casting with thermo-mechanical treatment of recycled AA6111 alloy. JOM, 2018, 71: 1714–1721

    Article  Google Scholar 

  113. Al-Helal K, Chang I, Patel J B, et al. Thermomechanical treatment of high-shear melt-conditioned twin-roll cast strip of recycled AA5754 alloy. JOM, 2019, 71: 2018–2024

    Article  Google Scholar 

  114. He C, Li Y, Li J, et al. Effect of electromagnetic fields on microstructure and mechanical properties of sub-rapid solidification-processed Al-Mg-Si alloy during twin-roll casting. Mater Sci Eng-A, 2019, 766: 138328

    Article  Google Scholar 

  115. Xu W, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy. Nat Mater, 2015, 14: 1229–1235

    Article  Google Scholar 

  116. Wang J, Wang L, Guan S, et al. Microstructure and corrosion properties of as sub-rapid solidification Mg-Zn-Y-Nd alloy in dynamic simulated body fluid for vascular stent application. J Mater Sci-Mater Med, 2010, 21: 2001–2008

    Article  Google Scholar 

  117. Liang D, Cowley C B. The twin-roll strip casting of magnesium. JOM, 2004, 56: 26–28

    Article  Google Scholar 

  118. Yang X, Patel J B, Huang Y, et al. Towards directly formable thin gauge AZ31 Mg alloy sheet production by melt conditioned twin roll casting. Mater Des, 2019, 179: 107887

    Article  Google Scholar 

  119. Todaro C J, Easton M A, Qiu D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat Commun, 2020, 11: 1–9

    Article  Google Scholar 

  120. Kun Y, Hanqing X, Yilong D, et al. Mechanical properties and formability of ultrasonic treated twin roll casting magnesium alloy sheet. Rare Metal Mater Eng, 2017, 46: 622–626

    Article  Google Scholar 

  121. Sorensen D, Hintsala E, Stevick J, et al. Intrinsic toughness of the bulk-metallic glass Vitreloy 105 measured using micro-cantilever beams. Acta Mater, 2020, 183: 242–248

    Article  Google Scholar 

  122. Zhang L, Wu Y, Feng S, et al. Rejuvenated metallic glass strips produced via twin-roll casting. J Mater Sci Tech, 2020, 38: 73–79

    Article  Google Scholar 

  123. Seki I, Kimura H, Inoue A. Thermal stability and mechanical properties of Ti47.4Cu42Zr5.3TM5.3(TM=Co, Fe) metallic glass sheets prepared by twin-roller casting method. Mater Trans, 2008, 49: 498–501

    Article  Google Scholar 

  124. East D, Gibson M A, Liang D, et al. Production and mechanical properties of roll bonded bulk metallic glass/aluminum laminates. Metall Mat Trans A, 2013, 44: 2010–2020

    Article  Google Scholar 

  125. Lee K S, Lee Y S. Fabrication of a Cu36Zr48Al8Ag8 bulk metallic glass sheet by atmosphere-controlled vertical twin roll strip casting. Int J Cast Met Res, 2018, 32: 78–84

    Article  Google Scholar 

  126. Xu M, Liu G, Li T, et al. Microstructure characteristics of Ti-43Al alloy during twin-roll strip casting and heat treatment. Trans Non-ferrous Met Soc China, 2019, 29: 1017–1025

    Article  Google Scholar 

  127. Wang W, Zhu C, Zeng J, et al. Microstructures and Nb-rich precipitation behaviors of inconel 718 superalloy under sub-rapid solidification process. Metall Mater Trans A, 2020, 51: 2306–2317

    Article  Google Scholar 

  128. Shao C, Zhao S, Wang X, et al. Architecture of high-strength aluminum-matrix composites processed by a novel microcasting technique. NPG Asia Mater, 2019, 11: 69

    Article  Google Scholar 

  129. Huang H, Wang J, Liu W. Mechanical properties and reinforced mechanism of the stainless steel wire mesh-reinforced Al-matrix composite plate fabricated by twin-roll casting. Adv Mech Eng, 2017, 9: 168781401771663

    Article  Google Scholar 

  130. Morris J W. Making steel strong and cheap. Nat Mater, 2017, 16: 787–789

    Article  Google Scholar 

  131. Bhadeshia H K D H, Edmonds D V. The bainite transformation in a silicon steel. Metall Mater Trans A, 1979, 10: 895–907

    Article  Google Scholar 

  132. He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels. Science, 2017, 357: 1029–1032

    Article  Google Scholar 

  133. Jiang S, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017, 544: 460–464

    Article  Google Scholar 

  134. Ding R, Yao Y, Sun B, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels. Sci Adv, 2020, 6: eaay1430

    Article  Google Scholar 

  135. Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination. Science, 2020, 368: 1347–1352

    Article  Google Scholar 

  136. Wang Y, Sun J, Jiang T, et al. A low-alloy high-carbon martensite steel with 2.6 GPa tensile strength and good ductility. Acta Mater, 2018, 158: 247–256

    Article  Google Scholar 

  137. Wang C, Chang Y, Zhou F, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high-strength and high ductility (in Chinese). Acta Metall Sin, 2020, 56: 400–410

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WanLin Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1760202, 51904345), Hunan Provincial Key Research and Development Program (Grant No. 2018WK2051), and the State Scholarship Fund from the China Scholarship Council (Grant No. 201906370153).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Zeng, J. & Wang, W. Twin-roll strip casting of advanced metallic materials. Sci. China Technol. Sci. 65, 493–518 (2022). https://doi.org/10.1007/s11431-020-1800-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1800-8

Navigation