Skip to main content
Log in

Processing of advanced thermoelectric materials

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Last two decades have witnessed significant progress in thermoelectric research, to which materials processing has crucial contributions. Compared with traditional zone-melting method used for fabricating bismuth telluride alloys, new powder-based processes have more freedom for manipulating nanostructures and nanocomposites. Thermoelectric performance enhancement is realized in most thermoelectric materials by introducing fine-grained and nano-composite structures with accurately controlled compositions. This review gives a comprehensive summary on the processing aspects of thermoelectric materials with three focuses on the powder synthesis, advanced sintering process and the formation of nanostructures in bulk materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DiSalvo F J. Thermoelectric cooling and power generation. Science, 1999, 285: 703–706

    Article  Google Scholar 

  2. Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321: 1457–1461

    Article  Google Scholar 

  3. Chen L G, Meng F K, Sun F R. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Sci China Tech Sci, 2016, 59: 442–455

    Article  Google Scholar 

  4. Snyder G J, Toberer E S. Complex thermoelectric materials. Nat Mater, 2008, 7: 105–114

    Article  Google Scholar 

  5. Heremans J P. Thermoelectricity: The ugly duckling. Nature, 2014, 508: 327–328

    Article  Google Scholar 

  6. Zhang X, Zhao L D. Thermoelectric materials: Energy conversion between heat and electricity. J Mater, 2015, 1: 92–105

    Google Scholar 

  7. Vineis C J, Shakouri A, Majumdar A, et al. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv Mater, 2010, 22: 3970–3980

    Article  Google Scholar 

  8. Tang Y, Gibbs Z M, Agapito L A, et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat Mater, 2015, 14: 1223–1228

    Article  Google Scholar 

  9. Wang S, Yang J, Wu L, et al. On intensifying carrier impurity scattering to enhance thermoelectric performance in Cr-doped CeyCo4Sb12. Adv Funct Mater, 2015, 25: 6660–6670

    Article  Google Scholar 

  10. Zhu T, Fu C, Xie H, et al. High efficiency half-heusler thermoelectric materials for energy harvesting. Adv Eng Mater, 2015, 5: 1500588

    Article  Google Scholar 

  11. Fu C, Bai S, Liu Y, et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat Commun, 2015, 6: 8144

    Article  Google Scholar 

  12. Chung D Y, Hogan T, Brazis P, et al. CsBi4Te6: A high-performance thermoelectric material for low-temperature applications. Science, 2000, 287: 1024–1027

    Article  Google Scholar 

  13. Shi X, Yang J, Bai S, et al. On the design of high-efficiency thermoelectric clathrates through a systematic cross-substitution of framework elements. Adv Funct Mater, 2010, 20: 755–763

    Article  Google Scholar 

  14. Zhao L D, Lo S H, Zhang Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508: 373–377

    Article  Google Scholar 

  15. Duong A T, Nguyen V Q, Duvjir G, et al. Achieving ZT = 2.2 with Bi-doped n-type SnSe single crystals. Nat Commun, 2016, 7: 13713

    Article  Google Scholar 

  16. Zhao L L, Wang X L, Wang J Y, et al. Superior intrinsic thermoelectric performance with zT of 1.8 in single-crystal and melt-quenched highly dense Cu2-xSe bulks. Sci Rep, 2015, 5: 7671

    Article  Google Scholar 

  17. Zhao L D, Tan G, Hao S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351: 141–144

    Article  Google Scholar 

  18. Peng K, Lu X, Zhan H, et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energ Environ Sci, 2016, 9: 454–460

    Article  Google Scholar 

  19. Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320: 634–638

    Article  Google Scholar 

  20. Kim S I, Lee K H, Mun H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348: 109–114

    Article  Google Scholar 

  21. Hu L, Wu H, Zhu T, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv Eng Mater, 2015, 5: 1500411

    Article  Google Scholar 

  22. Biswas K, He J, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489: 414–418

    Article  Google Scholar 

  23. Pei Y, Shi X, LaLonde A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473: 66–69

    Article  Google Scholar 

  24. Wu H J, Zhao L D, Zheng F S, et al. Broad temperature plateau for thermoelectric figure of merit ZT > 2 in phase-separated PbTe0.7S0.3. Nat Commun, 2014, 5: 4515

    Google Scholar 

  25. Rowe D M. CRC Handbook of Thermoelectrics. London: CRC Press, 1995

    Book  Google Scholar 

  26. Ainsworth L. Single crystal bismuth telluride. Proc Phys Soc B, 1956, 69: 606–612

    Article  Google Scholar 

  27. Fleurial J P, Gailliard L, Triboulet R, et al. Thermal properties of high quality single crystals of bismuth telluride—Part I: Experimental characterization. J Phys Chem Solids, 1988, 49: 1237–1247

    Article  Google Scholar 

  28. Zheng Y, Zhang Q, Su X, et al. Mechanically robust BiSbTe alloys with superior thermoelectric performance: A case study of stable hierarchical nanostructured thermoelectric materials. Adv Eng Mater, 2015, 5: 1401391

    Article  Google Scholar 

  29. Pan Y, Wei T R, Cao Q, et al. Mechanically enhanced p- and n-type Bi2Te3-based thermoelectric materials reprocessed from commercial ingots by ball milling and spark plasma sintering. Mater Sci Eng B, 2015, 197: 75–81

    Article  Google Scholar 

  30. Li J F, Liu W S, Zhao L D, et al. High-performance nanostructured thermoelectric materials. NPG Asia Mater, 2010, 2: 152–158

