Skip to main content
Log in

High-temperature dielectric and microwave absorption performances of TiB2/Al2O3 ceramics prepared by spark plasma sintering

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

TiB2/Al2O3 ceramics reinforced with MgO are prepared by spark plasma sintering (SPS). The dielectric and microwave (MW) absorption properties are discussed. The results indicate that both the commercial TiB2 (C-TiB2) content and preparing temperature play important roles in the dielectric properties. Simultaneously, TiB2/Al2O3 composite shows the best MW absorption property when the C-TiB2 content and preparing temperature are 9 wt% and 1400°C. To further improve the MW absorption properties, the composite containing 9 wt% synthesized TiB2 (S-TiB2) has been sintered at 1400°C. Its high-temperature complex permittivity is greater than that of TiB2/Al2O3 composite with 9 wt% C-TiB2 sintered at 1400°C and is directly proportional to the temperature. Besides, TiB2/Al2O3 composite with 9 wt% S-TiB2 possesses a better MW absorption at 25–500°C, its effective absorption bandwidth (RL<−5 dB) can reach 4.2 GHz at 25–500°C. And the minimum reflection loss (RLmin) value reaches −43.41 dB at the temperature of 800°C with a thickness of 1.45 mm for TiB2/Al2O3 composite with 9 wt% C-TiB2. Consequently, the satisfying absorbing layer (d<1.75 mm), flexural strength, heat stability and considerable high-temperature MW absorption ability grant TiB2/Al2O3 ceramics practical applications as high-temperature microwave absorption materials (MAMs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acharya S, Alegaonkar P, Datar S. Effect of formation of heterostructure of SrAl4Fe8O19/RGO/PVDF on the microwave absorption properties of the composite. Chem Eng J, 2019, 374: 144–154

    Article  Google Scholar 

  2. Saleem A, Zhang Y, Gong H, et al. Dielectric and microwave absorption properties of fluoride-doped MWCNT/Si3N4 composite. J Mater Sci-Mater Electron, 2020, 31: 2918–2925

    Article  Google Scholar 

  3. Liu Y, Luo F, Su J, et al. Mechanical, dielectric, and microwave-absorption properties of alumina ceramic containing dispersed Ti3SiC2. J Elec Materi, 2015, 44: 867–873

    Article  Google Scholar 

  4. Montiel H, Alvarez G, Gutiérrez M P, et al. Microwave absorption in Ni-Zn ferrites through the Curie transition. J Alloys Compd, 2014, 369: 141–143

    Article  Google Scholar 

  5. Shi Y, Luo F, Ding D, et al. Effects of ZrO2 interphase on mechanical and microwave absorbing properties of SiCf/SiC composites. Phys Status Solidi A, 2013, 210: 2668–2673

    Article  Google Scholar 

  6. Wu K H, Ting T H, Wang G P, et al. Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites. Polym Degrad Stabil, 2008, 93: 483–488

    Article  Google Scholar 

  7. Hou Z, Yin X, Xu H, et al. Reduced graphene oxide/silicon nitride composite for cooperative electromagnetic absorption in wide temperature spectrum with excellent thermal stability. ACS Appl Mater Interfaces, 2019, 11: 5364–5372

    Article  Google Scholar 

  8. Yuan X, Cheng L, Guo S, et al. High-temperature microwave absorbing properties of ordered mesoporous inter-filled SiC/SiO2 composites. Ceram Int, 2017, 43: 282–288

    Article  Google Scholar 

  9. Wen B, Cao M S, Hou Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon, 2013, 65: 124–139

    Article  Google Scholar 

  10. Song W, Cao M, Hou Z, et al. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scripta Mater, 2009, 61: 201–204

    Article  Google Scholar 

  11. Li M, Yin X, Zheng G, et al. High-temperature dielectric and microwave absorption properties of Si3N4-SiC/SiO2 composite ceramics. J Mater Sci, 2015, 50: 1478–1487

    Article  Google Scholar 

  12. Vallauri D, Atías Adrián I C, Chrysanthou A. TiC-TiB2 composites: A review of phase relationships, processing and properties. J Eur Ceram Soc, 2008, 28: 1697–1713

    Article  Google Scholar 

  13. Schultes G, Schmitt M, Goettel D, et al. Strain sensitivity of TiB2, TiSi2, TaSi2 and WSi2 thin films as possible candidates for high temperature strain gauges. Sens Actuat A-Phys, 2006, 126: 287–291

    Article  Google Scholar 

  14. Zhu J, Wei S, Zhang L, et al. Electrical and dielectric properties of polyaniline-Al2O3 nanocomposites derived from various Al2O3 nanostructures. J Mater Chem, 2011, 21: 3952–3959

    Article  Google Scholar 

  15. Kita J, Engelbrecht A, Schubert F, et al. Some practical points to consider with respect to thermal conductivity and electrical resistivity of ceramic substrates for high-temperature gas sensors. Sens Actuat B-Chem, 2015, 213: 541–546

