Skip to main content
Log in

On robust design optimization of truss structures with bounded uncertainties

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper investigates robust design optimization of truss structures with uncertain-but-bounded parameters and loads. The variations of the cross-sectional areas, Young’s moduli and applied loads are treated with non-probabilistic ellipsoid convex models. A robustness index for quantitatively measuring the maximal allowable magnitude of system variations is presented, and the design problem is then formulated as to maximize the minimum of the robustness indices for all the concerned design requirements under a given material volume constraint. For circumventing the difficulty associated with the max-min type problem, an aggregate function technique is employed to construct a smooth objective function. The computational scheme for the sensitivity of the robustness index is derived on the basis of optimum sensitivity analysis. The optimization problem is then solved by using the GCMMA optimizer. Numerical examples illustrate the validity and effectiveness of the present formulation and solution techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Asadpoure A, Tootkaboni M, Guest JK (2011) Robust topology optimization of structures with uncertainties in stiffness—application to truss structures. Comput Struct 89(11–12):1131–1141. doi:10.1016/j.compstruc.2010.11.004

    Article  Google Scholar 

  • Barthelemy JFM, Sobieszczanskisobieski J (1983) Optimum sensitivity derivatives of objective functions in non-linear programming. AIAA J 21(7):913–915

    Article  MathSciNet  MATH  Google Scholar 

  • Beck AT, de Santana Gomes WJ (2010) On structural design optimization under uncertainty and risk. IOP Conf Ser: Mater Sci Eng 10:012110–012193

    Article  Google Scholar 

  • Ben-Haim Y, Elishakoff I (1990) Convex models of uncertainty in applied mechanics. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (1997) Robust truss topology design via semidefinite programming. SIAM J Optim 7(4):991–1016

    Article  MathSciNet  MATH  Google Scholar 

  • Beyer HG, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196(33–34):3190– 3218

    Article  MathSciNet  MATH  Google Scholar 

  • Chen SK, Chen W (2011) A new level-set based approach to shape and topology optimization under geometric uncertainty. Struct Multidisc Optim 44(1):1–1818

    Article  Google Scholar 

  • Chen SK, Chen W, Lee SH (2010) Level set based robust shape and topology optimization under random field uncertainties. Struct Multidisc Optim 41(4):507–524

    Article  MathSciNet  Google Scholar 

  • Chen W, Lewis K (1999) Robust design approach for achieving flexibility in multidisciplinary design. AIAA J 37(9):982–989

    Article  Google Scholar 

  • Chen W, Allen JK, Mavris DN, Mistree F (1996a) A concept exploration method for determining robust top-level specifications. Eng Optim 26(2):137–158

    Article  Google Scholar 

  • Chen W, Allen JK, Tsui KL, Mistree F (1996b) A procedure for robust design: minimizing variations caused by noise factors and control factors. J Mech Des 118(4):478–485

    Article  Google Scholar 

  • Chen W, Sahai A, Messac A, Sundararaj GJ (2000) Exploration of the effectiveness of physical programming in robust design. J Mech Des 122(2):155–163

    Article  Google Scholar 

  • Doltsinis I, Kang Z (2004) Robust design of structures using optimization methods. Comput Methods Appl Mech Eng 193 (23–26):2221–2237

    Article  MATH  Google Scholar 

  • Doltsinis I, Kang Z (2006) Perturbation-based stochastic FE analysis and robust design of inelastic deformation processes. Comput Methods Appl Mech Eng 195(19–22):2231–2251

    Article  MathSciNet  MATH  Google Scholar 

  • Du L, Choi KK, Youn BD (2006) Inverse possibility analysis method for possibility-based design optimization. AIAA J 44(12):2682–2690

    Article  Google Scholar 

  • Elishakoff I (1995) Essay on uncertainties in elastic and viscoelastic structures: from A. M. Freudenthal’s criticisms to modern convex modeling. Comput Struct 56(7):871–895

