Skip to main content
Log in

Sound absorption coefficient optimization of gradient sintered metal fiber felts

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

An optimization method for sound absorption of gradient (multi-layered) sintered metal fiber felts is presented. The theoretical model based on dynamic flow resistivity is selected to calculate the sound absorption coefficient of the sintered metal fiber felts since it only requires three key morphological parameters: fiber diameter, porosity and layer thickness. The model predictions agree well with experimental measurements. Objective functions and constraint conditions are then set up to optimize separately the distribution of porosity, fiber diameter, and simultaneous porosity and fiber diameter in the metal fiber. The optimization problem for either a sole frequency or a pre-specified frequency range is solved using a genetic algorithm method. Acoustic performance comparison between optimized and non-optimized metal fibers is presented to confirm the effectiveness of the optimization method. Gradient sintered metal fiber felts hold great potential for noise control applications particularly when stringent restriction is placed on the total volume and/or weight of sound absorbing material allowed to use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun F, Chen H, Wu J, et al. Sound absorbing characteristics of fibrous metal materials at high temperatures. Appl Acoust, 2010, 71: 221–235

    Article  Google Scholar 

  2. Chang B, Wang X, Peng F, et al. Prediction on the sound absorption performance of fibrous porous metals at high sound pressure levels. Tech Acoust, 2009, 28: 450–453

    Google Scholar 

  3. Wu J, Hu Z, Zhou H. Sound absorbing property of porous metal materials with high temperature and high sound pressure by turbulence analogy. J Appl Phys, 2013, 113: 194905

    Article  Google Scholar 

  4. Zhang B, Chen T, Feng K, et al. Sound absorption properties of sintered fibrous metals under high temperature conditions. J Xi’an Jiaotong Univ, 2008, 42: 1327–1331

    Google Scholar 

  5. Meng H, Ao Q, Tang H, et al. Dynamic flow resistivity based model for sound absorption of multi-layer sintered fibrous metals. Sci China Tech Sci, 2014, 57: 2096–2105

    Article  Google Scholar 

  6. Delany M E, Bazley E N. Acoustical properties of fibrous absorbent materials. Appl Acoust, 1970, 3: 105–116

    Article  Google Scholar 

  7. Miki Y. Acoustical properties of porous Materials-Modifications of Delany-Bazley models. J Acoust Soc Jap (E), 1990, 11: 19–24

    Article  Google Scholar 

  8. Komatsu T. Improvement of the Delany-Bazley and Miki models for fibrous sound-absorbing materials. Acoust Sci Tech, 2008, 29: 121–129

    Article  Google Scholar 

  9. Allard J F, Champoux Y. New empirical equations for sound propagation in rigid frame fibrous materials. J Acoust Soc Am, 1992, 91: 3346–3353

    Article  Google Scholar 

  10. Attenborough K. Acoustical characteristics of rigid fibrous absorbents and granular materials. J Acoust Soc Am, 1983, 73: 785–799

    Article  MATH  Google Scholar 

  11. Lambert R F, Tesar J S. Acoustic structure and propagation in highly porous, layered, fibrous materials. J Acoust Soc Am, 1984, 76: 1231–1237

    Article  Google Scholar 

  12. Allard J F, Atalla N. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e. Chichester: Wiley, 2009. 73–90

    Google Scholar 

  13. Zhang B, Chen T. Calculation of sound absorption characteristics of porous sintered fiber metal. Appl Acoust, 2009, 70: 337–346

    Article  Google Scholar 

  14. Shravage P, Bonfiglio P, Pompoli F. Hybrid Inversion technique for predicting geometrical parameters of porous materials. J Acoust Soc Am, 2008, 123: 3284

    Article  Google Scholar 

  15. Atalla Y, Panneton R. Inverse acoustical characterization of open cell porous media using impedance tube measurements. Can Acoust, 2005, 33: 11–24

    Google Scholar 

  16. Doutres O, Salissou Y, Atalla N, et al. Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube. Appl Acoust, 2010, 71: 506–509

    Article  Google Scholar 

  17. Zielinski T. Inverse identification and microscopic estimation of parameters for models of sound absorption in porous ceramics. In: Proceedings of International Conference on Noise and Vibration Engineering (ISMA2012)/International Conference on Uncertainty in Structural Dynamics (USD2012), Leuven, 2012. 95–108

    Google Scholar 

  18. Bonfiglio P, Pompoli F. Inversion problems for determining physical parameters of porous materials: Overview and comparison between different methods. Acta Acust Unit Acust, 2013, 99: 341–351

    Article  Google Scholar 

  19. Liu S, Chen W, Zhang Y. Design optimization of porous fibrous material for maximizing absorption of sounds under set frequency bands. Appl Acoust, 2014, 76: 319–328

    Article  Google Scholar 

  20. Chen W, Liu S, Tong L, et al. Design of multi-layered porous fibrous metals for optimal sound absorption in the low frequency range. Theor Appl Mech Lett, 2016, 6: 42–48

    Article  Google Scholar 

  21. Tarnow V. Compressibility of air in fibrous materials. J Acoust Soc Am, 1996, 99: 3010–3017

    Article  Google Scholar 

  22. Tarnow V. Calculation of the dynamic air flow resistivity of fiber materials. J Acoust Soc Am, 1997, 102: 1680–1688

    Article  Google Scholar 

  23. Dupère I D, Dowling A P, Lu T J. The absorption of sound in cellular foams. In: ASME International Mechanical Energineering Congress, Anaheim, IMECE2004-60618, 2004

    Google Scholar 

  24. Dupère I D, Lu T J, Dowling A P. Optimization of cell structures of cellular materials for acoustic applications. In: Proc 12th International Congress on Sound and Vibration (ICSV12), Lisbon, 2005

    Google Scholar 

  25. Kirby R, Cummings A. Prediction of the bulk acoustic properties of fibrous materials at low frequencies. Appl Acoust, 1999, 56: 101–125

    Article  Google Scholar 

  26. Meng H, Xin F X, Lu T J. Sound absorption optimization of graded semi-open cellular metals by adopting the genetic algorithm method. J Vib Acoust, 2014, 136: 061007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to FengXian Xin or TianJian Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, H., Ren, S., Xin, F. et al. Sound absorption coefficient optimization of gradient sintered metal fiber felts. Sci. China Technol. Sci. 59, 699–708 (2016). https://doi.org/10.1007/s11431-016-6042-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-6042-1

Keywords

Navigation