Skip to main content
Log in

Sound insulation properties of sandwich structures on glass fiber felts

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This paper focuses on three types of glass fiber felt sandwich structures to identify the optimal sound insulation structure. Air flow resistivities of glass fiber felts are 6633 Pa·s/m2 (Loose), 19579 Pa·s/m2 (Mid) and 42724 Pa·s/m2 (Dense), respectively. The three types of sandwich structures are dense-mid-loose (DML), mid-loose-dense (MLD) and loose-dense-mid (LDM), respectively. Sound transmission loss is determined by an impedance tube method and the structure morphology is examined by the optical microscope. The results show that sound insulation property is affected by both the sound incident direction and composite structure. The optimal sandwich structure is MLD with the incident surface being M. The composite structures with the best and worst sound insulation are compared at the frequencies of 630 Hz, 1000 Hz, 2000 Hz and 3000 Hz. The growth rates of sound insulation are 7.4 %, 19.0 %, 15.4 % and 10.5 %, respectively. The sound transmission is also calculated by a simple numerical model which agrees with the experimental results well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Seddeq, N. M. Aly, M. A. Ali, and M. H. Elshakankery, J. Ind. Text., 43, 56 2013.

    Article  Google Scholar 

  2. W. Loney, J. Acoust. Soc. Am., 49, 385 1971.

    Article  Google Scholar 

  3. J. Z. Liang and X. H. Jiang, Compos. Pt. B-Eng., 43, 1995 2012.

    Article  CAS  Google Scholar 

  4. P. P. Narang, Appl. Acoust., 45, 335 1995.

    Article  Google Scholar 

  5. M. Tascan and E. A. Vaughn, Text. Res. J., 78, 289 2014.

    Article  Google Scholar 

  6. M. Tascan and E. A. Vaughn, J. Eng. Fiber. Fab., 3, 32 2008.

    Google Scholar 

  7. A. Tadeu, J. António, and D. Mateus, Appl. Acoust., 65, 15 2004.

    Article  Google Scholar 

  8. F. X. Xin and T. J. Lu, J. Acoust. Soc. Am., 125, 1506 2009.

    Article  CAS  Google Scholar 

  9. J. J. Sargianis, H. I. Kim, E. Andres, and J. Suhr, Compos. Struct., 96, 538 2013.

    Article  Google Scholar 

  10. W. S. Chen and X. J. Qiu, J. Nanjing Univ., 41, 91 2005.

    Google Scholar 

  11. T. E. Vigran, Appl. Acoust., 71, 39 2010.

    Article  Google Scholar 

  12. J. Legault and N. Atalla, J. Sound Vib., 329, 3082 2010.

    Article  Google Scholar 

  13. D. H. Kazem, H. R. Taghiyari, and A. Elyasi, Compos. Pt. B-Eng., 58, 10 2014.

    Article  Google Scholar 

  14. Y. Shen and G. M. Jiang, J. Text. Inst., 105, 1100 2014.

    Article  CAS  Google Scholar 

  15. H. F. Xiang, D. Wang, H. C. Liu, N. Zhao, and J. Xu, Chinese J. Polym. Sci., 31, 521 2013.

    Article  CAS  Google Scholar 

  16. A. G. Novitskii and M. V. Efremov, Refract. Ind. Ceram., 47, 121 2006.

    Article  CAS  Google Scholar 

  17. B. Champagne and R. Angers, Int. J. Powder Metall., 16, 359 1980.

    Google Scholar 

  18. Y. Z. Liu, K. Minagawa, H. Kakisawa, and K. Halada, Int. J. Powder Metall., 39, 29 2003.

    CAS  Google Scholar 

  19. Z. G. Yang, A. Gulisitan, Y. Cao, J. Zhu, B. S. Wu, J. C. Wang, W. L. Lu, X. Zhang, and Q. Zhang, J. Chin. Pharmaceut. Sci., 15, 69 2006.

    CAS  Google Scholar 

  20. ASTM C 522-3: “Standard Test Method for Airflow Resistance of Acoustical Materials, American Society for Testing and Materials”, West Conshohocken, PA, 2009.

  21. J. Zhao, X. M. Wang, J. M. Chang, Y. Yao, and Q. Cui, Compos. Sci. Technol., 70, 2033 2010.

    Article  CAS  Google Scholar 

  22. S. Li, Y. Wang, J. Ding, H. M. Wu, and Y. Q. Fu, Text. Res. J., 84, 897 2013.

    Article  Google Scholar 

  23. J. António, Fiber. Compos. Mater. Civil Eng., 11, 306 2011.

    Google Scholar 

  24. D. A. Bies and C. H. Hansen, Appl. Acoust., 13, 357 1980.

    Article  Google Scholar 

  25. L. L. Beranek and I. L. Veâr, “Noise and Vibration Control Engineering”, 2nd ed., pp.15–18, John Wiley and Sons, Inc., Hoboken, New Jersey, 1992.

    Google Scholar 

  26. K. Goesele, Acustica, 45, 218 1980.

    Google Scholar 

  27. Y. Yang and Z. F. Chen, Appl. Acoust., 91, 6 2015.

    Article  Google Scholar 

  28. J. S. Bolton, N. M. Shiauand, and Y. J. Kang, J. Sound Vib., 191, 317 1996.

    Article  Google Scholar 

  29. C. D. Li, Z. F. Chen, J. X. Zhu, Y. Liu, Y. Jiang, and T. R. Guan, Mater. Des., 36, 289 2012.

    Article  CAS  Google Scholar 

  30. A. Tamayol and M. Bahrami, Phy. Rev. E, 83, 1 2011.

    Article  Google Scholar 

  31. Y. Na, T. Agnhage, and G. Cho, Fiber. Polym., 13, 1348 2012.

    Article  CAS  Google Scholar 

  32. J. P. Arenas and M. J. Crocker, Sound Vib., 44, 12 2010.

    Google Scholar 

  33. C. Z. Zhang, J. Q. Li, and Z. Hu, Mater. Des., 41, 319 2012.

    Article  CAS  Google Scholar 

  34. A. Y. Hao, H. F. Zhao, and J. Y. Chen, Compos. Pt. B-Eng., 54, 44 2013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaofeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Chen, Z., Chen, Z. et al. Sound insulation properties of sandwich structures on glass fiber felts. Fibers Polym 16, 1568–1577 (2015). https://doi.org/10.1007/s12221-015-5200-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5200-6

Keywords

Navigation