    Article  MATH  Google Scholar 

  • Elishakoff I (1999) Are probabilistic and anti-optimization approaches compatible? In: Elishakoff I (ed) Whys and hows in uncertainty modelling: probability, fuzziness and anti-optimization. Springer, New York, pp 263–341

    Google Scholar 

  • Elseifi MA, Gurdal Z, Nikolaidis E (1999) Convex/probabilistic models of uncertainties in geometric imperfections of stiffened composite panels. AIAA J 37(4):468–474

    Article  Google Scholar 

  • Erfani T, Utyuzhnikov SV (2012) Control of robust design in multiobjective optimization under uncertainties. Struct Multidisc Optim 45(2):247–256

    Article  MathSciNet  Google Scholar 

  • Ganzerli S, Pantelides CP (2000) Optimum structural design via convex model superposition. Comput Struct 74(6):639–647

    Article  Google Scholar 

  • Guest JK, Igusa T (2008) Structural optimization under uncertain loads and nodal locations. Comput Methods Appl Mech Eng 198(1):116–124

    Article  MathSciNet  MATH  Google Scholar 

  • Han X, Jiang C, Gong S, Huang YH (2008) Transient waves in composite-laminated plates with uncertain load and material property. Int J Numer Methods Eng 75(3):253–274

    Article  MATH  Google Scholar 

  • Harzheim L, Warnecke U (2010) Robustness optimization of the position of an anti-roll bar link to avoid the toggling of a rear axle stabilizer. Struct Multidisc Optim 42(2):315–323

    Article  Google Scholar 

  • Hu JX, Qiu ZP (2010) Non-probabilistic convex models and interval analysis method for dynamic response of a beam with bounded uncertainty. Appl Math Model 34(3):725–734

    Article  MathSciNet  MATH  Google Scholar 

  • Impollonia N, Muscolino G (2011) Interval analysis of structures with uncertain-but-bounded axial stiffness. Comput Methods Appl Mech Eng 200(21–22):1945–1962

    Article  MATH  Google Scholar 

  • Jiang C, Han X, Liu GR (2007) Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval. Comput Methods Appl Mech Eng 196(49–52):4791–4800

    Article  MATH  Google Scholar 

  • Jiang C, Han X, Liu GR, Liu GP (2008) A nonlinear interval number programming method for uncertain optimization problems. Eur J Oper Res 188(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang C, Han X, Lu GY, Liu J, Zhang Z, Bai YC (2011) Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Comput Methods Appl Mech Eng 200(33–36):2528–2546. doi:10.1016/j.cma.2011.04.007

    Article  MATH  Google Scholar 

  • Kang Z, Luo YJ (2009) Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput Methods Appl Mech Eng 198(41–44):3228–3238

    Article  MathSciNet  MATH  Google Scholar 

  • Kang Z, Luo YJ (2010) Reliability-based structural optimization with probability and convex set hybrid models. Struct Multidisc Optim 42(1):89–102

    Article  Google Scholar 

  • Kanno Y, Takewaki I (2006) Sequential semidefinite program for maximum robustness design of structures under load uncertainty. J Optim Theory Appl 130(2):265–287

    Article  MathSciNet  MATH  Google Scholar 

  • Kreisselmeier G, Steinhauser R (1983) Application of vector performance optimization to a robust-control loop design for a fighter aircraft. Int J Control 37(2):251–284

    Article  MATH  Google Scholar 

  • Lagaros ND, Papadrakakis M (2007) Robust seismic design optimization of steel structures. Struct Multidisc Optim 33(7):457–469

    Article  Google Scholar 

  • Lagaros ND, Plevris V, Papadrakakis M (2005) Multi-objective design optimization using cascade evolutionary computations. Comput Methods Appl Mech Eng 194(30–33):3496–3515

    Article  MATH  Google Scholar 

  • Lagaros ND, Plevris V, Papadrakakis M (2010) Neurocomputing strategies for solving reliability-robust design optimization problems. Eng Comput 27(8):819–840

