Skip to main content
Log in

Bio-inspired Leg Design for a Heavy-Duty Hexapod Robot

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The leg structure is crucial to the legged robot's motion performance. With the size and load of the legged robot increasing, the difficulty of leg design increases sharply. Inspired by biomechanics, this paper proposes a leg design approach based on effective mechanical advantage (EMA) for developing the heavy-duty legged robot. The bio-inspired design approach can reduce the demand for joint actuation forces during walking by optimizing the ratio relationship between the joint driving force and ground contact force. A dimensionless EMA model of the leg for the heavy-duty legged robot is constructed in this paper. Leg dimensions and hinge point locations are optimized according to the EMA and energy-optimal criterion. Based on the optimal leg structure, an electrically driven tri-segmented leg prototype is developed. The leg's joint hinge points are located near the main support line, and the load-to-weight ratio is 15:1. The leg can realize a swing frequency of 0.63 Hz at the stride length of 0.8 m, and the maximum stride length can reach 1.5 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Delmerico, J., Mintchev, S., Giusti, A., Gromov, B., Melo, K., Horvat, T., Cadena, C., Hutter, M., Ijspeert, A., Floreano, D., Gambardella, L. M., Siegwart, R., & Scaramuzza, D. (2019). The current state and future outlook of rescue robotics. Journal of Field Robotics, 36, 1171–1191.

    Article  Google Scholar 

  2. Bellicoso, C. D., Bjelonic, M., Wellhausen, L., Holtmann, K., Günther, F., Tranzatto, M., Fankhauser, P., & Hutter, M. (2018). Advances in real-world applications for legged robots. Journal of Field Robotics, 35, 1311–1326.

    Article  Google Scholar 

  3. He, J., & Gao, F. (2015). Type synthesis for bionic quadruped walking robots. Journal of Bionic Engineering, 12, 527–538.

    Article  Google Scholar 

  4. Zha, F. S., Chen, C., Guo, W., Zheng, P. L., & Shi, J. Y. (2019). A free gait controller designed for a heavy load hexapod robot. Advances in Mechanical Engineering, 11, 1687814019838369.

    Article  Google Scholar 

  5. Chen, J., Liu, Y. B., Zhao, J., Zhang, H., & Jin, H. Z. (2014). Biomimetic design and optimal swing of a hexapod robot leg. Journal of Bionic Engineering, 11, 26–35.

    Article  Google Scholar 

  6. Chen, J., Liang, Z. C., Zhu, Y. H., & Zhao, J. (2019). Improving kinematic flexibility and walking performance of a six-legged robot by rationally designing leg morphology. Journal of Bionic Engineering, 16, 608–620.

    Article  Google Scholar 

  7. Seok, S., Wang, A., Chuah, M. Y., Hyun, D. J., Lee, J., Otten, D. M., Lang, J. H., & Kim, S. (2015). Design principles for energy-efficient legged locomotion and implementation on the mit cheetah robot. IEEE/Asme Transactions on Mechatronics, 20, 1117–1129.

    Article  Google Scholar 

  8. Garcia, E., Arevalo, J. C., Cestari, M., & Sanz-Merodio, D. (2015). On the technological instantiation of a biomimetic leg concept for agile quadrupedal locomotion. Journal of Mechanisms and Robotics, 7, 031005.

    Article  Google Scholar 

  9. Nie, H., Sun, R. L., Guo, C. K., Qin, G. H., & Yu, H. Y. (2015). Innovative design and performance evaluation of a high-speed bionic mechanical leg. Journal of Bionic Engineering, 12, 352–360.

    Article  Google Scholar 

  10. Sprowitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., & Ijspeert, A. J. (2013). Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot. The International Journal of Robotics Research, 32, 932–950.

    Article  Google Scholar 

  11. Niquille, S. C. (2019). Regarding the pain of spotmini: Or what a robot’s struggle to learn reveals about the built environment. Architectural Design, 89, 84–91.

    Article  Google Scholar 

  12. Semini, C., Barasuol, V., Goldsmith, J., Frigerio, M., Focchi, M., Gao, Y., & Caldwell, D. G. (2017). Design of the hydraulically actuated, torque-controlled quadruped robot hyq2max. IEEE-Asme Transactions on Mechatronics, 22, 635–646.

    Article  Google Scholar 

  13. Urbain, G., Barasuol, V., Semini, C., Dambre, J., & Wyffels, F. (2021). Effect of compliance on morphological control of dynamic locomotion with HyQ. Autonomous Robots, 45, 421–434.

    Article  Google Scholar 

  14. Park, H.-W., Wensing, P. M., & Kim, S. (2021). Jumping over obstacles with mit cheetah 2. Robotics and Autonomous Systems, 136, 103703.

    Article  Google Scholar 

  15. Gehring, C., Fankhauser, P., Isler, L., Diethelm, R., Bachmann, S., Potz, M., Gerstenberg, L., & Hutter, M. (2021). ANYmal in the field: Solving industrial inspection of an offshore hvdc platform with a quadrupedal robot. In Field and Service Robotics (pp. 247–260). Springer: Singapore.

