Skip to main content
Log in

A review of heavy-duty legged robots

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Heavy-duty legged robots have been regarded as one of the important developments in the field of legged robots because of their high payload-total mass ratio, terrain adaptability, and multitasking. The problems associated with the development and use of heavy-duty legged robots have motivated researchers to conduct many important studies, covering topics related to the mechanical structure, force distribution, control strategy, energy efficiency, etc. Overall, heavy-duty legged robots have three main characteristics: greater body masses, larger body sizes, and higher payload-total mass ratios. Thus, various heavy-duty legged robots and their performances are reviewed here. This review presents the current developments with regard to heavy-duty legged robots. Also, the main characteristics of high-performance heavy-duty legged robots are determined and conclusions are drawn. Furthermore, the current research of key techniques of heavy-duty legged robots, including the mechanical structure, force distribution, control method, and power source, is described. To assess the transportation capacity of heavy-duty legged robots, performance evaluation parameters are proposed. Finally, problems that need further research are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu J, Tan M, Zhao X G. Legged robots-an overview. Trans Inst Meas Control, 2007, 29(2): 185–202

    Article  Google Scholar 

  2. Silva M F, Machado J A T. A historical perspective of legged robots. J Vib Control, 2007, 13(9–10): 1447–1486

    Article  MATH  Google Scholar 

  3. Nozaki K, Murakami T. A motion control of two-wheels driven mobile manipulator for human-robot cooperative transportation. In: Proceedings of 35th Annual Conference of the IEEE Industrial Electronics Society, Porto, 2009. 1574–1579

    Google Scholar 

  4. Nakajima S. Concept of a novel four-wheel-type mobile robot for rough terrain, RT-mover. In: Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 2009. 3257–3264

    Google Scholar 

  5. Bares J E, Wettergreen D S. Dante II: Technical description, results and lessons learned. Int J Robot Res, 1999, 18(7): 621–649

    Article  Google Scholar 

  6. Wooden D, Malchano M, Blankespoor K. Autonomous navigation for BigDog. In: Proceedings of IEEE International Conference on Robotics and Automation, Anchorage, 2010. 4736–4741

    Google Scholar 

  7. Hirose S, Sato M. Coupled drive of the multi-DOF robot. In: Proceedings of IEEE International Conference on Robotics and Automation, Scottsdale, Arizona, 1989. 1610–1616

    Google Scholar 

  8. Hirose S, Fukuda Y, Kikuchi H. The gait control system of a quadruped walking vehicle. Adv Robot, 1986, 1(4): 289–323

    Article  Google Scholar 

  9. Song S M, Waldron K J. Machines That Walk: The Adaptive Suspension Vehicle. Cambridge: MIT Press, 1989. 1–10

    Google Scholar 

  10. Wettergreen D, Thorpe C. Developing planning and reactive control for a hexapod robot. In: Proceedings of IEEE International Conference on Robotics and Automation, Minneapolis, 1997. 2718–2723

    Google Scholar 

  11. Raibert M, Blankespoor K, Nelson G, et al. BigDog, the rough-terrain quadruped robot. In: Proceedings of 17th World Congress on the International Federation of Automatic Control, Seoul, 2008. 10822–10825

    Google Scholar 

  12. Weidemann H J. Dynamik und regelung von sechsbeinigen robotern und natürlichen hexapoden. Düsseldorf: VDI-Verlag, 1993. 1–165

    Google Scholar 

  13. De Almeida A T, Khatib O. Autonomous Robotic Systems. Berlin: Springer Verlag, 1998. 235–263

    Book  MATH  Google Scholar 

  14. Mosher R S. Test and evaluation of a versatile walking truck. In: Proceedings of Off-Road Mobility Research Symposium, International Society for Terrain Vehicle Systems, Washington, District of Columbia, 1968. 359–379

    Google Scholar 

  15. McKerrow P J. Introduction to Robotics. Boston: Addison-Wesley, 1991. 1–100

    Google Scholar 

  16. Bombled Q. Modeling and control of six-legged robots, Application to AMRUS. Doctoral Dissertation. Mons: Université de Mons, 2011. 6–7

