Skip to main content
Log in

Optimization of uncertain acoustic metamaterial with Helmholtz resonators based on interval model

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Uncertainties existing in the acoustic metamaterial may strongly affect its unusual properties. Aiming at this actuality, the interval model is introduced to treat with uncertainties existing in the acoustic metamaterial with Helmholtz resonators. Frequency intervals in which the sound intensity transmission coefficients are certainly less than the required value and the effective bulk moduli are certainly negative are defined as conservative approximations. Frequency intervals in which the sound intensity transmission coefficients may be less than the required value and the effective bulk moduli may be negative are defined as unsafe approximations. The proportion of the conservative approximation and the unsafe approximation is defined as an approximate precision. Based on the quantification of uncertainties of the sound intensity transmission coefficients and the negative effective bulk moduli, an optimization model for the interval acoustic metamaterial with Helmholtz resonators is constructed. Numerical results showed that even suffering from effects of interval parameters, unusual properties of the optimized acoustic metamaterial (such as the bandgap of the sound transmission and the negative effective bulk modulus) could be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Popa B I, Zigoneanu L, Cummer S A. Experimental acoustic ground cloak in air. Phys Rev Lett, 2011, 106: 253901

    Article  Google Scholar 

  2. Deng K, Ding Y, He Z, et al. Theoretical study of subwavelength imaging by acoustic metamaterial slabs. J Appl Phys, 2009, 105: 124909

    Article  Google Scholar 

  3. Deckers E, Claeys C, Atak O, et al. A wave based method to predict the absorption, reflection and transmission coefficient of two-dimensional rigid frame porous structures with periodic inclusions. J Comp Phys, 2016, 312: 115–138

    Article  MathSciNet  MATH  Google Scholar 

  4. Xia B, Dai H, Yu D. Symmetry-broken metamaterial for blocking, cloaking, and supertunneling of sound in a subwavelength scale. Appl Phys Lett, 2016, 108: 251902

    Article  Google Scholar 

  5. Atak O, Huybrechs D, Pluymers B, et al. The design of Helmholtz resonator based acoustic lenses by using the symmetric multi-level wave based method and genetic algorithms. J Sound Vib, 2014, 333: 3367–3381

    Article  Google Scholar 

  6. Zhu R, Liu X N, Hu G K, et al. Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat Commun, 2014, 5: 5510

    Article  Google Scholar 

  7. Langfeldt F, Gleine W, von Estorff O. Analytical model for low-frequency transmission loss calculation of membranes loaded with arbitrarily shaped masses. J Sound Vib, 2015, 349: 315–329

    Article  Google Scholar 

  8. Langfeldt F, Riecken J, Gleine W, et al. A membrane-type acoustic metamaterial with adjustable acoustic properties. J Sound Vib, 2016, 373: 1–18

    Article  Google Scholar 

  9. Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials. Science, 2000, 289: 1734–1736

    Article  Google Scholar 

  10. Goffaux C, Sánchez-Dehesa J, Yeyati A L, et al. Evidence of fano-like interference phenomena in locally resonant materials. Phys Rev Lett, 2002, 88: 225502

    Article  Google Scholar 

  11. Ding Y, Liu Z, Qiu C, et al. Metamaterial with simultaneously negative bulk modulus and mass density. Phys Rev Lett, 2007, 99: 093904

    Article  Google Scholar 

  12. Wu Y, Lai Y, Zhang Z Q. Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys Rev Lett, 2011, 107: 105506

    Article  Google Scholar 

  13. Fang N, Xi D, Xu J, et al. Ultrasonic metamaterials with negative modulus. Nat Mater, 2006, 5: 452–456

    Article  Google Scholar 

  14. Yang Z, Mei J, Yang M, et al. Membrane-type acoustic metamaterial with negative dynamic mass. Phys Rev Lett, 2008, 101: 204301

    Article  Google Scholar 

  15. Lee S H, Park C M, Seo Y M, et al. Composite acoustic medium with simultaneously negative density and modulus. Phys Rev Lett, 2010, 104: 054301

