Skip to main content
Log in

Study of the Heat Transfer Behavior and Naturally Deposited Films in Strip Casting by Using Droplet Solidification Technique

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Oxide films that naturally deposit on the surface of the twin-roll mold during strip casting greatly influence the heat transfer from molten steel pool to the mold wall, which further affect the quality of casting product. In this study, a droplet solidification technique has been developed to simulate the initial process of solidification and film deposition during strip casting process. The results suggest that the maximum heat flux increases firstly (to 5201.5 kW/m2 for industrial pure Fe and to 4242.1 kW/m2 for stainless steel) and then decreases (to 4700.3 kW/m2 for industrial pure Fe and to 2037.8 kW/m2 for stainless steel) with the repeat of dropping tests. Furthermore, the roughness and thickness of the films formed on the surface increase with the successive addition of the solidifying material on the prior film. The compositions of the films are detected mainly as oxides containing O, Fe, Si, Mn, S, and Cu for the industrial pure Fe sample and they are O, Si, S, Mn, Cr, and Cu for the stainless steel sample. The deposited film with a thickness (54 μm for industrial pure Fe and 82 μm for stainless steel) and a roughness (24.5 nm for industrial pure Fe and 36.6 nm for stainless steel) allows a better wetting behavior between the molten steel and mold surface, resulting in an increase of actual contact area, and an enhancement of nucleation rate, which then in turn promote the interfacial heat transfer during the initial solidification of molten steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. [1] P.G.Q. Netto, R.P. Tavares, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2001, vol. 41, pp. 1340-49.

    Article  CAS  Google Scholar 

  2. [2] T. Loulou, E.A. Artyukhin, and J.P. Bardon: Int. J. Heat Mass Tran., 1999, vol. 42, pp. 2129-42.

    Article  CAS  Google Scholar 

  3. [3] W. Zhang, Y. Yu, Y. Fang, and J. Li: J. Shanghai Jiaotong Univ. (Sci.), 2011, vol. 16, pp. 65-70.

    Article  Google Scholar 

  4. P. Nolli: Doctoral Thesis, Carnegie Mellon University, 2007.

  5. [5] P. Nolli, and A.W. Cramb: ISIJ Int., 2007, vol. 47, pp. 1284-93.

    Article  CAS  Google Scholar 

  6. [6] L. Strezov, J. Herbertson and G.R. Belton: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1023-30.

    Article  CAS  Google Scholar 

  7. H. Todoroki, R. Lert-A-Rom, A.W. Cramb, I. Jimbo, and T. Suzuki: Electr. Furn. Conf. Proc., 1996.

  8. [8] L. Strezov, and J. Herbertson: ISIJ Int., 1998, vol. 38, pp. 959-66.

    Article  CAS  Google Scholar 

  9. H. Todoroki, R. Lert-A-Rom, T. Suzuki, and A.W. Cramb: Alex Mclean Symp., 1998.

  10. H. Todoroki, R. Lert-A-Rom, T. Suzuki, and A.W. Cramb: Steelmak. Conf. Proc., 1997.

  11. [11] M.J. Ha, J. Choi, S. Jeong, H. Moon, S. Lee, and T. Kang: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1487-97.

    Article  CAS  Google Scholar 

  12. [12] T. Evans and L. Strezov: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1081-89.

    Article  CAS  Google Scholar 

  13. N. Phinichka: Doctoral Thesis, Carnegie Mellon University, 2001.

  14. [14] P. Nolli, and A.W. Cramb: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 56-65.

    Article  CAS  Google Scholar 

  15. [15] J. Beck and K. Woodbury: Meas. Sci. Technol., 1998, vol. 9, pp. 839-47.

    Article  CAS  Google Scholar 

  16. [16] H. Zhang, W. Wang, D. Zhou, F. Ma, B. Lu, and L. Zhou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1038-47.

    Article  Google Scholar 

  17. [17] D. Zhou, W. Wang, H. Zhang, F. Ma, K. Chen, and L. Zhou: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1048-56.

    Article  Google Scholar 

  18. [18] H. Zhang, and W. Wang: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 779-93.

    Article  Google Scholar 

  19. [19] K.N. Prabhu, B.N. Ravishankar: Mater. Sci. Eng. A, 2003, vol. 360, pp. 293-98.

    Article  Google Scholar 

  20. [20] D. Bouchard, S. Leboeuf, J.P. Nadeau, R.I.L. Guthrie and M. Isac: J. Mater. Sci., 2009, vol. 44, pp. 1923-33.

    Article  CAS  Google Scholar 

  21. [21] R.I.P. Guthrie, M. Isac, J.S. Kim and R.P. Tavares: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1031-47.

    Article  CAS  Google Scholar 

  22. Jayananda and K.N. Prabhu: T. Indian I. Metals, 2012, vol. 65, pp. 539-43.

    Article  CAS  Google Scholar 

  23. [23] G.X. Wang and E.F. Matthys: Int. J. Heat Mass Tran., 2002, vol. 45, pp. 4967-81.

    Article  CAS  Google Scholar 

  24. M.L.S. Zappulla and B.G. Thomas: TMS 2017 146th Annu. Meet. Exhib. Suppl. Proc., 2017.

Download references

Acknowledgments

The financial support from the National Science Foundation of China (51661130154, U1760202) and Newton Advanced Fellowship (NA150320) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lejun Zhou.

Additional information

Manuscript submitted November 25, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhu, C., Lu, C. et al. Study of the Heat Transfer Behavior and Naturally Deposited Films in Strip Casting by Using Droplet Solidification Technique. Metall Mater Trans A 49, 5524–5534 (2018). https://doi.org/10.1007/s11661-018-4850-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4850-6

Navigation