    Google Scholar 

  17. Waldron K J, McGhee R B. The adaptive suspension vehicle. IEEE Control Syst Mag, 1986, 6(6): 7–12

    Article  Google Scholar 

  18. Lee W J, Orin D E. The kinematics of legged locomotion over uneven terrain. In: Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, 1986. 1490–1495

    Google Scholar 

  19. Lee W J, Orin D E. The kinematics of motion planning for multilegged vehicles over uneven terrain. IEEE J Robot Autom, 1988, 4(2): 204–212

    Article  Google Scholar 

  20. Bihari T E, Walliser T M, Patterson M R. Controlling the adaptive suspension vehicle. Computer, 1989, 22(6): 59–65

    Article  Google Scholar 

  21. De Almeida A T, Khatib O. Autonomous Robotic Systems. Berlin: Springer Verlag, 1998. 149–162

    Book  MATH  Google Scholar 

  22. Carbone G, Ceccarelli M. Legged Robotic Systems, Cutting Edge Robotics, ARS Scientific Book. Berlin: Springer Verlag, 2005. 553–576

    Google Scholar 

  23. Doi T, Hodoshima R, Hirose S, et al. Development of a quadruped walking robot to work on steep slopes, TITAN XI (walking motion with compensation for compliance). In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, 2005. 3413–3418

    Google Scholar 

  24. Hodoshima R, Doi T, Fukuda Y, et al. Development of TITAN XI: A quadruped walking Robot to work on slopes-Design of system and mechanism. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, 2004. 792–797

    Google Scholar 

  25. Tsukagoshi H, Hirose S. The proposal of the intermittent Crawl gait and its generation. J Robot Soc Jpn, 1999, 17(2): 301–309

    Article  Google Scholar 

  26. Playter R, Buehler M, Raibert M. BigDog. In: Proceedings of International Society for Optical Engineering, Bellingham, 2006. 1–6

    Google Scholar 

  27. Oku M, Yang H, Paio G, et al. Development of hydraulically actuated hexapod robot COMET-IV-the 1st report: System design and configuration. In: Proceedings of JSME Conference on Robotics and Mechatronics, Akita, 2007. 2A2–G01

    Google Scholar 

  28. Irawan A, Nonami K. Compliant walking control for hydraulic driven hexapod robot on rough terrain. J Robotics Mechatron, 2011, 23(1): 149–162

    Google Scholar 

  29. Irawan A, Nonami K. Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain. J Field Robot, 2011, 28(5): 690–713

    Article  MATH  Google Scholar 

  30. Irawan A, Nonami K, Ohroku H, et al. Adaptive impedance control with compliant body balance for hydraulically driven hexapod robot. J Syst Design Dyn, 2011, 5(5): 893–908

    Article  Google Scholar 

  31. Tsumaki T, Kobayashi H, Nakano E, et al. Development of a practically scaled walking robot for steep terrain of forestry ground. J Robot Soc Jpn, 2009, 27(4): 470–480

    Article  Google Scholar 

  32. Tsumaki T, Abe S, Chiba K. Development of 6 legged robot ‘Landmaster 3’. J Robot Soc Jpn, 2006, 24(7): 851–860

    Article  Google Scholar 

  33. Manko D J, Whittaker W L. Assessment of joint driving configurations for body propulsion of an orthogonal legged walker. In: Proceedings of IEEE International Conference on Systems Engineering, Pittsburgh, 1990. 204–207

    Chapter  Google Scholar 

  34. Krotkov E, Simmons R, Whittaker W L. Ambler: Performance of a six-legged planetary rover. Acta Astronaut, 1995 35(1): 75–81

    Article  Google Scholar 

  35. Bares J, Whittaker W L. Walking robot with a circulating gait. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Ibaraki, 1990. 809–816

    Google Scholar 

  36. Hebert M, Krotkov E, Kanade T. A perception system for a planetary explorer. In: Proceedings of 28th IEEE Conference on Decision and Control, Tampa, 1989. 1151–1156

