Skip to main content
Log in

An overview of hand-eye calibration

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Due to the increase in the difficulty and diversity of tasks performed by robots, robot “hand-eye” collaborative operation has attracted widespread attention. This technology is widely used in aerospace, medical, automotive, and industrial fields. Recently, hand-eye calibration technology is developing towards high precision and high intelligence. However, it has much work to be done in terms of identifying robot and camera parameters. This article introduces in detail the methods and theories involved in hand-eye calibration. According to the structure of the algorithm and the type of the optimization method, this paper summarizes the hand-eye calibration method into four steps: camera pose, mechanical claw pose, mathematical model, and error metrics. The well-known open problems about hand-eye calibration are finally stated, and some new research interests are also pointed out. The results of this review are useful for robot technicians to choose the correct parameter identification method and for researchers to determine further research areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Wu L, Ren HL (2017) Finding the kinematic base frame of a robot by hand-eye calibration using 3D position data. IEEE Trans Autom Sci Eng 14(1):314–324

    Google Scholar 

  2. Zhan Q, Wang X (2012) Hand–eye calibration and positioning for a robot drilling system. Int J Adv Manuf Technol 61:691–701. https://doi.org/10.1007/s00170-011-3741-4

    Article  Google Scholar 

  3. Li WL, Xie H, Zhang G, Yan S, Yin Z (2016) Hand–eye calibration in visually-guided robot grinding. IEEE Trans Cybern 46(11):2634–2642. https://doi.org/10.1109/TCYB.2015.2483740

    Article  Google Scholar 

  4. Pachtrachai K, Allan M, Pawar V, Hailes S, Stoyanov D (2016) Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): 2485–2491. https://doi.org/10.1109/IROS.2016.7759387

  5. Thompson S, Stoyanov D, Schneider C, Gurusamy K, Ourselin S, Davidson B, Hawkes D, Clarkson MJ (2016) Hand–eye calibration for rigid laparoscopes using an invariant point. Int J CARS 11(6):1071–1080. https://doi.org/10.1007/s11548-016-1364-9

    Article  Google Scholar 

  6. Corrochano EB, Daniilidis K, Sommer G (2000) Motor algebra for 3D kinematics: the case of the hand-eye calibration. J Math Imaging Vis 13(2):79–100. https://doi.org/10.1023/A:1026567812984

    Article  MathSciNet  MATH  Google Scholar 

  7. Hou Z, Xu Y, Xiao R, Chen S (2020) A teaching-free welding method based on laser visual sensing system in robotic GMAW. Int J Adv Manuf Technol 109:1755–1774. https://doi.org/10.1007/s00170-020-05774-0

    Article  Google Scholar 

  8. Zhang ZY (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334

    Google Scholar 

  9. Zhang YZ (2010) Research on hand-eye calibration technology of industrial robot. Dissertation, Harbin Engineering University.

  10. Celozzi C, Paravati G, Sanna A, Lamberti F (2010) A 6-DOF ARTag-based tracking system. IEEE Trans Consum Electron 56(1):203–210. https://doi.org/10.1109/TCE.2010.5439146

    Article  Google Scholar 

  11. Tsai R (1987) A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J Robot Autom 3(4):323–344. https://doi.org/10.1109/JRA.1987.1087109

    Article  Google Scholar 

  12. Heikkila J, Silvcn O (1997). A four-step camera calibration procedure with implicit image correction. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition: 1106-1112. 10.1109/CVPR.1997.609468

  13. Zhang MY, Tai RK, Li FD, Yang YQ (2016) Calibration of monocular camera based on improved genetic algorithm. Artif Intell Robot Res 5(3):53–62

    Google Scholar 

  14. Fiala M (2005) Comparing ARTag and ARToolkit Plus fiducial marker systems. IEEE International Workshop on Haptic Audio Visual Environments and their Applications:148-153

  15. Kato H, Billinghurst M (2002) Marker tracking and HMD calibration for a video-based augmented reality conferencing system. IEEE & Acm International Workshop on Augmented Reality: 85-94.

  16. Abdullah J, Martinez K (2002) Camera self-calibration for the ARToolkit. The First IEEE International Workshop Agumented Reality Toolkit: 5-10.

