Skip to main content
Log in

Applications of electrohydrodynamics and Joule heating effects in microfluidic chips: A review

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

This review article presents an overview on the application of electrohydrodynamics and Joule heating effects in microfluidic chips. A brief introduction of microfluidic chips and a classification of electrohydrodynamics as well as the applications in microfluidic devices are first given. Then basic theories and governing equations of classical electromagnetics are summarized and electroviscous effects in pressure driven flows in a microchannel are presented. Principles and applications of DC electrokinetics, including DC electroosmotic flow, DC electrophoresis, as well as principles of AC electrokinetics, including AC electroosmotic flow and dielectrophoresis are also reviewed. Finally, Joule heating effects in both DC and AC electrokinetics, especially the newly discovered electrothermal flow, are summaried.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li D Q. Electrokinetics in Microfluidics. New York: Academic Press, 2004

    Google Scholar 

  2. Thorsen T, Maerkl S J, Quake S R. Microfluidic large-scale integration. Science, 2002, 298(5593): 580–584

    Article  Google Scholar 

  3. Reyes D R, Iossifidis D, Auroux P A, et al. Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem, 2002, 74(12): 2623–2636

    Article  Google Scholar 

  4. Vilkner T, Janasek D, Manz A. Micro total analysis systems, recent developments. Anal Chem, 2004, 76(12): 3373–3385

    Article  Google Scholar 

  5. Manz A, Graber N, Widmer H M. Miniaturized total chemical-analysis systems: A novel concept for chemical sensing. Sens Actuator, B-Chemical, 1990, 1(1–6): 244–248

    Article  Google Scholar 

  6. Jocobson S C, Hergenroder R, Amsey A W, et al. Precomumn reaction with electrophoretic analysis integrated on a microchip. Anal Chem, 1994, 6(6): 4127–4132

    Article  Google Scholar 

  7. Macevoy W J, Avellaneda M. Electroosmotic coupling: Incorporating larger surface effects with a new length scale. J Col Int Sci, 1997, 8(18): 139–149

    Article  Google Scholar 

  8. Squires T M, Quake S R. Microfluidics: Fluid physics at the nanoliter scale. Rev Mod Phys, 2005, 77(3): 977–1026

    Article  Google Scholar 

  9. Ericson D. Towards numerical prototyping of labs-on-chip: Modeling for integrated microfluidic devices. Microfluid Nanofluid, 2005, 1(4): 301–318

    Article  Google Scholar 

  10. Glatzel T, Litterst C, Cupelli C, et al. Computational fluid dynamics (CFD) software tools for microfluidic applications—A case study. Comp Fluids, 2008, 37(3): 218–235

    Article  Google Scholar 

  11. Stratton J A. Electromagnetic Theory. New York: McGraw Hill, 1941

    MATH  Google Scholar 

  12. Cheng D K. Field and Wave Electromagnetics. Boston: Addison Wesley, 1989

    Google Scholar 

  13. Castellanos A. Electrohydrodynamics. New York: Springer Wien, 1998

    MATH  Google Scholar 

  14. Griffiths D J. Introduction Electrodynamics. NJ: Prentice Hall, 1999

    Google Scholar 

  15. Ramos A, Morgan H, Green N G, et al. AC electrokinetics: A review of forces in microelectrode structures. J Phys D: Appl Phys, 1998, 31(18): 2338–2353

    Article  Google Scholar 

  16. Chun Y, Li D Q. Analysis of electrokinetic effects on the liquid flow in rectangular microchannels. Col Surf, 1998, 143(2–3): 339–353

    Google Scholar 

  17. Li D Q. Electro-viscous effects on pressure-driven liquid flow in microchannels. Col Surf, 2001, 195(1): 35–57

    Article  Google Scholar 

  18. Mala G M, Li D Q, Werner C, et al. Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects. Int J Heat Fluid Flow, 1997, 18(5): 489–496