    Chapter  Google Scholar 

  37. Simmons R, Krotkov E. An integrated walking system for the Ambler planetary rover. In: Proceedings of IEEE International Conference on Robotics and Automation, Sacramento, 1991. 2086–2091

    Google Scholar 

  38. Wettergreen D, Thomas H, Thorpe C. Planning strategies for the Ambler walking robot. In: Proceedings of IEEE International Conference on Systems Engineering, Pittsburgh, 1990. 198–203

    Chapter  Google Scholar 

  39. Krotkov E, Simmons R. Perception, planning, and control for autonomous walking with the Ambler planetary rover. Int J Robot Res, 1996, 15(2): 155–180

    Article  Google Scholar 

  40. Krotkov E. Laser Rangefinder Calibration for a Walking Robot. Technical Report CMU-RI-TR-90-30. 1990

    Google Scholar 

  41. Krotkov E. Laser rangefinder calibration for a walking robot. In: Proceedings of IEEE International Conference on Robotics and Automation, Sacramento, 1991. 2568–2573

    Google Scholar 

  42. Krotkov E, Bares J, Kanade T, et al. Ambler: A six-legged planetary rover. In: Proceedings of 5th International Conference on Advanced Robotics, Pisa, 1991. 717–722

    Google Scholar 

  43. Whittaker W L, Kanade T, Mitchell T. 1989 Year End Report: Autonomous Planetary Rover at Carnegie Mellon. Technical Report CMU-RI-TR-90-04. 1990

    Google Scholar 

  44. Fong T, Pangels H, Wettergreen D, et al. Operator interfaces and network-based participation for Dante II. In: Proceedings of SAE 25th International Conference on Environmental Systems, San Diego, 1995. 1–12

    Google Scholar 

  45. Wettergreen D, Thorpe C, Whittaker R. Exploring Mount Erebus by walking robot. Robot Auton Syst, 1993, 11(3–4): 171–185

    Article  Google Scholar 

  46. Bares J E, Wettergreen D S. Dante II: Technical description, results, and lessons learned. Int J Robot Res, 1999, 18(7): 621–649

    Article  Google Scholar 

  47. Wettergreen D, Pangels H, Bares J. Behavior-based gait execution for the Dante II walking robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, 1995. 274–279

    Google Scholar 

  48. Krishna M, Bares J, Mutschler E. Tethering system design for Dante II. In: Proceedings of IEEE International Conference on Robotics and Automation, Albuquerque, 1997. 1100–1105

    Chapter  Google Scholar 

  49. Wilcox B H. ATHLETE: Lunar cargo unloading from a high deck. In: Proceedings of IEEE Aerospace Conference, Big Sky, Montana, 2010. 1–9

    Google Scholar 

  50. Wilcox B H. ATHLETE: An option for mobile lunar landers. In: Proceedings of IEEE Aerospace Conference, Big Sky, Montana, 2008. 1–8

    Google Scholar 

  51. Townsend J, Biesiadecki J, Collins C. ATHLETE mobility performance with active terrain compliance. In: Proceedings of IEEE Aerospace Conference, Big Sky, Montana, 2010. 1–7

    Google Scholar 

  52. Heverly M, Matthews J, Frost M, et al. Development of the tri-ATHLETE lunar vehicle prototype. In: Proceedings of 40th Aerospace Mechanisms Symposium, Cocoa Beach, Florida, 2010. 317–326

    Google Scholar 

  53. Wilcox B H. ATHLETE: A cargo-handling vehicle for solar system exploration. In: Proceedings of IEEE Aerospace Conference, Big Sky, Montana, 2011. 1–8

    Google Scholar 

  54. SunSpiral V, Chavez-Clemente D, Broxton M, et al. FootFall: A ground based operations toolset enabling walking for the ATHLETE rover. In: Proceedings of AIAA SPACE 2008 Conference and Exposition, San Diego, 2008. 1–14

    Google Scholar 

  55. SunSpiral V, Wheeler D W, Chavez-Clemente D, et al. Development and field testing of the footfall planning system for the ATHLETE robots. J Field Robot, 2012, 29(3): 483–505