  17. Tanaka H, Ogata K, Matsumoto Y (2017) Improving the accuracy of visual markers by four dots and image interpolation. 2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS): 178-183. 10.1109/IRIS.2016.8066087

  18. Fiala M (2005) ARTag, A fiducial marker system using digital techniques. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) 2:590-596. 10.1109/CVPR.2005.74

  19. Atcheson B, Heide F, Heidrich W (2010) CALTag: high precision fiducial markers for camera calibration. Proceedings of the Vision, Modeling, and Visualization Workshop 2010:41–48

    Google Scholar 

  20. Kam HC, Yu YK, Wong KH (2018) An improvement on ArUco marker for pose tracking using Kalman filter. 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence. Networking and Parallel/Distributed Computing (SNPD) 1:65–69

    Google Scholar 

  21. Olson E (2011) AprilTag: a robust and flexible visual fiducial system. IEEE International Conference on Robotics and Automation 2011:3400–3407. https://doi.org/10.1109/ICRA.2011.5979561

    Article  Google Scholar 

  22. Wang J, Olson E (2016) AprilTag 2: efficient and robust fiducial detection. IEEE/RSJ International Conference on Intelligent Robots & Systems: 4193-4198.

  23. Abbas SM, Aslam S, Berns K, Muhammad A (2019) Analysis and improvements in AprilTag based state estimation. Sensors 19(24):5480–5512. https://doi.org/10.3390/s19245480

    Article  Google Scholar 

  24. Maybank SJ, Faugeras OD (1992) A theory of self-calibration of a moving camera. Int J Comput Vis 8(2):123–151

    Google Scholar 

  25. Sinha D, Giardina C (1990) Discrete black and white object recognition via morphological functions. IEEE Transactions on Pattern Analysis & Machine Intelligence 26(3):275–293. https://doi.org/10.1109/34.49053

    Article  Google Scholar 

  26. Li H, Zhang H, Wu F, Hu Z (2002) A new linear camera self-calibration technique. Chin J Comput 11:1121–1129

    MathSciNet  Google Scholar 

  27. Li F, Sekkati H, Deglint J, Scharfenberger C, Lamm M, Clausi D, Zelek J, Wong A (2017) Simultaneous projector-camera self-calibration for three-dimensional reconstruction and projection mapping. IEEE Transactions on Computational Imaging 3(1):74–83. https://doi.org/10.1109/TCI.2017.2652844

    Article  MathSciNet  Google Scholar 

  28. Denavit J, Hartenberg RS (1965) A kinematic notation for lower-pair mechanisms based on matrices. J Appl Mech 22(2):215–221

    MathSciNet  MATH  Google Scholar 

  29. Hayati SA (1983) Robot arm geometric link parameter estimation. The 22nd IEEE Conference on Decision and Control:1477-1483. 10.1109/CDC.1983.269783

  30. Hayati S, Tso K, Roston G (1988) Robot geometry calibration. 988 IEEE International Conference on Robotics and Automation 2: 947-951.

  31. Gan Y, Duan J, Dai X (2019) A calibration method of robot kinematic parameters by drawstring displacement sensor. Int J Adv Robot Syst 5:1–9

    Google Scholar 

  32. Chen Q, Zhou Z, Liu C, Sun X (2020) Design of a vision calibration method of ksinematic parameters for 6-DoF manipulator. J Tongji Univ 48(07):1023–1029

    Google Scholar 

  33. Li Z, Li S, Luo X (2021) An overview of calibration technology of industrial robots. J Automat Sin 8(1):23–36. https://doi.org/10.1109/JAS.2020.1003381

    Article  Google Scholar 

  34. Okamura K, Park FC (1996) Kinematic calibration using the product of exponentials formula. Robotica 14(4):415–422

    Google Scholar 

  35. Chen IM, Yang G (1997) Kinematic calibration of modular reconfigurable robots using product-of- exponentials formula. J Robot Syst 14(11):807–821

    MATH  Google Scholar 

  36. Chen IM, Yang G, Tan CT, Song HY (2001) Local POE model for robot kinematic calibration. Mech Mach Theory 36(11):1215–1239