    Article  Google Scholar 

  16. Yang M, Ma G, Yang Z, et al. Coupled membranes with doubly negative mass density and bulk modulus. Phys Rev Lett, 2013, 110: 134301

    Article  Google Scholar 

  17. Meidani M, Kim E, Li F, et al. Tunable evolutions of wave modes and bandgaps in quasi-1D cylindrical phononic crystals. J Sound Vib, 2015, 334: 270–281

    Article  Google Scholar 

  18. Kim E, Yang J. Wave propagation in single column woodpile phononic crystals: Formation of tunable band gaps. J Mech Phys Solids, 2014, 71: 33–45

    Article  MATH  Google Scholar 

  19. Zhu Z W, Deng Z C. Tailoring of interiorly resonant band gaps in structurally square re-entrant honeycombs. J Sound Vib, 2016, 372: 181–191

    Article  Google Scholar 

  20. Li J B, Wang Y S, Zhang C. Tuning of acoustic bandgaps in phononic crystals with Helmholtz resonators. J Vib Acoust, 2013, 135: 031015

    Article  Google Scholar 

  21. Hao L, Ding C, Zhao X. Design of a passive controllable negative modulus metamaterial with a split hollow sphere of multiple holes. J Vib Acoust, 2013, 135: 041008

    Article  Google Scholar 

  22. Romero-Garciá V, Sánchez-Pérez J V, Garcia-Raffi L M, et al. Hole distribution in phononic crystals: Design and optimization. J Acoust Soc Am, 2009, 125: 3774–3783

    Article  Google Scholar 

  23. Romero-García V, Krynkin A, Garcia-Raffi L M, et al. Multi-resonant scatterers in sonic crystals: Locally multi-resonant acoustic metamaterial. J Sound Vib, 2013, 332: 184–198

    Article  Google Scholar 

  24. Wang Y F, Wang Y S. Complete bandgap in three-dimensional holey phononic crystals with resonators. J Vib Acoust, 2013, 135: 041009

    Article  Google Scholar 

  25. Xu W, Wang W, Yang T. Multi-objective optimization of layered elastic metamaterials with multiphase microstructures. J Vib Acoust, 2013, 135: 041010

    Article  Google Scholar 

  26. Acar G, Yilmaz C. Experimental and numerical evidence for the existence of wide and deep phononic gaps induced by inertial amplification in two-dimensional solid structures. J Sound Vib, 2013, 332: 6389–6404

    Article  Google Scholar 

  27. Yuksel O, Yilmaz C. Shape optimization of phononic band gap structures incorporating inertial amplification mechanisms. J Sound Vib, 2015, 355: 232–245

    Article  Google Scholar 

  28. Kang Z, Luo Y. Reliability-based structural optimization with probability and convex set hybrid models. Struct Multidisc Optim, 2010, 42: 89–102

    Article  Google Scholar 

  29. Kang Z, Luo Y, Li A. On non-probabilistic reliability-based design optimization of structures with uncertain-but-bounded parameters. Struct Safety, 2011, 33: 196–205

    Article  Google Scholar 

  30. Xia B, Yu D. Modified sub-interval perturbation finite element method for 2D acoustic field prediction with large uncertain-but-bounded parameters. J Sound Vib, 2012, 331: 3774–3790

    Article  Google Scholar 

  31. Xia B, Yu D, Liu J. Interval and subinterval perturbation methods for a structural-acoustic system with interval parameters. J Fluids Struct, 2013, 38: 146–163

    Article  Google Scholar 

  32. Gao W, Song C, Tin-Loi F. Probabilistic interval analysis for structures with uncertainty. Struct Safety, 2010, 32: 191–199

    Article  Google Scholar 

  33. Wu D, Gao W, Tangaramvong S, et al. Robust stability analysis of structures with uncertain parameters using mathematical programming approach. Int J Numer Meth Eng, 2014, 100: 720–745

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu D, Gao W, Song C, et al. Probabilistic interval stability assessment for structures with mixed uncertainty. Struct Safety, 2016, 58: 105–118

    Article  Google Scholar 

  35. Li F, Luo Z, Rong J, et al. Interval multi-objective optimisation of structures using adaptive Kriging approximations. Comp Struct, 2013, 119: 68–84

