Skip to main content
Log in

Dielectric and Microwave Absorption Properties of TiC-Al2O3/Silica Coatings at High Temperature

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The dielectric property and microwave attenuation performance of a TiC micropowder-filled Al2O3/silica coating were studied. The permittivity of the coating increases gradually with increasing TiC content, which can be attributed to the enhancement of polarization ability and the increase of coating conductivity. Meanwhile, the high-temperature microwave attenuation property of the 30 wt.% TiC-loaded coating was investigated in the temperature range of 25–250°C. Both the real and imaginary parts of complex permittivity exhibit obvious temperature-dependent behavior and increase with the rise of temperature. In the studied temperature range, this coating exhibits an excellent microwave absorption property. A strong absorption peak with minimum RL of −55.2 dB is obtained at 11.8 GHz when the temperature reaches 150°C. Furthermore, the absorption bandwidth (RL ≤ −10 dB) exhibits a widening tendency with the increase of temperature. As the temperature rises from 25°C to 250°C, the effective bandwidth (RL ≤ −10 dB) expands from 2.2 GHz to 3.2 GHz. These results suggest that the TiC-Al2O3/silica coating could be a desirable candidate for microwave absorbtion in the measured frequency and temperature ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.J. Liu, D. Song, C.X. Wu, and J.S. Leng, Compos. B 63, 34 (2014).

    Article  Google Scholar 

  2. Y. Mu, W.C. Zhou, F. Wan, D.H. Ding, Y. Hu, and F. Luo, Compos. A 77, 195 (2015).

    Article  Google Scholar 

  3. Y. Wang, F. Luo, L. Zhang, D.M. Zhu, and W.C. Zhou, Ceram. Int. 39, 8723 (2014).

    Article  Google Scholar 

  4. F.S. Wen, H. Hou, J.Y. Xiang, X.Y. Zhang, Z.B. Su, S.J. Yuan, and Z.Y. Liu, Carbon 89, 372 (2015).

    Article  Google Scholar 

  5. M. Farukh, A.P. Singh, and S.K. Dhawan, Compos. Sci. Technol. 114, 94 (2015).

    Article  Google Scholar 

  6. R. Dosoudil, M. Usakova, J. Franek, J. Slama, and A. Gruskova, IEEE Trans. Magn. 46, 436 (2010).

    Article  Google Scholar 

  7. W.M. Zhu, L. Wang, R. Zhao, J.W. Ren, G.Z. Lu, and Y.Q. Wang, Nanoscale 3, 2862 (2011).

    Article  Google Scholar 

  8. J.B. Su, W.C. Zhou, Y. Liu, Y.C. Qing, F. Luo, and D.M. Zhu, J. Therm. Spray Technol. 24, 826 (2015).

    Article  Google Scholar 

  9. L.D. Liu, Y.P. Duan, L.X. Ma, S.H. Liu, and Y. Zhen, Appl. Surf. Sci. 257, 842 (2010).

    Article  Google Scholar 

  10. N.Q. Zhao, T.C. Zou, C.S. Shi, J.J. Li, and W.K. Guo, Mater. Sci. Eng. B 127, 207 (2006).

    Article  Google Scholar 

  11. X.Y. Deng and C.W. Qiang, Int. J. Mater. Res. 104, 157 (2013).

    Article  Google Scholar 

  12. Y.K. Sung and F. EI-Tantawy, Macromol. Res. 10, 345 (2002).

    Article  Google Scholar 

  13. F.J. Wang, D.X. Zhou, and S.P. Gong, Phys. Status Solidi RRL 3, 22 (2009).

    Article  Google Scholar 

  14. L.H. Tian, C.X. Li, G.J. Yang, and C.J. Li, J. Power Sour. 233, 394 (2013).

    Article  Google Scholar 

  15. Y. Wang, F. Luo, W.C. Zhou, and D.M. Zhu, Ceram. Int. 40, 10749 (2014).

    Article  Google Scholar 

  16. X.Y. Yuan, L.F. Cheng, L. Kong, X.W. Yin, and L.T. Zhang, J. Alloys Compd. 596, 132 (2014).

    Article  Google Scholar 

  17. H. Meng, K.P. Song, H. Wang, J.J. Jiang, D. Li, Z. Han, and Z.D. Zhang, J. Alloys Compd. 509, 490 (2011).

    Article  Google Scholar 

  18. X.Y. Yuan, L.F. Cheng, and L.T. Zhang, Ceram. Int. 40, 15391 (2014).

    Article  Google Scholar 

  19. Z.B. Huang, W.B. Kang, Y.C. Qing, F. Luo, W.C. Zhou, and D.M. Zhu, Ceram. Int. 39, 3135 (2013).

    Article  Google Scholar 

  20. Y. Liu, F. Luo, S. Jinbu, W. Zhou, and D. Zhu, J. Alloys Compd. 632, 623 (2015).

    Article  Google Scholar 

  21. F. Ye, L.T. Zhang, X.W. Yin, Y.S. Liu, and L.F. Cheng, Appl. Surf. Sci. 270, 611 (2013).

    Article  Google Scholar 

  22. K. Cui, Y.L. Cheng, J.M. Dai, and J.P. Liu, Mater. Chem. Phys. 138, 810 (2013).

    Article  Google Scholar 

  23. Q.L. Wen, W.C. Zhou, Y.D. Wang, Y.C. Qing, F. Luo, D.M. Zhu, and Z.B. Huang, J. Mater. Sci. 52, 832 (2017).

    Article  Google Scholar 

  24. B. Wen, M.S. Cao, Z.L. Hou, et al., Carbon 65, 124 (2013).

    Article  Google Scholar 

  25. J. Liu, W.Q. Cao, H.B. Jin, J. Yuan, D.Q. Zhang, and M.S. Cao, Mater. Chem. C 3, 4670 (2015).

    Article  Google Scholar 

  26. H.J. Yang, J. Yuan, Y. Li, Z.L. Hou, H.B. Jin, X.Y. Fang, and M.S. Cao, Solid State Commun. 163, 1 (2013).

    Article  Google Scholar 

  27. M. Li, X.W. Yin, G.P. Zheng, M. Chen, M.J. Tao, L.F. Cheng, and L.T. Zhang, J. Mater. Sci. 50, 1478 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 51402239) and the States Key Laboratory of the Solidification Processing in NWPU (No. KP201307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Luo, F., Zhou, W. et al. Dielectric and Microwave Absorption Properties of TiC-Al2O3/Silica Coatings at High Temperature. J. Electron. Mater. 46, 5225–5231 (2017). https://doi.org/10.1007/s11664-017-5530-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5530-9

Keywords

Navigation