  16. Hu, X., He, F., Xiao, P., Wang, T., Zhang, D., Zhou, X., & Fan, Y. (2021). Design of a quadruped inspection robot used in substation. In: 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) (pp. 766–769), Chongqing, China.

  17. Irawan, A., Nonami, K., Ohroku, H., Akutsu, Y., & Imamura, S. (2011). Adaptive impedance control with compliant body balance for hydraulically driven hexapod robot. Journal of System Design and Dynamics, 5, 893–908.

    Article  Google Scholar 

  18. Wilcox, B. H. (2012). ATHLETE: A limbed vehicle for solar system exploration. In 2012 IEEE Aerospace Conference (pp. 1–9). Big Sky, MT, USA.

  19. Pugh, D. R., Ribble, E. A., Vohnout, V. J., Bihari, T. E., Walliser, T. M., Patterson, M. R., & Waldron, K. J. (1990). Technical description of the adaptive suspension vehicle. The International Journal of Robotics Research, 9, 24–42.

    Article  Google Scholar 

  20. Irawan, A., & Nonami, K. (2011). Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain. Journal of Field Robotics, 28, 690–713.

    Article  Google Scholar 

  21. Townsend, J., Biesiadecki, J., Collins, C. (2010). ATHLETE mobility performance with active terrain compliance. In: 2010 IEEE Aerospace Conference (pp. 1–7). Big Sky, MT, USA.

  22. Waldron, K., & Vohnout, V. (1984). Configuration design of the adaptive suspension vehicle. The International Journal of Robotics Research, 3, 37–48.

    Article  Google Scholar 

  23. Monte, A., Nardello, F., & Zamparo, P. (2021). Mechanical advantage and joint function of the lower limb during hopping at different frequencies. Journal of Biomechanics, 118, 110294.

    Article  Google Scholar 

  24. Harper, C. M., & Sylvester, A. D. (2019). Effective mechanical advantage allometry of felid elbow and knee extensors. The Anatomical Record, 302, 775–784.

    Article  Google Scholar 

  25. Harkness-Armstrong, C., Debelle, H. A., Maganaris, C. N., Walton, R., Wright, D. M., Bass, A., Baltzopoulos, V., & O’Brien, T. D. (2020). Effective mechanical advantage about the ankle joint and the effect of achilles tendon curvature during toe-walking. Frontiers in Physiology, 11, 407.

    Article  Google Scholar 

  26. Foster, A. D., Butcher, M. T., Smith, G. A., Russo, G. A., Thalluri, R., & Young, J. W. (2019). Ontogeny of effective mechanical advantage in eastern cottontail rabbits (Sylvilagus floridanus). Journal of Experimental Biology, 222, jeb205237.

    Article  Google Scholar 

  27. Biewener, A. A. (1990). Biomechanics of mammalian terrestrial locomotion. Science, 250, 1097.

    Article  Google Scholar 

  28. Biewener, A. A., Farley, C. T., Roberts, T. J., & Temaner, M. (2004). Muscle mechanical advantage of human walking and running: Implications for energy cost. Journal of Applied Physiology, 97, 2266–2274.

    Article  Google Scholar 

  29. Reilly, S. M., McElroy, E. J., & Biknevicius, A. R. (2007). Posture, gait and the ecological relevance of locomotor costs and energy-saving mechanisms in tetrapods. Zoology, 110, 271–289.

    Article  Google Scholar 

  30. Günther, M., Keppler, V., Seyfarth, A., & Blickhan, R. (2004). Human leg design: Optimal axial alignment under constraints. Journal of Mathematical Biology, 48, 623–646.

    Article  MathSciNet  Google Scholar 

  31. Haldane, D. W., Plecnik, M. M., Yim, J. K., & Fearing, R. S. (2016). Robotic vertical jumping agility via series-elastic power modulation. Science Robotics, 1, eaag2048.

    Article  Google Scholar 

  32. McHorse, B. K., Biewener, A. A., & Pierce, S. E. (2017). Mechanics of evolutionary digit reduction in fossil horses (Equidae). Proceedings of the Royal Society B: Biological Sciences, 284, 20171174.

    Article  Google Scholar 

  33. Yi, H. Y., Xu, Z. Y., Zhou, L. M., Luo, X. (2021). Leg design for delivery quadruped robots based on ema and energy optimization. In: International Conference on Intelligent Robotics and Applications (pp. 771–780). Yantai, China.

  34. de Santos, P. G., Garcia, E., Ponticelli, R., & Armada, M. (2009). Minimizing energy consumption in hexapod robots. Advanced Robotics, 23, 681–704.

    Article  Google Scholar 

  35. Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8, 256–279.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Key R&D Program of China under Grant No. 2019YFB1309502 and in part by the project under Grant No. 2019ZT08Z780.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Luo.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, H., Xu, Z., Xin, X. et al. Bio-inspired Leg Design for a Heavy-Duty Hexapod Robot. J Bionic Eng 19, 975–990 (2022). https://doi.org/10.1007/s42235-022-00192-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00192-2

Keywords

Navigation