    MATH  Google Scholar 

  37. Li C, Wu Y, Harald L, Li Z (2016) Poe-based robot kinematic calibration using axis configuration space and the adjoint error model. IEEE Trans Robot 32(5):1264–1279. https://doi.org/10.1109/TRO.2016.2593042

    Article  Google Scholar 

  38. Toan NV, Khoi PB (2018) A svd-least-square algorithm for manipulator kinematic calibration based on the product of exponentials formula. J Mech Sci Technol 32(11):5401–5409

    Google Scholar 

  39. Zhuang H, Roth ZS (1992) A complete and parametrically continuous kinematic model. IEEE Trans Robot Autom 8(4):451–463

    Google Scholar 

  40. Roberts KS (1988) A new representation for a line. Conference on Computer Vision & Pattern Recognition:635–640

  41. Meng Y, Zhuang H (2007) Autonomous robot calibration using vision technology. Robot Comput Integr Manuf 23(4):436–446

    Google Scholar 

  42. Zorski W (2017) Quaternion-based determination of 3D objects orientation. 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR):232-237

  43. Li G, Zhang F, Fu Y, Wang S (2019) Kinematic calibration of serial robot using dual quaternions. Industrial robot: the international journal of robotics research and application 46:247–258

    Google Scholar 

  44. Wang W, Liu F, Yun C (2015) Calibration method of robot base frame using unit quaternion form. Precis Eng 41:47–54

    Google Scholar 

  45. Wang G, Liu X, Han S (2018) A method of robot base frame calibration by using dual quaternion algebra. IEEE Access 6:74865–74873

    Google Scholar 

  46. Ozgur E, Mezouar Y (2016) Kinematic modeling and control of a robot arm using unit dual quaternions. Robot Auton Syst 77:66–73

    Google Scholar 

  47. Tsai RY, Lenz RK (1989) A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans Rob Autom 5(3):345–358

    Google Scholar 

  48. Shiu YC, Ahmad S (1989) Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB 5(1):16-29.

  49. Wang CC (2002) Extrinsic calibration of a vision sensor mounted on a robot. IEEE Trans Rob Autom 8(2):161–175

    Google Scholar 

  50. Park FC, Martin BJ (2002) Robot sensor calibration: solving AX=XB on the Euclidean group. IEEE Trans Rob Autom 10(5):717–721

    Google Scholar 

  51. Ma SD (1996) A self-calibration technique for active vision systems. IEEE Trans Robotics Automat 12(1):114–120

    Google Scholar 

  52. Andreff N, Horaud R, Espiau B (1999) On-line hand-eye calibration. Proceedings of the 2nd international conference on 3-D digital imaging and modeling: 430-436. https://doi.org/10.1109/IM.1999.805374

  53. Wang Y, Duan S, Gao RZ, Zhuang W (2019) Research on robot hand-eye calibration algorithm based on dual quaternion. Mechanical and electrical engineering 36(7):755–765

    Google Scholar 

  54. Daniilidis K (1999) Hand-eye calibration using dual quaternions. Int J Robot Res 18(3):286–298

    Google Scholar 

  55. Wang C, Li L (2019) Robot hand-eye calibration algorithm based on quaternion. Sens Microsyst 38(012):133–135

    Google Scholar 

  56. Luo B, Zhang X, Luo C (2019) Binocular robot hand-eye calibration algorithm integrating rodrigue matrix and whole least squares. J Surv Mapp Sci Technol 3:244–249

    Google Scholar 

  57. Horaud R, Dornaika F (1995) Hand-eye calibration. Int J Robot Res 14(3):195–210

    Google Scholar 

  58. Andreff N, Horaud R, Espiau B (2001) Robot hand-eye calibration using structure-from-motion. Int J Robot Res 20(3):228–248

    Google Scholar 

  59. Zhang Y (2009) Research on hand-eye calibration technology of industrial robot. Dissertation, Harbin Engineering University

  60. Zhao Z (2011) Hand-eye calibration using convex optimization. IEEE International Conference on Robotics & Automation: 2947-2952.

