Skip to main content
Log in

Improved sound absorption performance of synthetic fiber materials for industrial noise reduction: a review

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Sound absorption mechanism, material modification and structural design of various synthetic fiber materials for industrial noise reduction are reviewed in this paper for the problems of low sound absorption coefficient (SAC) and narrow frequency band of porous materials. Delany-Bazley model and Johnson-Champoux-Allard (JCA) model are widely used to predict the SAC, but they are slightly different. The air viscous effect plays an important role in Delany-Bazley model and its modified forms, while JCA model and its modified forms consider the effect of thermal conduction in addition to air viscosity. In addition, synthetic fiber materials such as polymers, metal fibers and inorganic fibers are widely used in noise reduction fields of various industries due to their unique acoustic and mechanical performance. Acoustic properties of polymers are usually improved by adding fillers, using perforated structures, gradient porous structures, and multilayer composite structures. And improving preparation method, increasing thickness of back cavity, combining different pore sizes, developing new composite materials, and adopting perforation technology can greatly promote the engineering application of metal fibers in extreme environments. Common methods to improve the sound absorption performance of inorganic fibers are to modify preparation method, increase thickness of materials and research composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. Kumar, P. Kumar, R.K. Mishra, A. Shukla, Study of air and noise pollution in mega cities of India, in Environmental pollution. ed. by V.P. Singh, S. Yadav, R.N. Yadava (Springer, Singapore, 2018), pp. 77–84

    Chapter  Google Scholar 

  2. M.S. Hammer, T.K. Swinburn, R.L. Neitzel, Environmental noise pollution in the United States: developing an effective public health response. Environ. Health Perspect. 122(2), 115–119 (2014)

    Article  PubMed  Google Scholar 

  3. O. Hanninen, A.B. Knol, M. Jantunen, T.-A. Lim, A. Conrad, M. Rappolder, P. Carrer, A.-C. Fanetti, R. Kim, J. Buekers, R. Torfs, I. Iavarone, T. Classen, C. Hornberg, O.C.L. Mekel, E.B.W. Grp, Environmental burden of disease in Europe: assessing nine risk factors in six countries. Environ. Health Perspect. 122(5), 439–446 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  4. X. Zhang, Z. Qu, H. Wang, Engineering acoustic metamaterials for sound absorption: from uniform to gradient structures. i Science (2020). https://doi.org/10.1016/j.isci.2020.101110

    Article  PubMed  Google Scholar 

  5. M. Yang, P. Sheng, Sound absorption structures: from porous media to acoustic metamaterials. Ann. Rev. Mater. Res. 47, 83–114 (2017)

    Article  CAS  Google Scholar 

  6. M. Yang, P. Sheng, An integration strategy for acoustic metamaterials to achieve absorption by design. Appl. Sci. Basel (2018). https://doi.org/10.3390/app8081247

    Article  Google Scholar 

  7. G. Palma, H. Mao, L. Burghignoli, P. Goransson, U. Iemma, Acoustic metamaterials in aeronautics. Appl. Sci. Basel (2018). https://doi.org/10.3390/app8060971

    Article  Google Scholar 

  8. M. Yuan, Z. Cao, J. Luo, X. Chou, Recent developments of acoustic energy harvesting: a review. Micromachines (2019). https://doi.org/10.3390/mi10010048

    Article  PubMed  PubMed Central  Google Scholar 

  9. W. Li, F. Meng, Y. Chen, Yf. Li, X. Huang, Topology optimization of photonic and phononic crystals and metamaterials: a review. Adv. Theory Simul. (2019). https://doi.org/10.1002/adts.201900017

    Article  Google Scholar 

  10. A.J. Otaru, Review on the acoustical properties and characterisation methods of sound absorbing porous structures: a focus on microcellular structures made by a replication casting method. Met. Mater. Int. 26(7), 915–932 (2020)

    Article  Google Scholar 

  11. Y. Sun, Y. Chu, W. Wu, H. Xiao, Nanocellulose-based lightweight porous materials: a review. Carbohyd. Polym. (2021). https://doi.org/10.1016/j.carbpol.2020.117489

    Article  Google Scholar 

  12. D. Wang, L. Peng, F. Fu, M. Liu, B. Song, Analysis of polyester/wood composite fiber needling mat sound absorption performance. Polym. Compos. 39(11), 3823–3830 (2018)

    Article  CAS  Google Scholar 

  13. N.H. Bhingare, S. Prakash, V.S. Jatti, A review on natural and waste material composite as acoustic material. Polym. Testing (2019). https://doi.org/10.1016/j.polymertesting.2019.106142

    Article  Google Scholar 

  14. M. Alhijazi, B. Safaei, Q. Zeeshan, M. Asmael, A. Eyvazian, Z. Qin, Recent developments in luffa natural fiber composites: review. Sustainability (2020). https://doi.org/10.3390/su12187683

    Article  Google Scholar 

  15. T. Yang, L. Hu, X. Xiong, M. Petru, M.T. Noman, R. Mishra, J. Militky, Sound absorption properties of natural fibers: a review. Sustainability (2020). https://doi.org/10.3390/su12208477

    Article  Google Scholar 

  16. J. Liao, S. Zhang, X. Tang, Sound absorption of hemp fibers (Cannabis sativa L.) based nonwoven fabrics and composites: a review. J. Nat. Fibers (2020). https://doi.org/10.1080/15440478.2020.1764453

    Article  Google Scholar 

  17. X. Tang, X. Yan, Acoustic energy absorption properties of fibrous materials: a review. Compos. Part A 101, 360–380 (2017)

    Article  CAS  Google Scholar 

  18. Z. Xi, J. Zhu, H. Tang, Q. Ao, H. Zhi, J. Wang, C. Li, Progress of application researches of porous fiber metals. Materials 4(4), 816–824 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  19. K. Kalauni, S.J. Pawar, A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. J. Porous Mater. 26(6), 1795–1819 (2019)

    Article  CAS  Google Scholar 

  20. X. Sagartzazu, L. Hervella-Nieto, J.M. Pagalday, Review in sound absorbing materials. Archiv. Comput. Methods Eng. 15(3), 311–342 (2008)

    Article  Google Scholar 

  21. F. Asdrubali, S. Schiavoni, K.V. Horoshenkov, A review of sustainable materials for acoustic applications. Build. Acoust. 19(4), 283–311 (2012)

    Article  Google Scholar 

  22. C.C. Zeng, X.M. Han, L.J. Lee, K.W. Koelling, D.L. Tomasko, Polymer-clay nanocomposite foams prepared using carbon dioxide. Adv. Mater. 15(20), 1743 (2003)