    Article  Google Scholar 

  31. Sootsman J R, Chung D Y, Kanatzidis M G. New and old concepts in thermoelectric materials. Angew Chem Int Ed, 2009, 48: 8616–8639

    Article  Google Scholar 

  32. Yang J, Yip H L, Jen A K Y. Rational design of advanced thermoelectric materials. Adv Eng Mater, 2013, 3: 549–565

    Article  Google Scholar 

  33. Zebarjadi M, Esfarjani K, Dresselhaus M S, et al. Perspectives on thermoelectrics: From fundamentals to device applications. Energ Environ Sci, 2012, 5: 5147–5162

    Article  Google Scholar 

  34. Zhu T, Liu Y, Fu C, et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater, 2017, 29: 1605884

    Article  Google Scholar 

  35. Zeier W G, Zevalkink A, Gibbs Z M, et al. Thinking like a chemist: Intuition in thermoelectric materials. Angew Chem Int Ed, 2016, 55: 6826–6841

    Article  Google Scholar 

  36. Pichanusakorn P, Bandaru P. Nanostructured thermoelectrics. Mat Sci Eng R, 2010, 67: 19–63

    Article  Google Scholar 

  37. Su X, Fu F, Yan Y, et al. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nat Commun, 2014, 5: 4908

    Article  Google Scholar 

  38. Chen W C, Wu Y C, Hwang W S, et al. A numerical study of zone-melting process for the thermoelectric material of Bi2Te3. IOP Conf Ser Mater Sci Eng, 2015, 84: 012094

    Article  Google Scholar 

  39. Kanatzidis M G. Nanostructured thermoelectrics: The new paradigm? Chem Mater, 2010, 22: 648–659

    Article  Google Scholar 

  40. Wu D, Zhao L D, Tong X, et al. Superior thermoelectric performance in PbTe–PbS pseudo-binary: Extremely low thermal conductivity and modulated carrier concentration. Energ Environ Sci, 2015, 8: 2056–2068

    Article  Google Scholar 

  41. Hu L, Zhu T, Liu X, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv Funct Mater, 2014, 24: 5211–5218

    Article  Google Scholar 

  42. Hsu K F, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science, 2004, 303: 818–821

    Article  Google Scholar 

  43. Heremans J P, Jovovic V, Toberer E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321: 554–557

    Article  Google Scholar 

  44. Pei Y, LaLonde A, Iwanaga S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energ Environ Sci, 2011, 4: 2085

    Article  Google Scholar 

  45. Wang H, Pei Y, LaLonde A D, et al. Heavily doped p-type PbSe with high thermoelectric performance: An alternative for PbTe. Adv Mater, 2011, 23: 1366–1370

    Article  Google Scholar 

  46. Wang H, Schechtel E, Pei Y, et al. High thermoelectric efficiency of n-type PbS. Adv Energ Mater, 2013, 3: 488–495

    Article  Google Scholar 

  47. Liu H, Yuan X, Lu P, et al. Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1-xI x. Adv Mater, 2013, 25: 6607–6612

    Article  Google Scholar 

  48. He Y, Day T, Zhang T, et al. High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv Mater, 2014, 26: 3974–3978

    Article  Google Scholar 

  49. Zhang Q, Chere E K, Sun J, et al. Studies on thermoelectric properties of n-type polycrystalline SnSe1-xSx by iodine doping. Adv Eng Mater, 2015, 5: 1500360

    Article  Google Scholar 

  50. Chen C L, Wang H, Chen Y Y, et al. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A, 2014, 2: 11171

    Article  Google Scholar 

  51. Wu H, Chang C, Feng D, et al. Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. Energ Environ Sci, 2015, 8: 3298–3312

    Article  Google Scholar 

  52. Liu X, Zhu T, Wang H, et al. Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence. Adv Eng Mater, 2013, 3: 1238–1244

    Article  Google Scholar 

  53. Chen X, Girard S N, Meng F, et al. Approaching the minimum thermal conductivity in rhenium-substituted higher manganese silicides. Adv Eng Mater, 2014, 4: 1400452

    Article  Google Scholar 

  54. Yang C, Huang F, Wu L, et al. New stannite-like p-type thermoelectric material Cu3SbSe4. J Phys D: Appl Phys, 2011, 44: 295404

    Article  Google Scholar 

  55. Lai W, Wang Y, Morelli D T, et al. From bonding asymmetry to anharmonic rattling in Cu12Sb4S13 tetrahedrites: When lone-pair electrons are not so lonely. Adv Funct Mater, 2015, 25: 3648–3657

    Article  Google Scholar 

  56. Rudnev V. Handbook of Induction Heating. 2nd ed. Boca Raton: CRC Press, 2014

    Google Scholar 

  57. Shi X, Yang J, Salvador J R, et al. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc, 2011, 133: 7837–7846

    Article  Google Scholar 

  58. Salvador J R, Shi X, Yang J, et al. Synthesis and transport properties of M3Ni3Sb4 (MZr and Hf): An intermetallic semiconductor. Phys Rev B, 2008, 77: 235217

    Article  Google Scholar 

  59. Moss A R. Arc-melting processes for the refractory metals. J Less Common Met, 1959, 1: 60–72

    Article  Google Scholar 

  60. Yan X, Joshi G, Liu W, et al. Enhanced thermoelectric figure of merit of p-type half-heuslers. Nano Lett, 2011, 11: 556–560

