Skip to main content
Log in

Vision-based adaptive control of a 3-RRR parallel positioning system

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The macro positioning stage with high-precision and rapid positioning ability plays a crucial role in the macro-micro combination positioning system. In this paper, we develop a practical method for the control of a 3-RRR planar positioning system using online vision measurement as feedback. In this method, a monocular vision system is established to accomplish high-precision online pose measurement for the 3-RRR manipulator. Additionally, a robust and operable adaptive control algorithm, which incorporates a fuzzy controller and a PI controller, is employed to achieve precise and rapid positioning of the 3-RRR positioning system. A series of experiments are conducted to verify the positioning performances of the proposed method, and a conventional PI control algorithm is utilized for comparison. The experimental results indicate that using the proposed control approach, the parallel positioning system obtains high precision and shows higher efficiency and robustness, especially for the time-varying positioning system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fatikow S, Eichhorn V, Krohs F, et al. Development of automated microrobot-based nanohandling stations for nanocharacterization. Microsyst Technol, 2008, 14: 463–474

    Article  Google Scholar 

  2. Gupta R, Cavanah T M, Panhuis I H M. Nanomanipulation of individual carbon nanotubes. Microsc Microanal, 2004, 10: 962–963

    Article  Google Scholar 

  3. Fahlbusch S, Mazerolle S, Breguet J M, et al. Nanomanipulation in a scanning electron microscope. J Mater Process Technol, 2005, 167: 371–382

    Article  Google Scholar 

  4. Tran A V, Zhang X, Zhu B. The development of a new piezoresistive pressure sensor for low pressures. IEEE Trans Ind Electron, 2017

    Google Scholar 

  5. Wang R, Zhang X. Parameters optimization and experiment of a planar parallel 3-DOF nanopositioning system. IEEE Trans Ind Electron, 2018, 65: 2388–2397

    Article  Google Scholar 

  6. Merlet J P. Jacobian, manipulability, condition number, and accuracy of parallel robots. J Mech Des, 2006, 128: 199–206

    Article  Google Scholar 

  7. Gao F, Qi C K, Ren A Y, et al. Hardware-in-the-loop simulation for the contact dynamic process of flying objects in space. Sci China Tech Sci, 2016, 59: 1167–1175

    Article  Google Scholar 

  8. Yao S, Zhang X, Yu J, et al. Error modeling and calibration of a 4RR redundant positioning system. AIP Adv, 2017, 7: 095009

    Article  Google Scholar 

  9. Yu J J, Dai J S, Bi S S, et al. Type synthesis of a class of spatial lowermobility parallel mechanisms with orthogonal arrangement based on Lie group enumeration. Sci China Tech Sci, 2010, 53: 388–404

    Article  MATH  Google Scholar 

  10. Li Q, Wu F X. Control performance improvement of a parallel robot via the design for control approach. Mechatronics, 2004, 14: 947–964

    Article  Google Scholar 

  11. Vivas A, Poignet P. Predictive functional control of a parallel robot. Control Eng Pract, 2005, 13: 863–874

    Article  Google Scholar 

  12. Korayem M H, Tourajizadeh H, Taherifar M, et al. A novel method for recording the position and orientation of the end effector of a spatial cable-suspended robot and using for closed-loop control. Int J Adv Manuf Technol, 2014, 72: 739–755

    Article  Google Scholar 

  13. Shang W, Cong S. Motion control of parallel manipulators using acceleration feedback. IEEE Trans Contr Syst Technol, 2014, 22: 314–321

    Article  Google Scholar 

  14. Shang W W, Cong S, Ge Y. Adaptive computed torque control for a parallel manipulator with redundant actuation. Robotica, 2012, 30: 457–466

    Article  Google Scholar 

  15. Yang H, Shao L, Zheng F, et al. Recent advances and trends in visual tracking: A review. Neurocomputing, 2011, 74: 3823–3831

    Article  Google Scholar 

  16. Li H, Zhang X, Zhu B, et al. Micro-motion detection of the 3-DOF precision positioning stage based on iterative optimized template matching. Appl Opt, 2017, 56: 9435–9443