    Article  CAS  Google Scholar 

  23. X. Cao, L.J. Lee, T. Widya, C. Macosko, Polyurethane/clay nanocomposites foams: processing, structure and properties. Polymer 46(3), 775–783 (2005)

    Article  CAS  Google Scholar 

  24. K. Goren, L. Chen, L.S. Schadler, R. Ozisik, Influence of nanoparticle surface chemistry and size on supercritical carbon dioxide processed nanocomposite foam morphology. J. Supercrit. Fluids 51(3), 420–427 (2010)

    Article  CAS  Google Scholar 

  25. L. Peng, L. Lei, Y. Liu, L. Du, Improved mechanical and sound absorption properties of open cell silicone rubber foam with NaCl as the pore-forming agent. Materials (2021). https://doi.org/10.3390/ma14010195

    Article  PubMed  PubMed Central  Google Scholar 

  26. L. Chen, B.K. Goren, R. Ozisik, L.S. Schadler, Controlling bubble density in MWNT/polymer nanocomposite foams by MWNT surface modification. Compos. Sci. Technol. 72(2), 190–196 (2012)

    Article  CAS  Google Scholar 

  27. J.G. Gwon, S.K. Kim, J.H. Kim, Sound absorption behavior of flexible polyurethane foams with distinct cellular structures. Mater. Des. 89, 448–454 (2016)

    Article  CAS  Google Scholar 

  28. H. Choe, G. Sung, J.H. Kim, Chemical treatment of wood fibers to enhance the sound absorption coefficient of flexible polyurethane composite foams. Compos. Sci. Technol. 156, 19–27 (2018)

    Article  CAS  Google Scholar 

  29. Y. Yang, Z. Chen, A model for calculating the air flow resistivity of glass fiber felt. Appl. Acoust. 91, 6–11 (2015)

    Article  Google Scholar 

  30. W. Cheng, C.-Y. Duan, P.-S. Liu, M. Lu, Sound absorption performance of various nickel foam-base multi-layer structures in range of low frequency. Trans. Nonferrous Metals Soc. China 27(9), 1989–1995 (2017)

    Article  CAS  Google Scholar 

  31. P.S. Shin, J.H. Kim, K.L. DeVries, J.M. Park, Manufacturing and qualitative properties of glass fiber/epoxy composite boards with added air bubbles for airborne and solid-borne sound insulation. Compos. Sci. Technol. (2020). https://doi.org/10.1016/j.compscitech.2020.108166

    Article  Google Scholar 

  32. G. Thilagavathi, E. Pradeep, T. Kannaian, L. Sasikala, Development of natural fiber nonwovens for application as car interiors for noise control. J. Ind. Text. 39(3), 267–278 (2010)

    Article  CAS  Google Scholar 

  33. A. Patnaik, M. Mvubu, S. Muniyasamy, A. Botha, R.D. Anandjiwala, Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy and Buildings 92, 161–169 (2015)

    Article  Google Scholar 

  34. Y.W. Zhang, B.M. Zhang, Z.H. Shan, Preparation of sound-insulating material based on discarded cow hair. J. Appl. Polym. Sci. (2018). https://doi.org/10.1002/app.46332

    Article  Google Scholar 

  35. U.A. Malawade, M.G. Jadhav, Investigation of the acoustic performance of bagasse. J. Mater. Res. Technol. 9(1), 882–889 (2020)

    Article  Google Scholar 

  36. P.R. Wilson, A. Ratner, G. Stocker, F. Syred, K. Kirwan, S.R. Coles, Interlayer hybridization of virgin carbon, recycled carbon and natural fiber laminates. Materials (2020). https://doi.org/10.3390/ma13214955

    Article  PubMed  PubMed Central  Google Scholar 

  37. J.P. Arenas, M.J. Crocker, Recent trends in porous sound-absorbing materials. Sound and Vibration 44(7), 12–17 (2010)

    Google Scholar 

  38. A. Byakova, S. Gnyloskurenko, Y. Bezimyanniy, T. Nakamura, Closed-cell aluminum foam of improved sound absorption ability: manufacture and properties. Metals 4(3), 445–454 (2014)

    Article  CAS  Google Scholar 

  39. W. Jin, J. Liu, Z. Wang, Y. Wang, Z. Cao, Y. Liu, X. Zhu, Sound absorption characteristics of aluminum foams treated by plasma electrolytic oxidation. Materials 8(11), 7511–7518 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. P.S. Liu, H.B. Qing, H.L. Hou, Primary investigation on sound absorption performance of highly porous titanium foams. Mater. Des. 85, 275–281 (2015)

    Article  CAS  Google Scholar 

  41. H.A. Latif, M.N. Yahya, M.N. Rafiq, M. Sambu, M.I. Ghazali, M.N.M. Hatta, A preliminary study on acoustical performance of oil palm mesocarp natural fiber. Appl. Mech. Mater. 773–774, 247–252 (2015)

    Article  Google Scholar 

  42. M. Kumar, R. Kaur, Glass fiber reinforced rigid polyurethane foam: synthesis and characterization. E-Polymers 17(6), 517–521 (2017)

    Article  CAS  Google Scholar 

  43. Z. Bo, C. Tianning, Calculation of sound absorption characteristics of porous sintered fiber metal. Appl. Acoust. 70(2), 337–346 (2009)

    Article  Google Scholar 

  44. M.H. Fouladi, M. Ayub, M.J.M. Nor, Analysis of coir fiber acoustical characteristics. Appl. Acoust. 72(1), 35–42 (2011)

    Article  Google Scholar 

  45. B.-S. Kim, S.-J. Cho, D.-K. Min, J. Park, Sound absorption structure in helical shapes made using fibrous paper. Compos. Struct. 134, 90–94 (2015)

    Article  Google Scholar 

  46. R. Dunne, D. Desai, R. Sadiku, A review of the factors that influence sound absorption and the available empirical models for fibrous materials. Acoust. Aust. 45(2), 453–469 (2017)

    Article  Google Scholar 

  47. N.V. Gama, A. Ferreira, A. Barros-Timmons, Polyurethane foams: past, present, and future. Materials (2018). https://doi.org/10.3390/ma11101841

    Article  PubMed  PubMed Central  Google Scholar 

  48. P. Soltani, E. Taban, M. Faridan, S.E. Samaei, S. Amininasab, Experimental and computational investigation of sound absorption performance of sustainable porous material: Yucca Gloriosa fiber. Appl. Acoust. (2020). https://doi.org/10.1016/j.apacoust.2019.106999

    Article  Google Scholar 

  49. H.S. Seddeq, N.M. Aly, A. Marwa, M.H. Elshakankery, Investigation on sound absorption properties for recycled fibrous materials. J. Indust. Text. 43(1), 56–73 (2013)