    Article  Google Scholar 

  61. Yamashita O, Sadatomi N. Thermoelectric properties of Si1−xGex (x ≤ 0.10) with alloy and dopant segregations. J Appl Phys, 2000, 88: 245–251

    Article  Google Scholar 

  62. Fu C, Zhu T, Liu Y, et al. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT >1. Energ Environ Sci, 2015, 8: 216–220

    Article  Google Scholar 

  63. Yu C, Zhu T J, Shi R Z, et al. High-performance half-Heusler thermoelectric materials Hf1−x ZrxNiSn1−ySby prepared by levitation melting and spark plasma sintering. Acta Mater, 2009, 57: 2757–2764

    Article  Google Scholar 

  64. Suryanarayana C, Ivanov E, Boldyrev V V. The science and technology of mechanical alloying. Mater Sci Eng A, 2001, 304–306: 151–158

    Article  Google Scholar 

  65. Liu J, Li J F. Bi2Te3 and Bi2Te3/Nano-SiC prepared by mechanical alloying and spark plasma sintering. Key Eng Mater, 2005, 280–283: 397–400

    Article  Google Scholar 

  66. Ma Y, Hao Q, Poudel B, et al. Enhanced thermoelectric figure- of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett, 2008, 8: 2580–2584

    Article  Google Scholar 

  67. Pan Y, Wei T R, Wu C F, et al. Electrical and thermal transport properties of spark plasma sintered n-type Bi2Te3−xSex alloys: The combined effect of point defect and Se content. J Mater Chem C, 2015, 3: 10583–10589

    Article  Google Scholar 

  68. Wu C F, Wei T R, Li J F. Electrical and thermal transport properties of Pb1−xSnx Se solid solution thermoelectric materials. Phys Chem Chem Phys, 2015, 17: 13006–13012

    Article  Google Scholar 

  69. Yu B, Zhang Q, Wang H, et al. Thermoelectric property studies on thallium-doped lead telluride prepared by ball milling and hot pressing. J Appl Phys, 2010, 108: 016104

    Article  Google Scholar 

  70. Yang J Y, Aizawa T, Yamamoto A, et al. Thermoelectric properties of n-type (Bi2Se3)x(Bi2Te3)1−x prepared by bulk mechanical alloying and hot pressing. J Alloys Compd, 2000, 312: 326–330

    Article  Google Scholar 

  71. Bouad N, Marin-Ayral R M, Tédenac J C. Mechanical alloying and sintering of lead telluride. J Alloys Compd, 2000, 297: 312–318

    Article  Google Scholar 

  72. Schilz J, Riffel M, Pixius K, et al. Synthesis of thermoelectric materials by mechanical alloying in planetary ball mills. Powder Tech, 1999, 105: 149–154

    Article  Google Scholar 

  73. Li J, Tan Q, Li J F, et al. BiSbTe-Based nanocomposites with high ZT: The effect of SiC nanodispersion on thermoelectric properties. Adv Funct Mater, 2013, 23: 4317–4323

    Article  Google Scholar 

  74. Itô M, Tada T, Katsuyama S. Thermoelectric properties of Fe0.98Co0.02Si2 with ZrO2 and rare-earth oxide dispersion by mechanical alloying. J Alloys Compd, 2003, 350: 296–302

    Article  Google Scholar 

  75. Chen S, Lukas K C, Liu W, et al. Effect of Hf concentration on thermoelectric properties of nanostructured n-type half-heusler materials HfxZr1-xNiSn0.99Sb0.01. Adv Eng Mater, 2013, 3: 1210–1214

    Article  Google Scholar 

  76. Joshi G, Lee H, Lan Y, et al. Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon Germanium bulk alloys. Nano Lett, 2008, 8: 4670–4674

    Article  Google Scholar 

  77. Wang X W, Lee H, Lan Y C, et al. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl Phys Lett, 2008, 93: 193121

    Article  Google Scholar 

  78. Pan Y, Li J F. Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater, 2016, 8: e275

    Article  Google Scholar 

  79. Starý Z, Horák J, Stordeur M, et al. Antisite defects in Sb2−xBixTe3 mixed crystals. J Phys Chem Solids, 1988, 49: 29–34

    Article  Google Scholar 

  80. Navrátil J, Starý Z, Plecháček T. Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater Res Bull, 1996, 31: 1559–1566

    Article  Google Scholar 

  81. Liu W S, Zhang Q, Lan Y, et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Adv Eng Mater, 2011, 1: 577–587

    Article  Google Scholar 

  82. Li F, Li J F, Zhao L D, et al. Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energ Environ Sci, 2012, 5: 7188–7195

    Article  Google Scholar 

  83. Wei T R, Wu C F, Zhang X, et al. Thermoelectric transport properties of pristine and Na-doped SnSe1−xTex polycrystals. Phys Chem Chem Phys, 2015, 17: 30102–30109

    Article  Google Scholar 

  84. Martin-Lopez R, Lenoir B, Dauscher A, et al. Preparation of n-type Bi–Sb–Te thermoelectric material by mechanical alloying. Solid StateCommun, 1998, 108: 285–288

    Google Scholar 

  85. Chen X, Shi L, Zhou J, et al. Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides. J Alloys Compd, 2015, 641: 30–36

    Article  Google Scholar 

  86. Ge Z H, Zhang B P, Chen Y X, et al. Synthesis and transport property of Cu1.8S as a promising thermoelectric compound. Chem Commun, 2011, 47: 12697–12699