    Article  Google Scholar 

  16. Bi S, Su X, Hou G, et al. Electrical conductivity and microwave absorption of shortened multi-walled carbon nanotube/alumina ceramic composites. Ceram Int, 2013, 39: 5979–5983

    Article  Google Scholar 

  17. Mu Y, Zhou W, Hu Y, et al. Temperature-dependent dielectric and microwave absorption properties of SiC/SiC-Al2O3 composites modified by thermal cross-linking procedure. J Eur Ceram Soc, 2015, 35: 2991–3003

    Article  Google Scholar 

  18. Huang S, Zhou W, Luo F, et al. Mechanical and dielectric properties of short carbon fiber reinforced Al2O3 composites with MgO additive. Ceram Int, 2014, 40: 2785–2791

    Article  Google Scholar 

  19. Matsushita J, Hayashi S, Saito H. Oxidation of TiB2-Al2O3 composites in air. Nihon Seramikkusu Kyōkai gakujutsu ronbunshi, 1990, 98: 308–310

    Article  Google Scholar 

  20. He X D, Dong L, Wu J, et al. The influence of varied modulation ratios on crystallization and mechanical properties of nanoscale TiB2/Al2O3 multilayers. Surf Coat Tech, 2019, 365: 65–69

    Article  Google Scholar 

  21. Krishnarao R V, Subrahmanyam J. Studies on the formation of TiB2 through carbothermal reduction of TiO2 and B2O3. Mater Sci Eng-A, 2003, 362: 145–151

    Article  Google Scholar 

  22. Zheng G, Yin X, Liu S, et al. Improved electromagnetic absorbing properties of Si3N4-SiC/SiO2 composite ceramics with multi-shell microstructure. J Eur Ceram Soc, 2013, 33: 2173–2180

    Article  Google Scholar 

  23. Liu P, Zhang Y, Yan J, et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem Eng J, 2019, 368: 285–298

    Article  Google Scholar 

  24. Shahbazi H, Shokrollahi H, Tataei M. Gel-casting of transparent magnesium aluminate spinel ceramics fabricated by spark plasma sintering (SPS). Ceram Int, 2018, 44: 4955–4960

    Article  Google Scholar 

  25. Liu H, Tian H. Mechanical and microwave dielectric properties of SiCf/SiC composites with BN interphase prepared by dip-coating process. J Eur Ceram Soc, 2012, 32: 2505–2512

    Article  Google Scholar 

  26. Yang N, Zeng J, Xue J, et al. Strong absorption and wide-frequency microwave absorption properties of the nanostructure zinc oxide/zinc/carbon fiber multilayer composites. J Alloys Compd, 2018, 735: 2212–2218

    Article  Google Scholar 

  27. Liu Y, Luo F, Su J, et al. Enhanced mechanical, dielectric and microwave absorption properties of cordierite based ceramics by adding Ti3SiC2 powders. J Alloys Compd, 2015, 619: 854–860

    Article  Google Scholar 

  28. Yuan X, Cheng L, Zhang L. Influence of temperature on dielectric properties and microwave absorbing performances of TiC nanowires/SiO2 composites. Ceram Int, 2014, 40: 15391–15397

    Article  Google Scholar 

  29. Cao M S, Song W L, Hou Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon, 2010, 48: 788–796

    Article  Google Scholar 

  30. Zhou W, Yin R, Long L, et al. Enhanced high-temperature dielectric properties and microwave absorption of SiC nanofibers modified Si3N4 ceramics within the gigahertz range. Ceram Int, 2018, 44: 12301–12307

    Article  Google Scholar 

  31. Sun H, Che R, You X, et al. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater, 2014, 26: 8120–8125

    Article  Google Scholar 

  32. Kong L, Yin X, Li Q, et al. High-temperature electromagnetic wave absorption properties of ZnO/ZrSiO4 composite ceramics. J Am Ceram Soc, 2017, 96: 2211–2217

    Article  Google Scholar 

  33. Wang Y, Luo F, Zhou W, et al. Dielectric and microwave absorption properties of TiC-Al2O3/silica coatings at high temperature. J Elec Materi, 2017, 46: 5225–5231

    Article  Google Scholar 

  34. Che R, Peng L M, Duan X, et al. Microwave absorption enhancement and complex permittivity and permeability of fe encapsulated within carbon nanotubes. Adv Mater, 2004, 16: 401–405

    Article  Google Scholar 

  35. Liu Q, Cao Q, Bi H, et al. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater, 2016, 28: 486–490

    Article  Google Scholar 

  36. Zhao B, Li Y, Zeng Q, et al. Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small, 2020, 16: 2003502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RongZhou Gong.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61701185 & 61801186).

Electronic supplementary material

11431_2020_1795_MOESM1_ESM.pdf

High-temperature dielectric and microwave absorption performances of TiB2/Al2O3 ceramics prepared by spark plasma sintering

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Luo, H., Li, Y. et al. High-temperature dielectric and microwave absorption performances of TiB2/Al2O3 ceramics prepared by spark plasma sintering. Sci. China Technol. Sci. 64, 1264–1275 (2021). https://doi.org/10.1007/s11431-020-1795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1795-x

Keywords

Navigation