    Article  Google Scholar 

  50. H. Mamtaz, M.H. Fouladi, M. Al-Atabi, S.N. Namasivayam, Acoustic absorption of natural fiber composites. J. Eng. (2016). https://doi.org/10.1155/2016/5836107

    Article  Google Scholar 

  51. U.G. Eziefula, J.C. Ezeh, B.I. Eziefula, Properties of seashell aggregate concrete: a review. Constr. Build. Mater. 192, 287–300 (2018)

    Article  CAS  Google Scholar 

  52. A. Raj, D. Sathyan, K.M. Mini, Physical and functional characteristics of foam concrete: a review. Constr. Build. Mater. 221, 787–799 (2019)

    Article  Google Scholar 

  53. T.S. Tie, K.H. Mo, A. Putra, S.C. Loo, U.J. Alengaram, T.C. Ling, Sound absorption performance of modified concrete: a review. J. Build. Eng. (2020). https://doi.org/10.1016/j.jobe.2020.101219

    Article  Google Scholar 

  54. C.G. Zhou, X.W. Pei, W.L. Li, Y.J. Liu, Mechanical and damping properties of recycled aggregate concrete modified with air-entraining agent and polypropylene fiber. Materials (2020). https://doi.org/10.3390/ma13082004

    Article  PubMed  PubMed Central  Google Scholar 

  55. R. Fediuk, M. Amran, N. Vatin, Y. Vasilev, V. Lesovik, T. Ozbakkaloglu, Acoustic properties of innovative concretes: a review. Materials (2021). https://doi.org/10.3390/ma14020398

    Article  PubMed  PubMed Central  Google Scholar 

  56. L. Forest, V. Gibiat, A. Hooley, Impedance matching and acoustic absorption in granular layers of silica aerogels. J. Non-Cryst. Solids 285(1–3), 230–235 (2001)

    Article  CAS  Google Scholar 

  57. Z. Zhao, R. Sun, G. Xin, S. Wei, D. Huang, A review: application of nanomaterials in concrete, in Progress in industrial and civil engineering Ii. ed. by W. Yang, J. Liang (Trans Tech Publications, Stafa-Zurich, 2013), p. 2881

    Google Scholar 

  58. J. Sikora, J. Turkiewicz, Sound absorption coefficients of granular materials. Mech. Control. 29, 149–157 (2010)

    Google Scholar 

  59. H. Mamtaz, M. Hosseini Fouladi, M.Z. Nuawi, S. Narayana Namasivayam, M. Ghassem, M. Al-Atabi, Acoustic absorption of fibro-granular composite with cylindrical grains. Appl. Acoust. 126, 58–67 (2017)

    Article  Google Scholar 

  60. S. Ehsan Samaei, U. Berardi, E. Taban, P. Soltani, S. Mohammad Mousavi, Natural fibro-granular composite as a novel sustainable sound-absorbing material. Appl. Acoust. (2021). https://doi.org/10.1016/j.apacoust.2021.108157

    Article  Google Scholar 

  61. C. Zwikker, C.W. Kosten, Sound absorbing materials (Elsevier, New York, 1949)

    Google Scholar 

  62. M.A. Biot, The theory of propagation of elastic wave in fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)

    Article  Google Scholar 

  63. M.A. Biot, The theory of propagation of elastic wave in fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)

    Article  Google Scholar 

  64. K. Attenborough, Acoustical characteristics of porous materials. Phys. Rep. 82(3), 179–227 (1982)

    Article  Google Scholar 

  65. K. Attenborough, Acoustical characteristics of rigid fibrous absorbents and granular materials. J. Acoust. Soc. Am. 73, 785–799 (1983)

    Article  Google Scholar 

  66. M.Y. Zhou, P. Sheng, First-principles calculations of dynamic permeability in porous media. Phys. Rev. B 39(16), 12027–12039 (1989)

    Article  CAS  Google Scholar 

  67. M.R. Stinson, The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-section shape. J. Acoust. Soc. Am. 89, 550–558 (1991)

    Article  Google Scholar 

  68. M.R. Stinson, Y. Champoux, Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries. J. Acoust. Soc. Am. 91, 685–695 (1992)

    Article  Google Scholar 

  69. D.K. Wilson, Simple, relaxational models for the acoustical properties of porous media. Appl. Acoust. 50(3), 171–188 (1997)

    Article  Google Scholar 

  70. N. Voronina, Acoustic properties of fibrous materials. Appl. Acoust. 42(2), 165–174 (1994)

    Article  Google Scholar 

  71. N. Voronina, An empirical model for rigid frame porous materials with high porosity. Appl. Acoust. 51(2), 181–198 (1997)

    Article  Google Scholar 

  72. N. Voronina, An empirical model for rigid-frame porous materials with low porosity. Appl. Acoust. 58(3), 295–304 (1999)

    Article  Google Scholar 

  73. N.N. Voronina, K.V. Horoshenkov, A new empirical model for the acoustic properties of loose granular media. Appl. Acoust. 64(4), 415–432 (2003)

    Article  Google Scholar 

  74. G.C. Gardner, M.E. O’Leary, S. Hansen, J.Q. Sun, Neural networks for prediction of acoustical properties of polyurethane foams. Appl. Acoust. 64(2), 229–242 (2003)

    Article  Google Scholar 

  75. J.S. Lee, Y.Y. Kim, J.S. Kim, Y.J. Kang, Two-dimensional poroelastic acoustical foam shape design for absorption coefficient maximization by topology optimization method. J. Acoust. Soc. Am. 123(4), 2094–2106 (2008)

    Article  PubMed  Google Scholar 

  76. J. Kanfoud, M.A. Hamdi, F.-X. Becot, L. Jaouen, Development of an analytical solution of modified Biot’s equations for the optimization of lightweight acoustic protection. J. Acoust. Soc. Am. 125(2), 863–872 (2009)

    Article  PubMed  Google Scholar 

  77. M.E. Delany, E.N. Bazley, Acoustical properties of fibrous absorbent materials. Appl. Acoust. 3(2), 105–116 (1970)

    Article  Google Scholar 

  78. D.A. Bies, C.H. Hansen, Flow resistance information for acoustical design. Appl. Acoust. 13(5), 357–391 (1980)

    Article  Google Scholar 

  79. I.P. Dunn, W.A. Davern, Calculation of acoustic impedance of multi-layer absorbers. Appl. Acoust. 19(5), 321–334 (1986)