    Article  Google Scholar 

  87. Itoh T, Yamada M. Synthesis of thermoelectric manganese silicide by mechanical alloying and pulse discharge sintering. J Elec Mater, 2009, 38: 925–929

    Article  Google Scholar 

  88. Li J, Tan Q, Li J F. Synthesis and property evaluation of CuFeS2−x as earth-abundant and environmentally-friendly thermoelectric materials. J Alloys Compd, 2013, 551: 143–149

    Article  Google Scholar 

  89. Liu W, Kim H S, Chen S, et al. n-Type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation. Proc Natl Acad Sci USA, 2015, 112: 3269–3274

    Article  Google Scholar 

  90. Shin D K, Jang K W, Ur S C, et al. Thermoelectric properties of higher manganese silicides prepared by mechanical alloying and hot pressing. J Elec Mater, 2013, 42: 1756–1761

    Article  Google Scholar 

  91. Wang H, Li J F, Nan C W, et al. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl Phys Lett, 2006, 88: 092104

    Article  Google Scholar 

  92. Yang J, Chen Y, Peng J, et al. Synthesis of CoSb3 skutterudite by mechanical alloying. J Alloys Compd, 2004, 375: 229–232

    Article  Google Scholar 

  93. Tan Q, Zhao L D, Li J F, et al. Thermoelectrics with earth abundant elements: Low thermal conductivity and high thermopower in doped SnS. J Mater Chem A, 2014, 2: 17302–17306

    Article  Google Scholar 

  94. Wei T R, Wang H, Gibbs Z M, et al. Thermoelectric properties of Sn-doped p-type Cu3SbSe4: A compound with large effective mass and small band gap. J Mater Chem A, 2014, 2: 13527–13533

    Article  Google Scholar 

  95. May A F, Fleurial J P, Snyder G J. Thermoelectric performance of lanthanum telluride produced via mechanical alloying. Phys Rev B, 2008, 78: 125205

    Article  Google Scholar 

  96. Umemoto M. Preparation of thermoelectric β-FeSi2 doped with Al and Mn by mechanical alloying (overview). Mater Trans JIM, 1995, 36: 373–383

    Article  Google Scholar 

  97. Wei T R, Wu C F, Sun W, et al. Is Cu3SbSe3 a promising thermoelectric material? RSC Adv, 2015, 5: 42848–42854

    Article  Google Scholar 

  98. Zou M, Li J F, Du B, et al. Fabrication and thermoelectric properties of fine-grained TiNiSn compounds. J Solid State Chem, 2009, 182: 3138–3142

    Article  Google Scholar 

  99. Zou M, Li J F, Guo P, et al. Synthesis and thermoelectric properties of fine-grained FeVSb system half-Heusler compound polycrystals with high phase purity. J Phys D Appl Phys, 2010, 43: 415403

    Article  Google Scholar 

  100. Kanatzia A, Papageorgiou C, Lioutas C, et al. Design of ball-milling experiments on Bi2Te3 thermoelectric material. J Elec Mater, 2013, 42: 1652–1660

    Article  Google Scholar 

  101. Zhang Q, Wang H, Liu W, et al. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energ Environ Sci, 2012, 5: 5246–5251

    Article  Google Scholar 

  102. Li Z Y, Li J F. Fine-grained and nanostructured AgPbmSbTem+2 alloys with high thermoelectric figure of merit at medium temperature. Adv Energ Mater, 2014, 4: 1300937

    Article  Google Scholar 

  103. Xing Z B, Li Z Y, Tan Q, et al. Composition optimization of p-type AgSnmSbTem+2 thermoelectric materials synthesized by mechanical alloying and spark plasma sintering. J Alloys Compd, 2014, 615: 451–455

    Article  Google Scholar 

  104. Liu W S, Zhang B P, Li J F, et al. Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering. J Appl Phys, 2007, 102: 103717–103717

    Article  Google Scholar 

  105. Liu W S, Zhang B P, Zhao L D, et al. Improvement of thermoelectric performance of CoSb3−xTex skutterudite compounds by additional substitution of IVB-group elements for Sb. Chem Mater, 2008, 20: 7526–7531

    Article  Google Scholar 

  106. Tan Q, Li J F. Thermoelectric properties of Sn-S bulk materials prepared by mechanical alloying and spark plasma sintering. J Elec Mater, 2014, 43: 2435–2439

    Article  Google Scholar 

  107. Pele V, Barreteau C, Berardan D, et al. Direct synthesis of BiCuChOtype oxychalcogenides by mechanical alloying. J Solid State Chem, 2013, 203: 187–191

    Article  Google Scholar 

  108. Tang X, Xie W, Li H, et al. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Appl Phys Lett, 2007, 90: 012102

    Article  Google Scholar 

  109. Xie W, Tang X, Yan Y, et al. High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J Appl Phys, 2009, 105: 113713

    Article  Google Scholar 

  110. Xie W, Wang S, Zhu S, et al. High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering. J Mater Sci, 2013, 48: 2745–2760

    Article  Google Scholar 

  111. Tkatch V I, Denisenko S N, Beloshov O N. Direct measurements of the cooling rates in the single roller rapid solidification technique. Acta Mater, 1997, 45: 2821–2826

    Article  Google Scholar 

  112. Tan G, Liu W, Wang S, et al. Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance. J Mater Chem A, 2013, 1: 12657–12668