  61. Heller J, Havlena M, Pajdla T (2016) Globally optimal hand-eye calibration using branch-and-bound. IEEE Trans Pattern Anal Mach Intell 38(5):1027–1033

    Google Scholar 

  62. Zhuang H, Roth ZS, Sudhakar R (1994) Simultaneous robot/world and tool/flange calibration by solving homogeneous transformation equations of the form AX=YB. IEEE Trans Robot Autom 10(4):549–554

    Google Scholar 

  63. Dornaika F, Horaud R (1998) Simultaneous robot-world and hand-eye calibration. IEEE Trans Rob Autom 14(4):617. https://doi.org/10.1109/70.704233

    Article  Google Scholar 

  64. Hirsh RL, Desouza GN, Kak AC (2001) An iterative approach to the hand-eye and base-world calibration problem. IEEE International Conference on Robotics & Automation 3:2171–2176

    Google Scholar 

  65. Shah M (2013) Solving the robot-world/hand-eye calibration problem using the Kronecker product. J Mech Robot 5(3):031007

    Google Scholar 

  66. Tabb AL, Ahmad Yousef KM (2017) Solving the robot-world hand-eye(s) calibration problem with iterative methods. Mach Vis Appl 28(5-6):1–22

    Google Scholar 

  67. Li A, Lin W, Wu D (2010) Simultaneous robot-world and hand-eye calibration using dual-quaternions and Kronecker product. Int J Phys Sci 5(10):1530–1536

    Google Scholar 

  68. Strobl KH, Hirzinger G (2007) Optimal hand-eye calibration. IEEE/RSJ International Conference on Intelligent Robots & Systems: 4647-4653.

  69. Xu C, Liu Y, Jia M, Xiao Y, Cao J (2019) Hand-eye calibration method of wood-grabbing robot. J Agric Mach 050(012):420–426

    Google Scholar 

  70. Zhao Z (2019) Simultaneous robot-world and hand-eye calibration by the alternative linear programming. Pattern Recogn Lett 127:174–180

    Google Scholar 

  71. Zhi X, Schwertfeger S (2017) Simultaneous hand-eye calibration and reconstruction. IEEE/RSJ International Conference on Intelligent Robots & Systems 2017:1470–1477

    Google Scholar 

  72. Ali I, Suominen O, Gotchev A, Morales ER (2019) Methods for simultaneous robot-world-hand–eye calibration: a comparative study. Sensors 19(12):2837–2853. https://doi.org/10.3390/s19122837

    Article  Google Scholar 

  73. Tian P, Yang S, Wu Z, Li Z, Hu P, Qu X (2020) An optimal hand-eye calibration method for robots based on precision compensation. J Xi'an Jiaotong Univ 54(8):99–106

    Google Scholar 

  74. Wang G, Li WL, Jiang C, Zhu DH, Ding H (2021) Simultaneous calibration of multicoordinates for a dual-robot system by solving the AXB = YCZ problem. IEEE Trans Robot:1–14

  75. Yan SJ, Ong SK, Nee A (2016) Registration of a hybrid robot using the Degradation-Kronecker method and a purely nonlinear method. Robotica 1(12):1–12

    Google Scholar 

  76. Wu L, Wang J, Qi L, Ren H, Meng M (2016) Simultaneous hand–eye, tool–flange, and robot–robot calibration for comanipulation by solving the problem. IEEE Trans Robot 32(2):413–428

    Google Scholar 

  77. Ma Q, Goh Z, Chirikjian G S. Probabilistic approaches to the AXB = YCZ calibration problem in multi-robot systems. Robot Sci Syst: 1-9. 10.15607/RSS.2016.XII.014

Download references

Acknowledgements

We also thank Shanda Wang for useful discussions and all our colleagues for providing all types of help during the preparation of this manuscript.

Funding

This research is supported by the National Key R&D Program of China (2016YFC0803000, 2016YFC0803005). Data availability and materials

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Xiao Luo.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Luo, X., Luo, Q. et al. An overview of hand-eye calibration. Int J Adv Manuf Technol 119, 77–97 (2022). https://doi.org/10.1007/s00170-021-08233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08233-6

Keywords

Navigation