    Article  Google Scholar 

  80. Q.L. Wu, Empirical relations between acoustical properties and flow resistivity of porous plastic open-cell foam. Appl. Acoust. 25(3), 141–148 (1988)

    Article  CAS  Google Scholar 

  81. Y. Miki, Acoustical properties of porous materials-modifications of Delany-Bazley models. J. Acoust. Soc. Jpn. (E). 11(1), 19–24 (1990)

    Article  Google Scholar 

  82. Y. Miki, Acoustical properties of porous materials-generalizations of empirical models. J. Acoust. Soc. Jpn. (E). 11(1), 25–28 (1990)

    Article  Google Scholar 

  83. M. Garai, F. Pompoli, A simple empirical model of polyester fibre materials for acoustical applications. Appl. Acoust. 66(12), 1383–1398 (2005)

    Article  Google Scholar 

  84. T. Komatsu, Improvement of the Delany-Bazley and Miki models for fibrous sound-absorbing materials. Acoust. Sci. Technol. 29(2), 121–129 (2008)

    Article  Google Scholar 

  85. Rd. Rey, J. Alba, J.P. Arenas, V.J. Sanchis, An empirical modelling of porous sound absorbing materials made of recycled foam. Appl. Acoust. 73(6–7), 604–609 (2012)

    Article  Google Scholar 

  86. G.H. Yoon, Acoustic topology optimization of fibrous material with Delany-Bazley empirical material formulation. J. Sound Vib. 332(5), 1172–1187 (2013)

    Article  Google Scholar 

  87. R. Kirby, On the modification of Delany and Bazley fomulae. Appl. Acoust. 86, 47–49 (2014)

    Article  Google Scholar 

  88. X. Liu, X. Yan, L. Li, H. Zhang, Sound-absorption properties of kapok fiber nonwoven fabrics at low frequency. J. Nat. Fibers 12(4), 311–322 (2015)

    Article  CAS  Google Scholar 

  89. U. Berardi, G. Iannace, Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Appl. Acoust. 115, 131–138 (2017)

    Article  Google Scholar 

  90. T. Yang, F. Saati, K.V. Horoshenkov, X. Xiong, K. Yang, R. Mishra, S. Marburg, J. Militky, Study on the sound absorption behavior of multi-component polyester nonwovens: experimental and numerical methods. Text. Res. J. 89(16), 3342–3361 (2019)

    Article  CAS  Google Scholar 

  91. D.L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176, 379–402 (1987)

    Article  CAS  Google Scholar 

  92. Y. Champoux, J.F. Allard, Dynamic tortuosity and bulk modulus in air-saturated porous-media. J. Appl. Phys. 70(4), 1975–1979 (1991)

    Article  Google Scholar 

  93. J.F. Allard, Y. Champoux, New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am. 91(6), 3346–3353 (1992)

    Article  Google Scholar 

  94. D. Lafarge, P. Lemarinier, J.F. Allard, V. Tarnow, Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am. 102(4), 1995–2006 (1997)

    Article  Google Scholar 

  95. S.R. Pride, F.D. Morgan, A.F. Gangi, Drag forces of porous-medium acoustics. Phys. Rev. B 47(9), 4964–4978 (1993)

    Article  CAS  Google Scholar 

  96. C. Perrot, F. Chevillotte, R. Panneton, Bottom-up approach for microstructure optimization of sound absorbing materials. J. Acoust. Soc. Am. 124(2), 940–948 (2008)

    Article  PubMed  Google Scholar 

  97. C. Perrot, F. Chevillotte, H. Minh Tan, G. Bonnet, F.-X. Becot, L. Gautron, A. Duval, Microstructure, transport, and acoustic properties of open-cell foam samples: experiments and three-dimensional numerical simulations. J. Appl. Phys. (2012). https://doi.org/10.1063/1.3673523

    Article  Google Scholar 

  98. H. Minh Tan, G. Bonnet, L. Hoang Tuan, C. Perrot, Linear elastic properties derivation from microstructures representative of transport parameters. J. Acoust. Soc. Am. 135(6), 3172–3185 (2014)

    Article  Google Scholar 

  99. T. Van Hai, V. Langlois, J. Guilleminot, C. Perrot, Y. Khidas, O. Pitois, Tuning membrane content of sound absorbing cellular foams: fabrication, experimental evidence and multiscale numerical simulations. Mater. Des. 162, 345–361 (2019)

    Article  CAS  Google Scholar 

  100. N. Kino, Ultrasonic measurements of the two characteristic lengths in fibrous materials. Appl. Acoust. 68(11–12), 1427–1438 (2007)

    Article  Google Scholar 

  101. N. Kino, Further investigations of empirical improvements to the Johnson-Champoux-Allard model. Appl. Acoust. 96, 153–170 (2015)

    Article  Google Scholar 

  102. N. Kino, T. Ueno, Experimental determination of the microand macrostructural parameters influencing the acoustical performance of fibrous media. Appl. Acoust. 68(11–12), 1439–1458 (2007)

    Article  Google Scholar 

  103. N. Kino, T. Ueno, Evaluation of acoustical and non-acoustical properties of sound absorbing materials made of polyester fibres of various cross-sectional shapes. Appl. Acoust. 69(7), 575–582 (2008)

    Article  Google Scholar 

  104. J.H. Park, S.H. Yang, H.R. Lee, C. Bin Yu, S.Y. Pak, C.S. Oh, Y.J. Kang, J.R. Youn, Optimization of low frequency sound absorption by cell size control and multiscale poroacoustics modeling. J. Sound Vib. 397, 17–30 (2017)

    Article  Google Scholar 

  105. N. Gao, Z. Zhang, L. Tang, H. Hou, K. Chen, Optimal design of broadband quasi-perfect sound absorption of composite hybrid porous metamaterial using TLBO algorithm. Appl. Acoust. (2021). https://doi.org/10.1016/j.apacoust.2021.108296

    Article  Google Scholar 

  106. N. Gao, X. Guo, J. Deng, B. Cheng, Design and study of a hybrid composite structure that improves electromagnetic shielding and sound absorption simultaneously. Compos. Struct. (2022). https://doi.org/10.1016/j.compstruct.2021.114924

    Article  Google Scholar 

  107. J. Deng, O. Guasch, L. Maxit, L. Zheng, Annular acoustic black holes to reduce sound radiation from cylindrical shells. Mech. Syst. Sig. Process. (2021). https://doi.org/10.1016/j.ymssp.2021.107722

    Article  Google Scholar 

  108. J. Deng, O. Guasch, L. Maxit, L. Zheng, Transmission loss of plates with multiple embedded acoustic black holes using statistical modal energy distribution analysis. Mech. Syst. Sig. Process. (2021). https://doi.org/10.1016/j.ymssp.2020.107262