    Article  Google Scholar 

  56. Wilcox B H. ATHLETE: A cargo and habitat transporter for the moon. In: Proceedings of IEEE Aerospace Conference, Big Sky, Montana, 2009. 1–7

    Google Scholar 

  57. Wilcox B H, Litwin T E, Biesiadecki J J, et al. ATHLETE: A cargo handling and manipulation robot for the moon. J Field Robot, 2007, 24(5): 421–434

    Article  Google Scholar 

  58. Vona III M A. Virtual articulation and kinematic abstraction in robotics. Doctoral Dissertation. Cambridge: Massachusetts Institute of Technology, 2009. 145–173

    Google Scholar 

  59. Chavez-Clemente D. Gait optimization for multi-legged walking robots, with application to a lunar hexapod. Doctoral Dissertation. Stanford: Stanford University, 2011. 47–171

    Google Scholar 

  60. Wheele D, Chavez-Clemente D, SunSpiral V. FootSpring: A compliance model for the ATHLETE family of robots. In: Proceedings of i-SAIRAS 2010, Sapporo, 2010. 1–8

    Google Scholar 

  61. Meng Q G. Research on energetic optimum distribution and efficiency characteristics of walking robotics (in Chinese). Doctoral Dissertation. Beijing: Tsinghua University, 1997. 1–12

    Google Scholar 

  62. Xu K, Ding X L, Li K J. Stride size and stability analysis of a radially symmetrical hexapod robot in three typical gaits (in Chinese). Robot, 2012, 34(2): 231–256

    Google Scholar 

  63. Kamikawa K, Arai T, Inoue K, et al. Omni-directional gait of multi-legged rescue robot. In: Proceedings of IEEE International Conference on Robotics and Automation, New Orleans, 2004. 2171–2176

    Google Scholar 

  64. Chen X D, Sun Y, Jia W C. Motion Planning and Control of Multilegged Walking Robots (in Chinese). Wuhan: Huazhong University of Science and Technology Press, 2006. 21–73

    Google Scholar 

  65. Showalter M H. Work space analysis and walking algorithm development for a radially symmetric hexapod robot. Dissertation for the Master Degree. Blacksburg: Virginia Polytechnic Institute and State University, 2008.

    Google Scholar 

  66. Zhang J B, Song R G, Chen W H, et al. Mechanism optimization of bionic cockroach robot based on locomotion dexterity (in Chinese). J Beijing Univ Aeronaut Astronaut, 2010, 36(5): 513–517

    Google Scholar 

  67. Villard C, Gorce P, Fontaine J G. Study of a distributed control architecture for a quadruped robot. J Intell Robot Syst, 1995, 11: 269–291

    Article  MATH  Google Scholar 

  68. Orin D E, Oh S Y. Control of force distribution in robotic mechanisms containing closed kinematic chains. J Dyn Syst-T ASME, 1981, 102: 134–141

    Article  Google Scholar 

  69. Klein C A, Kittivatcharapong S. Optimal force distribution for the legs of a walking machine with friction cone constrains. IEEE T Robot Autom, 1990, 6(1): 73–85

    Article  Google Scholar 

  70. Cheng F T, Orin D E. Efficient algorithm for optimal force distribution-the Compact-Dual LP method. IEEE T Robot Autom, 1990, 6(2): 178–187

    Article  Google Scholar 

  71. Kwon W, Lee B H. A new optimal force distribution scheme of multiple cooperating robots using dual method. J Intell Robot Syst, 1998, 21: 301–326

    Article  MATH  Google Scholar 

  72. Chen J S, Cheng F T. Solving the optimal force distribution problem in multilegged vehicles. In: Proceedings of IEEE International Conference on Robotics and Automation, Leuven, 1998. 471–476

    Google Scholar 

  73. Nahon M A, Angeles J. Optimization of dynamic forces in mechanical hands. Trans ASME, J Mech Des, 1991, 113(2): 167–173