    Article  Google Scholar 

  36. Hu W, Azarm S, Almansoori A. New approximation assisted multiobjective collaborative robust optimization (new AA-McRO) under interval uncertainty. Struct Multidisc Optim, 2013, 47: 19–35

    Article  MathSciNet  MATH  Google Scholar 

  37. Mortazavi A, Azarm S, Gabriel S A. Adaptive gradient-assisted robust design optimization under interval uncertainty. Eng Optim, 2013, 45: 1287–1307

    Article  MathSciNet  Google Scholar 

  38. Hurtado J E, Alvarez D A. The encounter of interval and probabilistic approaches to structural reliability at the design point. Comp Methods Appl Mech Eng, 2012, 225-228: 74–94

    Article  MathSciNet  MATH  Google Scholar 

  39. Tangaramvong S, Wu D, Gao W, et al. Response bounds of elastic structures in the presence of interval uncertainties. J Struct Eng, 2015, 141: 04015046

    Article  Google Scholar 

  40. Wu J, Luo Z, Zhang Y, et al. Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int J Numer Meth Eng, 2013, 95: 608–630

    Article  MathSciNet  MATH  Google Scholar 

  41. Wu J, Gao J, Luo Z, et al. Robust topology optimization for structures under interval uncertainty. Adv Eng Software, 2016, 99: 36–48

    Article  Google Scholar 

  42. Yang C, Tangaramvong S, Gao W, et al. Interval elastoplastic analysis of structures. Comp Struct, 2015, 151: 1–10

    Article  Google Scholar 

  43. Zi B, Zhou B. A modified hybrid uncertain analysis method for dynamic response field of the LSOAAC with random and interval parameters. J Sound Vib, 2016, 374: 111–137

    Article  Google Scholar 

  44. Han X, Jiang C, Liu L X, et al. Response-surface-based structural reliability analysis with random and interval mixed uncertainties. Sci China Tech Sci, 2014, 57: 1322–1334

    Article  Google Scholar 

  45. Li L Y, Lu Z Z, Li W. State dependent parameter method for importance analysis in the presence of epistemic and aleatory uncertainties. Sci China Tech Sci, 2012, 55: 1608–1617

    Article  Google Scholar 

  46. Du X. Reliability-based design optimization with dependent interval variables. Int J Numer Meth Eng, 2012, 91: 218–228

    Article  MathSciNet  MATH  Google Scholar 

  47. Xia B, Lü H, Yu D, et al. Reliability-based design optimization of structural systems under hybrid probabilistic and interval model. Comp Struct, 2015, 160: 126–134

    Article  Google Scholar 

  48. Kang Z, Bai S. On robust design optimization of truss structures with bounded uncertainties. Struct Multidisc Optim, 2013, 47: 699–714

    Article  MathSciNet  MATH  Google Scholar 

  49. Doltsinis I, Kang Z. Robust design of structures using optimization methods. Comp Methods Appl Mech Eng, 2004, 193: 2221–2237

    Article  MATH  Google Scholar 

  50. Kinsler L E. Fundamentals of Acoustic (3th ed). New York: John Wiley and Sons, 1982

    Google Scholar 

  51. Wang Y, Gao J, Luo Z, et al. Level-set topology optimization for multimaterial and multifunctional mechanical metamaterials. Eng Optim, 2016, 49: 22–42

    Article  MathSciNet  Google Scholar 

  52. Wang Y, Luo Z, Zhang N, et al. Topological shape optimization of multifunctional tissue engineering scaffolds with level set method. Struct Multidisc Optim, 2016, 54: 333–347

    Article  MathSciNet  Google Scholar 

  53. Wang Y, Luo Z, Zhang N, et al. Topological design for mechanical metamaterials using a multiphase level set method. Struct Multidisc Optim, 2016, 54: 952–937

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BaiZhan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, B., Qin, Y., Chen, N. et al. Optimization of uncertain acoustic metamaterial with Helmholtz resonators based on interval model. Sci. China Technol. Sci. 60, 385–398 (2017). https://doi.org/10.1007/s11431-016-0562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-0562-1

Keywords

Navigation