    Article  Google Scholar 

  109. J. Deng, L. Zheng, Noise reduction via three types of acoustic black holes. Mech. Syst. Sig. Process. (2022). https://doi.org/10.1016/j.ymssp.2021.108323

    Article  Google Scholar 

  110. R. Abedkarimi, H. Hasani, P. Soltani, Z. Talebi, Experimental and computational analysis of acoustic characteristics of warp-knitted spacer fabrics. J. Text. Inst. 111(4), 491–498 (2020)

    Article  Google Scholar 

  111. X. Shen, P. Bai, X. Yang, X. Zhang, S. To, Low frequency sound absorption by optimal combination structure of porous metal and microperforated panel. Appl. Sci. Basel (2019). https://doi.org/10.3390/app9071507

    Article  Google Scholar 

  112. H. Duan, X. Shen, Q. Yin, F. Yang, P. Bai, X. Zhang, M. Pan, Modeling and optimization of sound absorption coefficient of microperforated compressed porous metal panel absorber. Appl. Acoust. (2020). https://doi.org/10.1016/j.apacoust.2020.107322

    Article  Google Scholar 

  113. I. Prasetiyo, E. Muqowi, A. Putra, M. Novenbrianty, G. Desendra, D.R. Adhika, Modelling sound absorption of tunable double layer woven fabrics. Appl. Acoust. (2020). https://doi.org/10.1016/j.apacoust.2019.107008

    Article  Google Scholar 

  114. L. Egab, X. Wang, M. Fard, Acoustical characterisation of porous sound absorbing materials: a review. Int. J. Vehicle Noise Vibration 10, 129–149 (2014)

    Article  Google Scholar 

  115. T. Yang, F. Saati, X.M. Xiong, Y.F. Wang, K. Yang, R. Mishra, J. Militky, M. Petru, Numerical modelling of the acoustic properties of polyester non-woven. In: Y. Li, K. Zhang, Z. Pan, G. Li (Eds.), Textile bioengineering and informatics symposium proceedings, pp. 767–776 (2019)

  116. S. Akasaka, T. Kato, K. Azuma, Y. Konosu, H. Matsumoto, S. Asai, Structure-sound absorption property relationships of electrospun thin silica fiber sheets: quantitative analysis based on acoustic models. Appl. Acoust. 152, 13–20 (2019)

    Article  Google Scholar 

  117. H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010)

    Article  CAS  Google Scholar 

  118. M. Tascan, E.A. Vaughn, K.A. Stevens, P.J. Brown, Effects of total surface area and fabric density on the acoustical behavior of traditional thermal-bonded highloft nonwoven fabrics. J. Text. Inst. 102(9), 746–751 (2011)

    Article  Google Scholar 

  119. M.M. Jalili, S.Y. Mousavi, A.S. Pirayeshfar, Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites. Polym. Compos. 35(11), 2103–2111 (2014)

    Article  CAS  Google Scholar 

  120. P. Bai, X. Yang, X. Shen, X. Zhang, Z. Li, Q. Yin, G. Jiang, F. Yang, Sound absorption performance of the acoustic absorber fabricated by compression and microperforation of the porous metal. Mater. Design. (2019). https://doi.org/10.1016/j.matdes.2019.107637

    Article  Google Scholar 

  121. X. Colom, J. Canavate, F. Carrillo, M.J. Lis, Acoustic and mechanical properties of recycled polyvinyl chloride/ground tyre rubber composites. J. Compos. Mater. 48(9), 1061–1069 (2014)

    Article  Google Scholar 

  122. X.N. Tang, X. Yan, A review on the damping properties of fiber reinforced polymer composites. J. Ind. Text. 49(6), 693–721 (2020)

    Article  CAS  Google Scholar 

  123. C. Perrot, R. Panneton, X. Olny, Periodic unit cell reconstruction of porous media: application to open-cell aluminum foams. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2745095

    Article  Google Scholar 

  124. T.G. Zielinski, Generation of random microstructures and prediction of sound velocity and absorption for open foams with spherical pores. J. Acoust. Soc. Am. 137(4), 1790–1801 (2015)

    Article  PubMed  Google Scholar 

  125. A. Ghazi, P. Berke, K. Ehab Moustafa Kamel, B. Sonon, C. Tiago, T.J. Massart, Multiscale computational modelling of closed cell metallic foams with detailed microstructural morphological control. Int. J. Eng. Sci. 143, 92–114 (2019)

    Article  Google Scholar 

  126. T. Wan, Y. Liu, C.X. Zhou, X. Chen, Y.X. Li, Fabrication, properties, and applications of open-cell aluminum foams: a review. J. Mater. Sci. Technol. 62, 11–24 (2021)

    Article  CAS  Google Scholar 

  127. H. Wang, I.Y. Sung, X.D. Li, D. Kim, Fabrication of porous SiC ceramics with special morphologies by sacrificing template method. J. Porous Mater. 11(4), 265–271 (2004)

    Article  CAS  Google Scholar 

  128. T.G. Zielinski, M. Potoczek, R.E. Sliwa, L.J. Nowak, Acoustic absorption of a new class of alumina foams with various high-porosity levels. Arch. Acoust. 38(4), 495–502 (2013)

    Article  Google Scholar 

  129. Z. Sun, Z. Shen, S. Ma, X. Zhang, Sound absorption application of fiberglass recycled from waste printed circuit boards. Mater. Struct. 48(1–2), 387–392 (2013)

    Google Scholar 

  130. Z. Yan, K. Feng, J. Tian, Y. Liu, Effect of high titanium blast furnace slag on preparing foam glass-ceramics for sound absorption. J. Porous Mater. 26(4), 1209–1215 (2019)

    Article  CAS  Google Scholar 

  131. L. Chen, D. Rende, L.S. Schadler, R. Ozisik, Polymer nanocomposite foams. J. Mater. Chem. A. (2013). https://doi.org/10.1039/c2ta00086e

    Article  Google Scholar 

  132. Y. Na, T. Agnhage, G. Cho, Sound absorption of multiple layers of nanofiber webs and the comparison of measuring methods for sound absorption coefficients. Fibers and Polymers 13(10), 1348–1352 (2012)

    Article  CAS  Google Scholar 

  133. L. Lapčík, M. Vašina, B. Lapčíková, E. Otyepková, K.E. Waters, Investigation of advanced mica powder nanocomposite filler materials: surface energy analysis, powder rheology and sound absorption performance. Compos. B Eng. 77, 304–310 (2015)