    Article  Google Scholar 

  113. Xie W, He J, Kang H J, et al. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 Nanocomposites. Nano Lett, 2010, 10: 3283–3289

    Article  Google Scholar 

  114. Tkatch V I, Limanovskii A I, Denisenko S N, et al. The effect of the melt-spinning processing parameters on the rate of cooling. Mater Sci Eng-A, 2002, 323: 91–96

    Article  Google Scholar 

  115. Pond R B. Metallic Filaments and Method of Making Same. US Patent No. 2825108, 1958

    Google Scholar 

  116. Pond R B. Apparatus for Producing Alloy and Bimetallic Filaments. US Patent No. 2900708, 1959

    Google Scholar 

  117. Pond R B, Maddin R. Method of producing rapidly solidified filamentary castings. Trans Met Soc AIME, 1969, 245: 2475–2476

    Google Scholar 

  118. Dey T K. Electrical conductivity, thermoelectric power and figure of merit of doped Bi-Sb tapes produced by melt spinning technique. Pramana J Phys, 1990, 34: 243–248

    Article  Google Scholar 

  119. Lee S M, Okamoto Y, Kawahara T, et al. The fabrication and thermoelectric properties of amorphous Si-Ge-Au bulk samples. MRS Proc, 2001, 691: G8–9

    Google Scholar 

  120. Kim T S, Kim I S, Kim T K, et al. Thermoelectric properties of p-type 25%Bi2Te3+75%Sb2Te3 alloys manufactured by rapid solidification and hot pressing. Mater Sci Eng B, 2002, 90: 42–46

    Article  Google Scholar 

  121. Chen H Y, Zhao X B, Lu Y F, et al. Microstructures and thermoelectric properties of Fe0.92Mn0.08Six alloys prepared by rapid solidification and hot pressing. J Appl Phys, 2003, 94: 6621–6626

    Article  Google Scholar 

  122. Zhao X B, Chen H Y, Müller E, et al. Microstructure development of Fe2Si5 thermoelectric alloys during rapid solidification, hot pressing and annealing. J Alloys Compd, 2004, 365: 206–210

    Article  Google Scholar 

  123. Wang S, Xie W, Li H, et al. Enhanced performances of melt spun Bi2(Te,Se)3 for n-type thermoelectric legs. Intermetallics, 2011, 19: 1024–1031

    Article  Google Scholar 

  124. Li H, Tang X, Su X, et al. Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl Phys Lett, 2008, 92: 202114

    Article  Google Scholar 

  125. Thompson D R, Liu C, Yang J, et al. Rare-earth free p-type filled skutterudites: Mechanisms for low thermal conductivity and effects of Fe/Co ratio on the band structure and charge transport. Acta Mater, 2015, 92: 152–162

    Article  Google Scholar 

  126. Luo W, Li H, Fu F, et al. Improved thermoelectric properties of Al-doped higher manganese silicide prepared by a rapid solidification method. J Elec Mater, 2011, 40: 1233–1237

    Article  Google Scholar 

  127. Zhang Q, Zheng Y, Su X, et al. Enhanced power factor of Mg2Si0.3Sn0.7 synthesized by a non-equilibrium rapid solidification method. Scripta Mater, 2015, 96: 1–4

    Article  Google Scholar 

  128. Yu C, Zhu T J, Xiao K, et al. Reduced grain size and improved thermoelectric properties of melt spun (Hf,Zr)NiSn half-heusler alloys. J Elec Mater, 2010, 39: 2008–2012

    Article  Google Scholar 

  129. Wang S, Li H, Qi D, et al. Enhancement of the thermoelectric performance of β-Zn4Sb3 by in situ nanostructures and minute Cd-doping. Acta Mater, 2011, 59: 4805–4817

    Article  Google Scholar 

  130. Zhu T, Gao H, Chen Y, et al. Ioffe-regel limit and lattice thermal conductivity reduction of high performance (AgSbTe2)15(GeTe)85 thermoelectric materials. J Mater Chem A, 2014, 2: 3251–3256

    Article  Google Scholar 

  131. Sikalidis C. Advances in Ceramics-Synthesis and Characterization, Processing and Specific Applications. Croatia: InTech Publisher, 2011

    Book  Google Scholar 

  132. Sytschev A E, Merzhanov A G. Self-propagating high-temperature synthesis of nanomaterials. Russ Chem Rev, 2004, 73: 147–159

    Article  Google Scholar 

  133. Zheng G, Su X, Liang T, et al. High thermoelectric performance of mechanically robust n-type Bi2Te3−xSex prepared by combustion synthesis. J Mater Chem A, 2015, 3: 6603–6613

    Article  Google Scholar 

  134. Liang T, Su X, Tan X, et al. Ultra-fast non-equilibrium synthesis and phase segregation in InxSn1−x Te thermoelectrics by SHS-PAS processing. J Mater Chem C, 2015, 3: 8550–8558

    Article  Google Scholar 

  135. Delgado A, Cordova S, Lopez I, et al. Mechanically activated combustion synthesis and shockwave consolidation of magnesium silicide. J Alloys Compd, 2016, 658: 422–429

    Article  Google Scholar 

  136. Zhang Q, Su X, Yan Y, et al. Phase segregation and superior thermoelectric properties of Mg2Si1–xSbx (0 ≤x ≤ 0.025) prepared by ultrafast self-propagating high-temperature synthesis. ACS Appl Mater Interface, 2016, 8: 3268–3276

    Article  Google Scholar 

  137. Liang T, Su X, Yan Y, et al. Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites. J Mater Chem A, 2014, 2: 17914–17918

