Skip to main content
Log in

Temperature-insensitive microwave absorption of TiB2-Al2O3/MgAl2O4 ceramics based on controllable electrical conductivity

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The design of the high-temperature microwave absorbing materials (MAMs) with temperature-insensitive and considerable microwave absorption (MA) capacity is a tremendous challenge. TiB2-Al2O3/MgAl2O4 MAMs are prepared by the spark plasma sintering (SPS). Further, the influences of the Al2O3 content on the flexural strength, thermal stability, high-temperature electrical conductivity, dielectric and MA properties are discussed. The results show that the Al2O3 content is associated with flexural strength, high-temperature thermal stability, electrical conductivity, dielectric and MA properties. Meanwhile, the temperature-insensitive and considerable MA properties with the minimum reflection loss (RLmin) ranging from −19.4 to −14.3 dB and the effective absorption bandwidth (EAB, RL<−5 dB) of 3.19–3.55 GHz are attained at 25°C–700°C in 8.2–12.4 GHz as the Al2O3 content increases from 70.6 wt% to 80.6 wt%. This is ascribed to the compensating effect of the positive and negative temperature coefficient materials on the high-temperature electrical conductivity as well as the co-play of the dipolar and interfacial polarization at elevated temperatures. Consequently, TiB2-Al2O3/MgAl2O4 ceramics exhibit the ideal prospect as the high-temperature MAMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li M, Li X, Chen P, et al. The conductivity, dielectric and electromagnetic attenuation properties of MgZr4P6O24 ceramics at elevated temperature. J Eur Ceramic Soc, 2020, 40: 5511–5517

    Article  Google Scholar 

  2. Cheng Y, Seow J Z Y, Zhao H, et al. A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett, 2020, 12: 1–15

    Article  Google Scholar 

  3. Liang X, Man Z, Quan B, et al. Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett, 2020, 12: 102

    Article  Google Scholar 

  4. Guo Y, Jian X, Zhang L, et al. Plasma-induced FeSiAl@Al2O3@SiO2 core-shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem Eng J, 2020, 384: 123371

    Article  Google Scholar 

  5. Jian X, Tian W, Li J, et al. High-temperature oxidation-resistant ZrN0.4 B0.6/SiC nanohybrid for enhanced microwave absorption. ACS Appl Mater Interfaces, 2019, 11: 15869–15880

    Article  Google Scholar 

  6. Gao H, Luo F, Wen Q, et al. Temperature-dependent dielectric and microwave absorption properties of silicon carbide fiber-reinforced oxide matrices composite. J Mater Sci, 2018, 53: 15465–15473

    Article  Google Scholar 

  7. Duan W, Yin X, Cao F, et al. Absorption properties of twinned SiC nanowires reinforced Si3N4 composites fabricated by 3d-prining. Mater Lett, 2015, 159: 257–260

    Article  Google Scholar 

  8. Liu W, Tan S, Yang Z, et al. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl Mater Interfaces, 2018, 10: 31610–31622

    Article  Google Scholar 

  9. Liang X, Quan B, Man Z, et al. Self-assembly three-dimensional porous carbon networks for efficient dielectric attenuation. ACS Appl Mater Interfaces, 2019, 11: 30228–30233

    Article  Google Scholar 

  10. Wang P, Liu P A, Ye S. Preparation and microwave absorption properties of Ni(Co/Zn/Cu)Fe2O4/SiC@SiO2 composites. Rare Met, 2019, 38: 59–63

    Article  Google Scholar 

  11. Wei H, Yin X, Jiang F, et al. Optimized design of high-temperature microwave absorption properties of CNTs/Sc2Si2O7 ceramics. J Alloys Compd, 2020, 823: 153864

    Article  Google Scholar 

  12. Shu R, Zhang G, Wang X, et al. Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers. Chem Eng J, 2018, 337: 242–255

    Article  Google Scholar 

  13. Rosa I M D, Dinescu A, Sarasini F, et al. Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers. Compos Sci Tech, 2020, 70: 102–109

    Article  Google Scholar 

  14. Yuan J, Yang H J, Hou Z L, et al. Ni-decorated SiC powders: Enhanced high-temperature dielectric properties and microwave absorption performance. Powder Tech, 2013, 237: 309–313

    Article  Google Scholar 

  15. Jia H, Zhou W, Nan H, et al. High temperature microwave absorbing properties of plasma sprayed La0.6Sr0.4FeO3-δ/MgAl2O4 composite ceramic coatings. Ceramics Int, 2020, 46: 6168–6173

    Article  Google Scholar 

  16. Li J S, Wang S C, Hwang C C. Preparation and high-temperature microwave absorbing properties of 6H-SiC/MWCNT/silicon resin composites. Mater Express, 2020, 10: 1–9

    Article  Google Scholar 

  17. Yuan X, Cheng L, Zhang L. Influence of temperature on dielectric properties and microwave absorbing performances of TiC nanowires/SiO2 composites. Ceramics Int, 2014, 40: 15391–15397

    Article  Google Scholar 

  18. Jia H, Zhou W, Nan H, et al. Enhanced high temperature dielectric polarization of barium titanate/magnesium aluminum spinel composites and their potential in microwave absorption. J Eur Ceramic Soc, 2020, 40: 728–734

    Article  Google Scholar 

  19. Han T, Luo R, Cui G, et al. Effect of SiC nanowires on the high-temperature microwave absorption properties of SiCf/SiC composites. J Eur Ceramic Soc, 2019, 39: 1743–1756