    Article  CAS  Google Scholar 

  134. G. Sung, S.K. Kim, J.W. Kim, J.H. Kim, Effect of isocyanate molecular structures in fabricating flexible polyurethane foams on sound absorption behavior. Polym. Testing 53, 156–164 (2016)

    Article  CAS  Google Scholar 

  135. G. Sung, J.H. Kim, Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers. Compos. Sci. Technol. 146, 147–154 (2017)

    Article  CAS  Google Scholar 

  136. X.Q. Jia, S.Y. Li, H.J. Miu, T. Yang, K. Rao, D.Y. Wu, B.L. Cui, J.L. Ou, Z.C. Zhu, Carbon nanomaterials: a new sustainable solution to reduce the emerging environmental pollution of turbomachinery noise and vibration. Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00683

    Article  PubMed  PubMed Central  Google Scholar 

  137. H. Bahrambeygi, N. Sabetzadeh, A. Rabbi, K. Nasouri, A.M. Shoushtari, M.R. Babaei, Nanofibers (PU and PAN) and nanoparticles (Nanoclay and MWNTs) simultaneous effects on polyurethane foam sound absorption. J. Polym. Res. (2013). https://doi.org/10.1007/s10965-012-0072-6

    Article  Google Scholar 

  138. J.M. Kim, D.H. Kim, J. Kim, J.W. Lee, W.N. Kim, Effect of graphene on the sound damping properties of flexible polyurethane foams. Macromol. Res. 25(2), 190–196 (2017)

    Article  CAS  Google Scholar 

  139. J. Lee, I. Jung, Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide. Appl. Acoust. 151, 10–21 (2019)

    Article  Google Scholar 

  140. J. Lee, G.-H. Kim, C.-S. Ha, Sound absorption properties of polyurethane/nano-silica nanocomposite foams. J. Appl. Polym. Sci. 123(4), 2384–2390 (2012)

    Article  CAS  Google Scholar 

  141. R. Gayathri, R. Vasanthakumari, C. Padmanabhan, Sound absorption, thermal and mechanical behavior of polyurethane foam modified with nano silica, nano clay and crumb rubber fillers. Int. J. Sci. Eng. Res. 4(5), 301–308 (2013)

    Google Scholar 

  142. A.-E. Tiuc, H. Vermeşan, T. Gabor, O. Vasile, Improved sound absorption properties of polyurethane foam mixed with textile waste. Energy Procedia. 85, 559–565 (2016)

    Article  CAS  Google Scholar 

  143. A.E. Tiuc, O. Nemes, H. Vermesan, A.C. Toma, New sound absorbent composite materials based on sawdust and polyurethane foam. Compos. Part B 165, 120–130 (2019)

    Article  CAS  Google Scholar 

  144. G. Sung, J.W. Kim, J.H. Kim, Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption. J. Ind. Eng. Chem. 44, 99–104 (2016)

    Article  CAS  Google Scholar 

  145. C. Zhang, J. Gong, H. Li, J. Zhang, Fiber-based flexible composite with dual-gradient structure for sound insulation. Compos. Part B (2020). https://doi.org/10.1016/j.compositesb.2020.108166

    Article  Google Scholar 

  146. H. Choe, J.H. Lee, J.H. Kim, Polyurethane composite foams including CaCO3 fillers for enhanced sound absorption and compression properties. Compos. Sci. Technol. (2020). https://doi.org/10.1016/j.compscitech.2020.108153

    Article  Google Scholar 

  147. S.H. Baek, J.H. Kim, Polyurethane composite foams including silicone-acrylic particles for enhanced sound absorption via increased damping and frictions of sound waves. Compos. Sci. Technol. (2020). https://doi.org/10.1016/j.compscitech.2020.108325

    Article  Google Scholar 

  148. S.C. Pinto, P.A.A.P. Marques, R. Vicente, L. Godinho, I. Duarte, Hybrid structures made of polyurethane/graphene nanocomposite foams embedded within aluminum open-cell foam. Metals (2020). https://doi.org/10.3390/met10060768

    Article  Google Scholar 

  149. K. Qamoshi, R. Rasuli, Subwavelength structure for sound absorption from graphene oxide-doped polyvinylpyrrolidone nanofibers. Appl. Phys. A (2016). https://doi.org/10.1007/s00339-016-0332-0

    Article  Google Scholar 

  150. M.J. Nine, M. Ayub, A.C. Zander, D.N.H. Tran, B.S. Cazzolato, D. Losic, Graphene oxide-based lamella network for enhanced sound absorption. Adv. Funct. Mater. (2017). https://doi.org/10.1002/adfm.201703820

    Article  Google Scholar 

  151. R. Verdejo, R. Stampfli, M. Alvarez-Lainez, S. Mourad, M.A. Rodriguez-Perez, P.A. Bruhwiler, M. Shaffer, Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes. Compos. Sci. Technol. 69(10), 1564–1569 (2009)

    Article  CAS  Google Scholar 

  152. A.M. Willemsen, M.D. Rao, Sound absorption characteristics of nanocomposite polyurethane foams infused with carbon nanotubes. Noise Cont. Eng. J. 63(5), 424–438 (2015)

    Article  Google Scholar 

  153. B.-E. Gu, C.-Y. Huang, T.-H. Shen, Y.-L. Lee, Effects of multiwall carbon nanotube addition on the corrosion resistance and underwater acoustic absorption properties of polyurethane coatings. Prog. Org. Coat. 121, 226–235 (2018)

    Article  CAS  Google Scholar 

  154. B. Balakrishnan, S. Raja, A. Rajagopal, Influence of MWCNT fillers on vibroacoustic characteristics of polymer nanocomposite and coated aircraft panels. Appl. Acoust. (2021). https://doi.org/10.1016/j.apacoust.2020.107604

    Article  Google Scholar 

  155. C.-H. Huang, J.-H. Lin, Y.-C. Chuang, Manufacturing process and property evaluation of sound-absorbing and thermal-insulating polyester fiber/polypropylene/thermoplastic polyurethane composite board. J. Ind. Text. 43(4), 627–640 (2013)

    Article  Google Scholar 

  156. L. Prabhu, V. Krishnaraj, S. Gokulkumar, S. Sathish, M.R. Sanjay, S. Siengchin, Mechanical, chemical and sound absorption properties of glass/kenaf/waste tea leaf fiber-reinforced hybrid epoxy composites. J. Ind. Text. 16, 653–660 (2019)

    CAS  Google Scholar 

  157. L.T. Cao, Y. Si, X. Yin, J.Y. Yu, B. Ding, Ultralight and resilient electrospun fiber sponge with a lamellar corrugated microstructure for effective low-frequency sound absorption. ACS Appl. Mater. Interfaces. 11(38), 35333–35342 (2019)