    Article  Google Scholar 

  138. Ren G K, Lan J, Butt S, et al. Enhanced thermoelectric properties in Pb-doped BiCuSeO oxyselenides prepared by ultrafast synthesis. RSC Adv, 2015, 5: 69878–69885

    Article  Google Scholar 

  139. Selig J, Lin S, Lin H T, et al. Economical route to produce high Seebeck coefficient calcium cobaltate for bulk thermoelectric applications. J Am Ceram Soc, 2011, 94: 3245–3248

    Article  Google Scholar 

  140. Lin S, Selig J. Self-propagating high-temperature synthesis of Ca1.24Co1.62O3.86 thermoelectric powders. J Alloys Compd, 2010, 503: 402–409

    Article  Google Scholar 

  141. Li Y, Liu G, Cao T, et al. Enhanced thermoelectric properties of Cu2SnSe3 by (Ag,In)-Co-doping. Adv Funct Mater, 2016, 26: 6025–6032

    Article  Google Scholar 

  142. Bux S K, Fleurial J P, Kaner R B. Nanostructured materials for thermoelectric applications. Chem Commun, 2010, 46: 8311–8324

    Article  Google Scholar 

  143. Fitriani, Ovik R, Long B D, et al. A review on nanostructures of hightemperature thermoelectric materials for waste heat recovery. Renew Sustain Energ Rev, 2016, 64: 635–659

    Article  Google Scholar 

  144. Shi W, Song S, Zhang H. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem Soc Rev, 2013, 42: 5714–5743

    Article  Google Scholar 

  145. Gharleghi A, Chu Y H, Lin F H, et al. Optimization and analysis of thermoelectric properties of unfilled Co1–x–yNixFeySb3 synthesized via a rapid hydrothermal procedure. ACS Appl Mater Interface, 2016, 8: 5205–5215

    Article  Google Scholar 

  146. Ju H, Kim J. Chemically exfoliated SnSe nanosheets and their SnSe/poly (3,4-ethylenedioxythiophene): Poly (styrenesulfonate) composite films for polymer based thermoelectric applications. ACS Nano, 2016, 10: 5730–5739

    Article  Google Scholar 

  147. Cao Y Q, Zhao X B, Zhu T J, et al. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Appl Phys Lett, 2008, 92: 143106

    Article  Google Scholar 

  148. Zhang H T, Luo X G, Wang C H, et al. Characterization of nanocrystalline bismuth telluride (Bi2Te3) synthesized by a hydrothermal method. J Cryst Growth, 2004, 265: 558–562

    Article  Google Scholar 

  149. Zhao X B, Ji X H, Zhang Y H, et al. Hydrothermal synthesis and microstructure investigation of nanostructured bismuth telluride powder. Appl Phys A, 2005, 80: 1567–1571

    Article  Google Scholar 

  150. Fu J, Song S, Zhang X, et al. Bi2Te3 nanoplates and nanoflowers: Synthesized by hydrothermal process and their enhanced thermoelectric properties. Cryst Eng Comm, 2012, 14: 2159–2165

    Article  Google Scholar 

  151. Liu C J, Lai H C, Liu Y L, et al. High thermoelectric figure-of-merit in p-type nanostructured (Bi,Sb)2Te3 fabricated via hydrothermal synthesis and evacuated-and-encapsulated sintering. J Mater Chem, 2012, 22: 4825–4831

    Article  Google Scholar 

  152. Mi J L, Lock N, Sun T, et al. Biomolecule-assisted hydrothermal synthesis and self-assembly of Bi2Te3 nanostring-cluster hierarchical structure. ACS Nano, 2010, 4: 2523–2530

    Article  Google Scholar 

  153. Zhao X B, Ji X H, Zhang Y H, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl Phys Lett, 2005, 86: 062111

    Article  Google Scholar 

  154. Ji X, Zhang B, Tritt T M, et al. Solution-chemical syntheses of nanostructured Bi2Te3 and PbTe thermoelectric materials. J Elec Mater, 2007, 36: 721–726

    Article  Google Scholar 

  155. Yokoyama S, Sato K, Muramatsu M, et al. Green synthesis and formation mechanism of nanostructured Bi2Te3 using ascorbic acid in aqueous solution. Adv Powder Tech, 2015, 26: 789–796

    Article  Google Scholar 

  156. Wang Q, Fang Y, Yin H, et al. Inhomogenous doping induced the imperfect self-assembly of nanocrystals for the synthesis of porous AgPb10BiTe12 nanosheets and their thermoelectric transport properties. Chem Commun, 2015, 51: 1594–1596

    Article  Google Scholar 

  157. Li Y, Li F, Dong J, et al. Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders. J Mater Chem C, 2016, 4: 2047–2055

    Article  Google Scholar 

  158. Yu S, Yang J, Wu Y, et al. A new low temperature one-step route to metal chalcogenide semiconductors: PbE, Bi2E3 (E = S, Se, Te). J Mater Chem, 1998, 8: 1949–1951

    Article  Google Scholar 

  159. Deng Y, Wei G D, Nan C W. Ligand-assisted control growth of chainlike nanocrystals. Chem Phys Lett, 2003, 368: 639–643

    Article  Google Scholar 

  160. Hong M, Chasapis T C, Chen Z G, et al. n-Type Bi2Te3–xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano, 2016, 10: 4719–4727