    Article  Google Scholar 

  20. Wang Y, Luo F, Zhou W, et al. Dielectric and microwave absorption properties of TiC-Al2O3/silica coatings at high temperature. J Elec Materi, 2017, 46: 5225–5231

    Article  Google Scholar 

  21. Hou Z, Yin X, Xu H, et al. Reduced graphene oxide/silicon nitride composite for cooperative electromagnetic absorption in wide temperature spectrum with excellent thermal stability. ACS Appl Mater Interfaces, 2018, 11: 5364–5372

    Article  Google Scholar 

  22. Mu Y, Zhou W, Hu Y, et al. Temperature-dependent dielectric and microwave absorption properties of SiC/SiC-Al2O3 composites modified by thermal cross-linking procedure. J Eur Ceramic Soc, 2015, 35: 2991–3003

    Article  Google Scholar 

  23. Liu X, Luo H, Yang J, et al. Enhancement on high-temperature microwave absorption properties of TiB2-MgO composites with multi-interfacial effects. Ceram Int, 2020, 47: 4475–4485

    Article  Google Scholar 

  24. McLEOD A D, Haggerty J S, Sadoway D R. Electrical resistivities of monocrystalline and polycrystalline TiB2. J Am Ceramic Soc, 1984, 67: 705–708

    Article  Google Scholar 

  25. Vallauri D, Atías Adrián I C, Chrysanthou A. TiC-TiB2 composites: A review of phase relationships, processing and properties. J Eur Ceramic Soc, 2008, 28: 1697–1713

    Article  Google Scholar 

  26. Zhu J, Wei S, Zhang L, et al. Electrical and dielectric properties of polyaniline-Al2O3 nanocomposites derived from various Al2O3 nanostructures. J Mater Chem, 2011, 21: 3952–3959

    Article  Google Scholar 

  27. Krishnarao R V, Subrahmanyam J. Studies on the formation of TiB2 through carbothermal reduction of TiO2 and B2O3. Mater Sci Eng-A, 2003, 362: 145–151

    Article  Google Scholar 

  28. Tian L, Yan X, Xu J L, et al. Effect of hydrogenation on the microwave absorption properties of BaTiO3 nanoparticles. J Mater Chem A, 2015, 3: 12550–12556

    Article  Google Scholar 

  29. Vallauri D, Atías Adrián I C, Chrysanthou A. TiC-TiB2 composites: A review of phase relationships, processing and properties. J Eur Ceram Soc, 2008, 28: 1697–1713

    Article  Google Scholar 

  30. Zhou W, Yin R, Long L, et al. Enhanced high-temperature dielectric properties and microwave absorption of SiC nanofibers modified Si3N4 ceramics within the gigahertz range. Ceramics Int, 2018, 44: 12301–12307

    Article  Google Scholar 

  31. Fan Y, Wang L, Li J, et al. Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon, 2010, 48: 1743–1749

    Article  Google Scholar 

  32. Zhou Q, Yin X, Ye F, et al. High temperature electromagnetic wave absorption properties of SiCf/Si3N4 composite induced by different SiC fibers. Ceramics Int, 2019, 45: 6514–6522

    Article  Google Scholar 

  33. Yang N, Zeng J, Xue J, et al. Strong absorption and wide-frequency microwave absorption properties of the nanostructure zinc oxide/zinc/carbon fiber multilayer composites. J Alloys Compd, 2018, 735: 2212–2218

    Article  Google Scholar 

  34. Song W, Cao M, Hou Z, et al. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scripta Mater, 2009, 61: 201–204

    Article  Google Scholar 

  35. Liu P, Zhang Y, Yan J, et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem Eng J, 2019, 368: 285–298

    Article  Google Scholar 

  36. Ye F, Zhang L, Yin X, et al. Dielectric and microwave-absorption properties of SiC nanoparticle/SiBCN composite ceramics. J Eur Ceramic Soc, 2014, 34: 205–215

    Article  Google Scholar 

  37. Liu H, Tian H, Cheng H. Dielectric properties of SiC fiber-reinforced SiC matrix composites in the temperature range from 25 to 700°C at frequencies between 8.2 and 18 GHz. J Nucl Mater, 2013, 432: 57–60

    Article  Google Scholar 

  38. Cheng Z, Liu Y, Ye F, et al. Microstructure and EMW absorbing properties of SiCnw/SiBCN-Si3N4 ceramics annealed at different temperatures. J Eur Ceramic Soc, 2019, 40: 1149–1158

    Article  Google Scholar 

  39. Wen B, Cao M S, Hou Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon, 2013, 65: 124–139

    Article  Google Scholar 

  40. Yuan X, Cheng L, Zhang Y, et al. Fe-doped SiC/SiO2 composites with ordered inter-filled structure for effective high-temperature microwave attenuation. Mater Des, 2016, 92: 563–570

    Article  Google Scholar 

  41. Liu W, Pan J, Ji G, et al. Switching the electromagnetic properties of multicomponent porous carbon materials derived from bimetallic metal-organic frameworks: Effect of composition. Dalton Trans, 2017, 46: 3700–3709

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RongZhou Gong.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61701185 and 61801186), and the Natural Science Foundation of Hubei Province (Grant Nos. 2020CFB509 and 2020CFB511).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, S., Luo, H. et al. Temperature-insensitive microwave absorption of TiB2-Al2O3/MgAl2O4 ceramics based on controllable electrical conductivity. Sci. China Technol. Sci. 64, 1250–1263 (2021). https://doi.org/10.1007/s11431-020-1776-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1776-3

Keywords

Navigation