    Google Scholar 

  • Lombardi M, Haftka RT (1998) Anti-optimization technique for structural design under load uncertainties. Comput Methods Appl Mech Eng 157(1–2):19–31

    Article  MATH  Google Scholar 

  • Luo YJ, Kang Z, Luo Z, Li A (2009) Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model. Struct Multidisc Optim 39(3):297–310

    Article  MathSciNet  Google Scholar 

  • Moller B, Beer M (2008) Engineering computation under uncertainty—capabilities of non-traditional models. Comput Struct 86(10):1024–1041

    Article  Google Scholar 

  • Mourelatos ZP, Zhou J (2005) Reliability estimation and design with insufficient data based on possibility theory. AIAA J 43(9):1696–1705

    Article  Google Scholar 

  • Pantelides CP, Ganzerli S (1998) Design of trusses under uncertain loads using convex models. J Struct Eng 124(3):318– 329

    Article  Google Scholar 

  • Papadrakakis M, Lagaros ND, Plevris V (2005) Design optimization of steel structures considering uncertainties. Eng Struct 27(10):1408–1418

    Article  Google Scholar 

  • Parkinson A (1995) Robust mechanical design using engineering models. J Mech Des 117:48–54

    Article  Google Scholar 

  • Qiu ZP (2003) Comparison of static response of structures using convex models and interval analysis method. Int J Numer Methods Eng 56(12):1735–1753

    Article  MATH  Google Scholar 

  • Qiu ZP (2005) Convex models and interval analysis method to predict the effect of uncertain-but-bounded parameters on the buckling of composite structures. Comput Methods Appl Mech Eng 194 (18–20):2175–2189

    Article  MATH  Google Scholar 

  • Sandgren E, Cameron TM (2002) Robust design optimization of structures through consideration of variation. Comput Struct 80 (20–21):1605–1613

    Article  Google Scholar 

  • Schueller GI, Jensen HA (2008) Computational methods in optimization considering uncertainties—an overview. Comput Methods Appl Mech Eng 198(1):2–13

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sinica 25(2):227–239

    Article  Google Scholar 

  • Sun G, Li G, Zhou S, Li H, Hou S, Li Q (2011) Crashworthiness design of vehicle by using multiobjective robust optimization. Struct Multidisc Optim 44(1):99–110

    Article  Google Scholar 

  • Svanberg K (2001) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MathSciNet  Google Scholar 

  • Svanberg K (2007) MMA and GCMMA, versions September 2007. http://www.math.kth.se/~krille/gcmma07.pdf. Accessed 1 November 2010

  • Taguchi G (1984) Quality engineering through design optimization. Kraus International Publications, New York

    Google Scholar 

  • Takezawa A, Nii S, Kitamura M, Kogiso N (2011) Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system. Comput Methods Appl Mech Eng 200(25–28):2268–2281

    Article  MathSciNet  MATH  Google Scholar 

  • Yonekura K, Kanno Y (2010) Global optimization of robust truss topology via mixed integer semidefinite programming. Optim Eng 11(3):355–379

    Article  MathSciNet  Google Scholar 

  • Zaman K, McDonald M, Mahadevan S, Green L (2011) Robustness-based design optimization under data uncertainty. Struct Multidisc Optim 44(2):183–197

    Article  Google Scholar 

  • Zhao ZH, Han X, Jiang C, Zhou XX (2010) A nonlinear interval-based optimization method with local-densifying approximation technique. Struct Multidisc Optim 42(4):559–573

    Article  Google Scholar 

Download references

Acknowledgements

The support from the Major Project of Chinese National Programs for Fundamental Research and Development (Grant 2010CB832703) and the Natural Science Foundation of China (Grant 91130025, 11072047) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, Z., Bai, S. On robust design optimization of truss structures with bounded uncertainties. Struct Multidisc Optim 47, 699–714 (2013). https://doi.org/10.1007/s00158-012-0868-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0868-3

Keywords

Navigation