    Article  Google Scholar 

  161. Ibáñez M, Luo Z, Genç A, et al. High-performance thermoelectric nanocomposites from nanocrystal building blocks. Nat Commun, 2016, 7: 10766

    Article  Google Scholar 

  162. Mehta R J, Zhang Y, Karthik C, et al. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat Mater, 2012, 11: 233–240

    Article  Google Scholar 

  163. Baghbanzadeh M, Carbone L, Cozzoli P D, et al. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed, 2011, 50: 11312–11359

    Article  Google Scholar 

  164. Tsuji M, Hashimoto M, Nishizawa Y, et al. Microwave-assisted synthesis of metallic nanostructures in solution. Chem-Eur J, 2005, 11: 440–452

    Article  Google Scholar 

  165. Li Z, Chen Y, Li J F, et al. Systhesizing SnTe nanocrystals leading to thermoelectric performance enhancement via an ultra-fast microwave hydrothermal method. Nano Energ, 2016, 28: 78–86

    Article  Google Scholar 

  166. Nüchter M, Ondruschka B, Bonrath W, et al. Microwave assisted synthesis—A critical technology overview. Green Chem, 2004, 6: 128–141

    Article  Google Scholar 

  167. Jin R, Liu J, Li G. Facile solvothermal synthesis, growth mechanism and thermoelectric property of flower-like Bi2Te3. Cryst Res Tech, 2014, 49: 460–466

    Article  Google Scholar 

  168. Ciriminna R, Fidalgo A, Pandarus V, et al. The sol-gel route to advanced silica-based materials and recent applications. Chem Rev, 2013, 113: 6592–6620

    Article  Google Scholar 

  169. Fan F J, Yu B, Wang Y X, et al. Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figureof-merit. J Am Chem Soc, 2011, 133: 15910–15913

    Article  Google Scholar 

  170. Butt S, Xu W, He W Q, et al. Enhancement of thermoelectric performance in Cd-doped Ca3Co4O9 via spin entropy, defect chemistry and phonon scattering. J Mater Chem A, 2014, 2: 19479–19487

    Article  Google Scholar 

  171. Li F, Li J F. Enhanced thermoelectric performance of separately Ni-doped and Ni/Sr-codoped LaCoO3 nanocomposites. J Am Chem Soc, 2012, 95: 3562–3568

    Google Scholar 

  172. Ji X H, Zhao X B, Zhang Y H, et al. Solvothermal synthesis and thermoelectric properties of lanthanum contained Bi–Te and Bi–Se–Te alloys. Mater Lett, 2005, 59: 682–685

    Article  Google Scholar 

  173. Hong M, Chen Z G, Yang L, et al. Enhancing thermoelectric performance of Bi2Te3-based nanostructures through rational structure design. Nanoscale, 2016, 8: 8681–8686

    Article  Google Scholar 

  174. Dong G H, Zhu Y J, Chen L D. Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering. J Mater Chem, 2010, 20: 1976–1981

    Article  Google Scholar 

  175. Zhou W, Zhao W, Lu Z, et al. Preparation and thermoelectric properties of sulfur doped Ag2Te nanoparticles via solvothermal methods. Nanoscale, 2012, 4: 3926–3931

    Article  Google Scholar 

  176. Yang H Q, Miao L, Liu C Y, et al. Solvothermal synthesis of wire-like SnxSb2Te3+x with an enhanced thermoelectric performance. Dalton Trans, 2016, 45: 7483–7491

    Article  Google Scholar 

  177. Tan Q, Wu C F, Sun W, et al. Solvothermally synthesized SnS nanorods with high carrier mobility leading to thermoelectric enhancement. RSC Adv, 2016, 6: 43985–43988

    Article  Google Scholar 

  178. James D J, Lu X, Morelli D T, et al. Solvothermal synthesis of tetrahedrite: Speeding up the process of thermoelectric material generation. ACS Appl Mater Interface, 2015, 7: 23623–23632

    Article  Google Scholar 

  179. Zhu Y, Shen H, Guan H. Microwave-assisted synthesis and thermoelelectric properties of CoSb3 compounds. J Mater Sci-Mater Electron, 2012, 23: 2210–2215

    Article  Google Scholar 

  180. Bloxam A. Improved manufacture of electric incandescence lamp laments from tungsten or molybdenum or an alloy thereof. GB Patent, 1906, 27: 13

    Google Scholar 

  181. Inoue K. Electric-Discharge Sintering. US Patent No. 3241956, 1966

    Google Scholar 

  182. Zhang Q, Ai X, Wang L, et al. Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv Funct Mater, 2015, 25: 966–976

    Article  Google Scholar 

  183. Soni A, Shen Y, Yin M, et al. Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nano Lett, 2012, 12: 4305–4310

    Article  Google Scholar 

  184. Aminorroaya Yamini S, Brewis M, Byrnes J, et al. Fabrication of thermoelectric materials—Thermal stability and repeatability of achieved efficiencies. J Mater Chem C, 2015, 3: 10610–10615

    Article  Google Scholar 

  185. He Y, Lu P, Shi X, et al. Ultrahigh thermoelectric performance in mosaic crystals. Adv Mater, 2015, 27: 3639–3644

    Article  Google Scholar 

  186. Liu Y, Lin Y, Shi Z, et al. Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by spark plasma sintering. J Am Ceram Soc, 2005, 88: 1337–1340

    Article  Google Scholar 

  187. Li X Y, Chen L D, Fan J F, et al. Thermoelectric properties of Te-doped CoSb3 by spark plasma sintering. J Appl Phys, 2005, 98: 083702