    Article  CAS  PubMed  Google Scholar 

  158. X.N. Tang, X.S. Zhang, X.M. Zhuang, H.P. Zhang, X. Yan, Sound absorption properties of nonwoven fabric based multi-layer composites. Polym. Compos. 40(5), 2012–2018 (2019)

    Article  CAS  Google Scholar 

  159. X.N. Tang, X.T. Liu, X.S. Zhang, S.Y. Zhang, Multi-layered sound absorption structure composed of nonwoven fabrics and polyethylene membranes. J. Indus. Text. (2020). https://doi.org/10.1177/1528083720961950

    Article  Google Scholar 

  160. C. Prahsarn, W. Klinsukhon, N. Suwannamek, P. Wannid, S. Padee, Sound absorption performance of needle-punched nonwovens and their composites with perforated rubber. SN Appl. Sci. (2020). https://doi.org/10.1007/s42452-020-2401-4

    Article  Google Scholar 

  161. Z.H. Wang, Y.X. Huang, X.W. Zhang, L. Li, M.J. Chen, D.N. Fang, Broadband underwater sound absorbing structure with gradient cavity shaped polyurethane composite array supported by carbon fiber honeycomb. J. Sound Vib. (2020). https://doi.org/10.1016/j.jsv.2020.115375

    Article  Google Scholar 

  162. X.H. Ren, J. Wang, G.H. Sun, S.Y. Zhou, J. Liu, S.H. Han, Effects of structural design including cellular structure precision controlling and sharp holes introducing on sound absorption behavior of polyimide foam. Polym. Testing (2020). https://doi.org/10.1016/j.polymertesting.2020.106393

    Article  Google Scholar 

  163. C.-W. Lou, S.-Y. Huang, C.-H. Huang, Y.-J. Pan, R. Yan, C.-T. Hsieh, J.-H. Lin, Effects of structure design on resilience and acoustic absorption properties of porous flexible-foam based perforated composites. Fibers and Polymers 16(12), 2652–2662 (2016)

    Article  Google Scholar 

  164. N.S. Gao, L.L. Tang, J. Deng, K. Lu, H. Hou, K.A. Chen, Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge. Appl. Acoust. (2021). https://doi.org/10.1016/j.apacoust.2020.107845

    Article  Google Scholar 

  165. L.T. Cao, Q.X. Fu, Y. Si, B. Ding, J.Y. Yu, Porous materials for sound absorption. Compos. Commun. 10, 25–35 (2018)

    Article  Google Scholar 

  166. M.E. Davis, Ordered porous materials for emerging applications. Nature 417(6891), 813–821 (2002)

    Article  CAS  PubMed  Google Scholar 

  167. R. Kirby, J.B. Lawrie, A point collocation approach to modelling large dissipative silencers. J. Sound Vib. 286(1–2), 313–339 (2005)

    Article  Google Scholar 

  168. S. Liu, W. Chen, Y. Zhang, Design optimization of porous fibrous material for maximizing absorption of sounds under set frequency bands. Appl. Acoust. 76, 319–328 (2014)

    Article  Google Scholar 

  169. X. Yang, X. Shen, P. Bai, X. He, X. Zhang, Z. Li, L. Chen, Q. Yin, Preparation and characterization of gradient compressed porous metal for high-efficiency and thin-thickness acoustic absorber. Materials (2019). https://doi.org/10.3390/ma12091413

    Article  PubMed  PubMed Central  Google Scholar 

  170. F. Han, G. Seiffert, Y. Zhao, B. Gibbs, Acoustic absorption behaviour of an open-celled aluminium foam. J. Phys. D Appl. Phys. 36, 294–302 (2003)

    Article  CAS  Google Scholar 

  171. M.A. Navacerrada, P. Fernandez, C. Diaz, A. Pedrero, Thermal and acoustic properties of aluminium foams manufactured by the infiltration process. Appl. Acoust. 74(4), 496–501 (2013)

    Article  Google Scholar 

  172. M. Hakamada, T. Kuromura, Y. Chen, H. Kusuda, M. Mabuchi, High sound absorption of porous aluminum fabricated by spacer method. Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2216104

    Article  Google Scholar 

  173. F. Chevillotte, C. Perrot, R. Panneton, Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams. J. Acoust. Soc. Am. 128(4), 1766–1776 (2010)

    Article  PubMed  Google Scholar 

  174. K.C. Opiela, T.G. Zielinski, T. Dvorak, S. Kudela, Perforated closed-cell aluminium foam for acoustic absorption. Appl. Acoust. (2021). https://doi.org/10.1016/j.apacoust.2020.107706

    Article  Google Scholar 

  175. C. Perrot, F. Chevillotte, R. Panneton, Dynamic viscous permeability of an open-cell aluminum foam: computations versus experiments. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2829774

    Article  Google Scholar 

  176. C.J. Sacristan, T. Dupont, O. Sicot, P. Leclaire, K. Verdiere, R. Panneton, X.L. Gong, A mixture approach to the acoustic properties of a macroscopically inhomogeneous porous aluminum in the equivalent fluid approximation. J. Acoust. Soc. Am. 140(4), 2847–2855 (2016)

    Article  CAS  PubMed  Google Scholar 

  177. J. Zhu, J. Sun, H. Tang, J. Wang, Q. Ao, T. Bao, W. Song, Gradient-structural optimization of metal fiber porous materials for sound absorption. Powder Technol. 301, 1235–1241 (2016)

    Article  CAS  Google Scholar 

  178. L.S. Liang, W.L. Guo, Y. Zhang, W.Z. Zhang, L.B. Li, X.D. Xing, Radial basis function neural network for prediction of medium-frequency sound absorption coefficient of composite structure open-cell aluminum foam. Appl. Acoust. (2020). https://doi.org/10.1016/j.apacoust.2020.107505

    Article  Google Scholar 

  179. X. Wang, F. Peng, B. Chang, Sound absorption of porous metals at high sound pressure levels. J. Acoust. Soc. Am. 126(2), EL55-61 (2009)

    Article  PubMed  Google Scholar 

  180. W. Zhai, X. Yu, X. Song, L.Y.L. Ang, F. Cui, H.P. Lee, T. Li, Microstructure-based experimental and numerical investigations on the sound absorption property of open-cell metallic foams manufactured by a template replication technique. Mater. Des. 137, 108–116 (2018)

    Article  CAS  Google Scholar 

  181. N. Lippitz, J. Rösler, B. Hinze, Potential of metal fibre felts as passive absorbers in absorption silencers. Metals. 3(1), 150–158 (2013)