    Article  Google Scholar 

  17. Wu H, Zhang X, Gan J, et al. High-precision displacement measurement method for three degrees of freedom-compliant mechanisms based on computer micro-vision. Appl Opt, 2016, 55: 2594–2600

    Article  Google Scholar 

  18. Cheng H, Yiu Y K, Li Z. Dynamics and control of redundantly actuated parallel manipulators. IEEE/ASME Trans Mechatron, 2003, 8: 483–491

    Article  Google Scholar 

  19. Yong Y K, Lu T F, Minase J. Trajectory following with a three-DOF micro-motion stage. In: Australasian Conference on Robotics and Automation. ACRA, 2006. 6–8

    Google Scholar 

  20. Ren L, Mills J K, Dong Sun J K. Trajectory tracking control for a 3- DOF planar parallel manipulator using the convex synchronized control method. IEEE Trans Contr Syst Technol, 2008, 16: 613–623

    Article  Google Scholar 

  21. Vermeiren L, Dequidt A, Afroun M, et al. Motion control of planar parallel robot using the fuzzy descriptor system approach. ISA Trans, 2012, 51: 596–608

    Article  Google Scholar 

  22. Wu J, Wang J, Wang L, et al. Dynamics and control of a planar 3-DOF parallel manipulator with actuation redundancy. Mechanism Machine Theor, 2009, 44: 835–849

    Article  MATH  Google Scholar 

  23. Wu J, Wang D, Wang L. A control strategy of a two degrees-offreedom heavy duty parallel manipulator. J Dyn Sys Meas Control, 2015, 137: 061007

    Article  Google Scholar 

  24. Wu J, Wang J, You Z. An overview of dynamic parameter identification of robots. Robot Comput Integr Manuf, 2010, 26: 414–419

    Article  Google Scholar 

  25. Wang D, Wu J, Wang L, et al. A method for designing control parameters of a 3-DOF parallel tool head. Mechatronics, 2017, 41: 102–113

    Article  Google Scholar 

  26. Bonev I A, Gosselin C M. Singularity loci of planar parallel manipulators with revolute joints. In: Proceedings of the 2nd Workshop on Computational Kinematics. Seoul, 2001. 291–299

    Google Scholar 

  27. Gosselin C, Angeles J. The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator. J Mech Trans, 1988, 110: 35–41

    Article  Google Scholar 

  28. Liu X J, Jin Z L, Gao F. Optimum design of 3-DOF spherical parallel manipulators with respect to the conditioning and stiffness indices. Mechanism Machine Theor, 2000, 35: 1257–1267

    Article  Google Scholar 

  29. Lepetit V, Moreno-Noguer F, Fua P. EPnP: An accurate O(n) solution to the PnP problem. Int J Comput Vis, 2009, 81: 155–166

    Article  Google Scholar 

  30. Zhang Z. A flexible new technique for camera calibration. IEEE Trans Pattern Anal Machine Intell, 2000, 22: 1330–1334

    Article  Google Scholar 

  31. Wang L X. A Course in Fuzzy Systems. Upper Saddle River, NJ: Prentice-Hall Press, 1999

    Google Scholar 

  32. Ziemer R E, Tranter W H, Fanin D R. Signals and Systems: Continuos and Discrete. Upper Saddle River, NJ: Prentice-Hall Press, 1998

    Google Scholar 

  33. Salas F G, Santibáñez V, Llama M A. Fuzzy-tuned PD tracking control of a 3-RRR parallel manipulator: Stability analysis and simulations. Intell Autom Soft Comput, 2014, 20: 159–182

    Article  Google Scholar 

  34. Zhang X, Zhang X. A comparative study of planar 3-RRR and 4-RRR mechanisms with joint clearances. Robot Comput Integr Manuf, 2016, 40: 24–33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XianMin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Li, H., Zeng, L. et al. Vision-based adaptive control of a 3-RRR parallel positioning system. Sci. China Technol. Sci. 61, 1253–1264 (2018). https://doi.org/10.1007/s11431-017-9181-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9181-9

Keywords

Navigation