    Article  Google Scholar 

  188. Souma T, Nakamoto G, Kurisu M. Low-temperature thermoelectric properties of α- and β-Zn4Sb3 bulk crystals prepared by a gradient freeze method and a spark plasma sintering method. J Alloys Compd, 2002, 340: 275–280

    Article  Google Scholar 

  189. Kim K H, Shim S H, Shim K B, et al. Microstructural and thermoelectric characteristics of zinc oxide-based thermoelectric materials fabricated using a spark plasma sintering process. J Am Ceram Soc, 2005, 88: 628–632

    Article  Google Scholar 

  190. Kuo C H, Hwang C S, Jeng M S, et al. Thermoelectric transport properties of bismuth telluride bulk materials fabricated by ball milling and spark plasma sintering. J Alloys Compd, 2010, 496: 687–690

    Article  Google Scholar 

  191. Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci, 2006, 41: 763–777

    Article  Google Scholar 

  192. Omori M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater Sci Eng A, 2000, 287: 183–188

    Article  Google Scholar 

  193. Guillon O, Gonzalez-Julian J, Dargatz B, et al. Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv Eng Mater, 2014, 16: 830–849

    Article  Google Scholar 

  194. Liu H, Shi X, Xu F, et al. Copper ion liquid-like thermoelectrics. Nat Mater, 2012, 11: 422–425

    Article  Google Scholar 

  195. Meng Q L, Kong S, Huang Z, et al. Simultaneous enhancement in the power factor and thermoelectric performance of copper sulfide by In2S3 doping. J Mater Chem A, 2016, 4: 12624–12629

    Article  Google Scholar 

  196. Qiu W, Xi L, Wei P, et al. Part-crystalline part-liquid state and rattlinglike thermal damping in materials with chemical-bond hierarchy. Proc Natl Acad Sci USA, 2014, 111: 15031–15035

    Article  Google Scholar 

  197. Kirkham M, Majsztrik P, Skoug E, et al. High-temperature order/disorder transition in the thermoelectric Cu3SbSe3. J Mater Res, 2011, 26: 2001–2005

    Article  Google Scholar 

  198. Toberer E S, Cox C A, Brown S R, et al. Traversing the metal-insulator transition in a zintl phase: Rational enhancement of thermoelectric efficiency in Yb14Mn1−xAlxSb11. Adv Funct Mater, 2008, 18: 2795–2800

    Article  Google Scholar 

  199. Tyagi K, Gahtori B, Bathula S, et al. Thermoelectric properties of Cu3SbSe3 with intrinsically ultralow lattice thermal conductivity. J Mater Chem A, 2014, 2: 15829–15835

    Article  Google Scholar 

  200. Yan X, Poudel B, Ma Y, et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Lett, 2010, 10: 3373–3378

    Article  Google Scholar 

  201. Sui J, Li J, He J, et al. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energ Environ Sci, 2013, 6: 2916–2920

    Article  Google Scholar 

  202. Jiang Q, Yan H, Khaliq J, et al. Large ZT enhancement in hot forged nanostructured p-type Bi0.5Sb1.5Te3 bulk alloys. J Mater Chem A, 2014, 2: 5785–5790

    Article  Google Scholar 

  203. Shen J J, Zhu T J, Zhao X B, et al. Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides: A simple top down route and improved thermoelectric properties. Energ Environ Sci, 2010, 3: 1519–1523

    Article  Google Scholar 

  204. Medlin D L, Snyder G J. Interfaces in bulk thermoelectric materials. Curr Opin Colloid In, 2009, 14: 226–235

    Article  Google Scholar 

  205. Mikami M, Guilmeau E, Funahashi R, et al. Enhancement of electrical properties of the thermoelectric compound Ca3Co4O9 through use of large-grained powder. J Mater Res, 2005, 20: 2491–2497

    Article  Google Scholar 

  206. Ur S C, Nash P, Kim I H. Thermoelectric properties of Zn4Sb3 processed by sinter-forging. Mater Lett, 2004, 58: 2937–2941

    Article  Google Scholar 

  207. Yamashita O, Tomiyoshi S. Effect of Annealing on thermoelectric properties of bismuth telluride compounds. Jpn J Appl Phys, 2003, 42: 492–500

    Article  Google Scholar 

  208. Schultz J M, McHugh J P, Tiller W A. Effects of heavy deformation and annealing on the electrical properties of Bi2Te3. J Appl Phys, 1962, 33: 2443–2450

    Article  Google Scholar 

  209. Zhao L D, Zhang B P, Liu W S, et al. Effects of annealing on electrical properties of n-type Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J Alloys Compd, 2009, 467: 91–97

    Article  Google Scholar 

  210. Schumacher C, Reinsberg K G, Rostek R, et al. Optimizations of pulsed plated p- and n-type Bi2Te3-based ternary compounds by annealing in different ambient atmospheres. Adv Energ Mater, 2013, 3: 95–104

    Article  Google Scholar 

  211. Zhou M, Li J F, Kita T. Nanostructured AgPb m SbTe m+2 system bulk materials with enhanced thermoelectric performance. J Am Chem Soc, 2008, 130: 4527–4532

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JingFeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Pan, Y., Wu, C. et al. Processing of advanced thermoelectric materials. Sci. China Technol. Sci. 60, 1347–1364 (2017). https://doi.org/10.1007/s11431-017-9058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9058-8

Keywords

Navigation