    Article  CAS  Google Scholar 

  182. F. Sun, H. Chen, J. Wu, K. Feng, Sound absorbing characteristics of fibrous metal materials at high temperatures. Appl. Acoust. 71(3), 221–235 (2010)

    Article  Google Scholar 

  183. J. Hui Wu, Z.P. Hu, H. Zhou, Sound absorbing property of porous metal materials with high temperature and high sound pressure by turbulence analogy. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4804951

    Article  Google Scholar 

  184. X. Wang, Y. Li, T. Chen, Z. Ying, Research on the sound absorption characteristics of porous metal materials at high sound pressure levels. Adv. Mech. Eng. (2015). https://doi.org/10.1177/1687814015575429

    Article  Google Scholar 

  185. T.C. Hung, J.S. Huang, Y.W. Wang, K.Y. Lin, Inorganic polymeric foam as a sound absorbing and insulating material. Constr. Build Mater. 50, 328–334 (2014)

    Article  Google Scholar 

  186. P.T. Williams, R. Kirby, C. Malecki, J. Hill, Measurement of the bulk acoustic properties of fibrous materials at high temperatures. Appl. Acoust. 77, 29–36 (2014)

    Article  Google Scholar 

  187. S. Prabhakaran, V. Krishnaraj, M.S. Kumar, R. Zitoune, Sound and vibration damping properties of flax fiber reinforced composites. Proc. Eng. 97, 573–581 (2014)

    Article  CAS  Google Scholar 

  188. Y.J. Xu, W. Li, M. Zhu, X.P. Yue, M. Wang, Novel porous fiber-based composites with excellent sound-absorbing and flame-retardant properties. J. Wood Chem. Technol. 40(5), 285–293 (2020)

    Article  CAS  Google Scholar 

  189. Z. Zhang, Y. Du, Sound insulation analysis and optimization of anti-symmetrical carbon fiber reinforced polymer composite materials. Appl. Acoust. 120, 34–44 (2017)

    Article  CAS  Google Scholar 

  190. Y.J. Qian, D.Y. Kong, Y. Liu, S.M. Liu, Z.B. Li, D.S. Shao, S.M. Sun, Improvement of sound absorption characteristics under low frequency for micro-perforated panel absorbers using super-aligned carbon nanotube arrays. Appl. Acoust. 82, 23–27 (2014)

    Article  Google Scholar 

  191. Y. Chen, N. Jiang, Carbonized and activated non-wovens as high-performance acoustic materials: part I noise absorption. Text. Res. J. 77(10), 785–791 (2016)

    Article  CAS  Google Scholar 

  192. R. Wang, R. Yan, C.-W. Lou, J.-H. Lin, Characterization of acoustic-absorbing inter/intra-ply hybrid laminated composites under dynamic loading. Fibers and Polymers 17(3), 439–452 (2017)

    Article  CAS  Google Scholar 

  193. M. Ayub, A.C. Zander, C.Q. Howard, B.S. Cazzolato, D.M. Huang, V.N. Shanov, N.T. Alvarez, Normal incidence acoustic absorption characteristics of a carbon nanotube forest. Appl. Acoust. 127, 223–239 (2017)

    Article  Google Scholar 

  194. M. Ayub, A.C. Zander, D.M. Huang, C.Q. Howard, B.S. Cazzolato, Molecular dynamics simulations of acoustic absorption by a carbon nanotube. Phys. Fluids. (2018). https://doi.org/10.1063/1.5026528

    Article  Google Scholar 

  195. I.I. Kabir, Y. Fu, N. De Souza, J.C. Baena, A.C.Y. Yuen, W. Yang, J. Mata, Z. Peng, G.H. Yeoh, PDMS/MWCNT nanocomposite films for underwater sound absorption applications. J. Mater. Sci. 55(12), 5048–5063 (2020)

    Article  CAS  Google Scholar 

  196. Y.F. Fu, J. Fischer, K.Q. Pan, G.H. Yeoh, Z.X. Peng, Underwater sound absorption properties of polydimethylsiloxane/carbon nanotube composites with steel plate backing. Appl. Acoustics. (2021). https://doi.org/10.1016/j.apacoust.2020.107668

    Article  Google Scholar 

  197. D. Cuiyun, C. Guang, X. Xinbang, L. Peisheng, Sound absorption characteristics of a high-temperature sintering porous ceramic material. Appl. Acoust. 73(9), 865–871 (2012)

    Article  Google Scholar 

  198. M. Carlesso, R. Giacomelli, S. Günther, D. Koch, S. Kroll, S. Odenbach, K. Rezwan, T. Ohji, Near-net-shaped porous ceramics for potential sound absorption applications at high temperatures. J. Am. Ceram. Soc. 96(3), 710–718 (2013)

    Article  CAS  Google Scholar 

  199. W. Wang, H. Liu, W. Gu, A novel fabrication approach for improving the mechanical and sound absorbing properties of porous sound-absorbing ceramics. J. Alloy Compd. 695, 2477–2482 (2017)

    Article  CAS  Google Scholar 

  200. F. Wang, H. Gu, J. Yin, Y. Xia, K. Zuo, H. Liang, C. Ning, D. Yao, Y. Zeng, Porous Si3N4 fabrication via volume-controlled foaming and their sound absorption properties. J. Alloy Compd. 727, 163–167 (2017)

    Article  CAS  Google Scholar 

  201. Z. Du, D. Yao, Y. Xia, K. Zuo, J. Yin, H. Liang, Y.-P. Zeng, The sound absorption properties of highly porous silicon nitride ceramic foams. J. Alloy Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153067

    Article  Google Scholar 

  202. N. Yan, Q. Fu, Y. Zhang, K. Li, W. Xie, J. Zhang, L. Zhuang, X. Shi, Preparation of pore-controllable zirconium carbide ceramics with tunable mechanical strength, thermal conductivity and sound absorption coefficient. Ceram Int. 46(11), 19609–19616 (2020)

    Article  CAS  Google Scholar 

  203. C. He, B. Du, J. Qian, X. Wang, B. Luo, A. Shui, Synthesis of macroporous ceramic with enhanced sound absorption capability in low and medium frequency. Ceram Int. 46(11), 17917–17922 (2020)

    Article  CAS  Google Scholar 

  204. J.H. Chen, P.S. Liu, J.X. Sun, Sound absorption performance of a lightweight ceramic foam. Ceram Int. 46(14), 22699–22708 (2020)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 50806055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huagen Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Wu, H., Liu, J. et al. Improved sound absorption performance of synthetic fiber materials for industrial noise reduction: a review. J Porous Mater 29, 869–892 (2022). https://doi.org/10.1007/s10934-022-01219-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01219-z

Keywords

Navigation