    Article  Google Scholar 

  74. Nahon M A, Angeles J. Real-time force optimization in parallel kinematic chains under inequality constraints. IEEE T Robot Autom, 1992, 8(4): 439–450

    Article  Google Scholar 

  75. Mahfoudi C, Djouani K, Rechak P S, et al. Optimal force distribution for the legs of an hexapod robot. In: Proceedings of IEEE Conference on Control Applications, Istanbul, 2003. 657–663

    Google Scholar 

  76. Liu H Y, Wen B C. Force distribution for the legs of a quadruped walking vehicle. J Robotic Syst, 1997, 14(1): 1–8

    Article  MATH  MathSciNet  Google Scholar 

  77. Kumar V, Waldron K J. Force distribution in walking vehicles. Trans ASME, J Mech Des, 1990, 112(1): 90–99

    Article  Google Scholar 

  78. Gardner J F. Force distribution in walking machines over rough terrain. J Dyn Syst-T ASME, 1991, 113(4): 754–758

    Article  Google Scholar 

  79. Chen X D, Watanabe K, Kiguchi K, et al. Optimal force distribution for the legs of a quadruped robot. Mach Intell Robot Control, 1999, 1(2): 87–94

    Google Scholar 

  80. Erden M S, Leblebicioğlu K. Torque distribution in a six-legged robot. IEEE T Robot, 2007, 23(1): 179–186

    Article  Google Scholar 

  81. Cheah C C, Wang D. Learning impedance control for robotic manipulators. IEEE T Robot Autom, 1998, 14(3): 452–465

    Article  Google Scholar 

  82. Cai Z X. Robotics (in Chinese). Beijing: Tsinghua University Press, 2000. 154–170

    Google Scholar 

  83. Hogan N. Impedance control: An approach to manipulation: Part I-Theory, Part II-Implementation, Part III: Applications. J Dyn Syst-T ASME, 1985, 107: 1–24

    Article  MATH  Google Scholar 

  84. Hogan N. Stable execution of contact tasks using impedance control. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Raleigh, 1987. 1047–1054

    Google Scholar 

  85. Aseltine J A, Mancini A R, Sarture C W. A survey of adaptive control systems. IEEE T Automat Contr, 1958, 6(1): 102–108

    Article  Google Scholar 

  86. Loannou P, Fidan B. Adaptive Control Tutorial. Philadelphia: Society for Industrial and Applied Mathematics Press, 2006. 1–11

    Google Scholar 

  87. Liu J K. Design of Robot Control System and MATLAB Simulation (in Chinese). Beijing: Tsinghua University Press, 2008. 1–3

    Google Scholar 

  88. Ding X G. Research on Robot Control (in Chinese). Hangzhou: Zhejiang University Press, 2007. 1–15

    Google Scholar 

  89. Barai R K, Kenzo K. Robust adaptive fuzzy control law for locomotion control of a hexapod robot actuated by hydraulic actuators with dead zone. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, Beijing, 2006. 2179–2184

    Google Scholar 

  90. Zhuang H C, Gao H B, Ding L, et al. Method for analyzing articulated torques of a heavy-duty six-legged robot. Chin J Mech Eng-En, 2013, 26(4): 801–812

    Article  Google Scholar 

  91. Gao H B, Zhuang H, Li Z G, et al. Optimization and experimental research on a new-type short cylindrical cup-shaped harmonic reducer. J Cent South Univ T, 2012, 19(7): 1869–1882

    Article  Google Scholar 

  92. Gao H B, Zhuang H C, Deng Z Q, et al. Transmission mode research on the joints of a multi-legged walking robot. Appl Mech Mater, 2012, 151: 518–522

    Article  Google Scholar 

  93. Estremera J, Waldron K J. Thrust control, stabilization and energetics of a quadruped running robot. Int J Robot Res, 2008, 27(10): 1135–1151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiBo Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, H., Gao, H., Deng, Z. et al. A review of heavy-duty legged robots. Sci. China Technol. Sci. 57, 298–314 (2014). https://doi.org/10.1007/s11431-013-5443-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5443-7

Keywords

Navigation