    Article  Google Scholar 

  19. Erickson D, Li D Q. Streaming potential and streaming current methods for charactering heterogeneous solid surface. J Colloid Interface Sci, 2001, 237(2): 283–289

    Article  Google Scholar 

  20. Ren L Q, Li D Q, Qu W L. Electro-viscous effects on liquid flow in microchannels. J Colloid Interface Sci, 2001, 233(1): 12–22

    Article  Google Scholar 

  21. Ren L Q, Qu W L, Li D Q. Interfacial electrokinetic effects on liquid flow in micochannels. Int J Heat Mass Transfer, 2001, 44(16): 3125–3134

    Article  MATH  Google Scholar 

  22. Ren C L, Li D Q. Electroviscous effects on pressure driven flow of dilute electrolyte solutions in small microchannels. J Colloid Interface Sci, 2004, 274(1): 319–330

    Article  Google Scholar 

  23. Chen X Y, Toh K C, Chai J C, et al. Developing pressure-driven liquid flow in microchannels under the electrokinetic effect. Int J Eng Sci, 2004, 42(5–6): 609–622

    Article  Google Scholar 

  24. Vainshtein P, Gutfinger C. On electroviscous effects in microchannels. J Micromech Microeng, 2002, 12: 252–256

    Article  Google Scholar 

  25. Lu F Z, Yang J, Kwok D Y. Flow field effect on electric double layer during streaming potential measurements. J Phys Chem B, 2004, 108(39): 14970–14975

    Article  Google Scholar 

  26. Monazami R, Manzari M T. Analysis of combined pressure-driven electroosmotic flow through square microchannels. Microfluid Nanofluid, 2007, 3(1): 123–126

    Article  Google Scholar 

  27. Jain A, Jensen M K. Analytical modeling of electrokinetic effects on flow and heat transfer in microchannels. Int J Heat Mass Transfer, 2007, 50(25–26): 5161–5167

    Article  MATH  Google Scholar 

  28. Lin J Y, Fu L M, Yang R J. Numerical simulation of electrokinetic focusing in microfluidic chips. J Micromech Microeng, 2002, 12(6): 955–961

    Article  Google Scholar 

  29. Zhang Y L, Wong T N, Yang C. Dynamic aspects of electroomotic flow. Microfluidics Nanofluidics, 2006, 2(3): 205–214

    Article  Google Scholar 

  30. Rawool A S, Mitra S K. Numerical simulation of electroosmotic effect in serpentine channels. Microfluid Nanofluid, 2006, 2(3): 261–269

    Article  Google Scholar 

  31. Rawool A S, Mitra S K, Kandlikar S G. Numerical simulation of flow through microchannels with designed roughness. Microfluid Nanofluid, 2006, 2(3): 215–221

    Article  Google Scholar 

  32. Monazami R, Manzari M T. Analysis of combined pressure-driven electroosmotic flow through square microchannels. Microfluid Nanofluid, 2007, 3(1): 123–126

    Article  Google Scholar 

  33. Bazant M Z. Induced-Charge electrokinetic phenomena: Theory and microfluidic applications. Phys Rev Lett, 2002, 92(6): 066101

    Article  Google Scholar 

  34. Squires T M, Bazant M Z. Induced-charge electroosmosis. J Fluid Mech, 2004, 509: 217–252

    Article  MATH  MathSciNet  Google Scholar 

  35. Wu Z M, Li D Q. Mixing and flow regulation by induced charge electrokinetic flow in a microchannel with a pair of conducting triangle hurdles. Microfluid Nanofluid, 2008, 5(1): 65–76

    Article  Google Scholar 

  36. Xu F, Jabasini M, Baba Y. DNA separation by microchip electrophoresis using low-viscosity hydroxypropylmethylcellulose-50 solutions enhanced by polyhydroxy compounds. Electrophoresis, 2002, 23(20): 3608–3614

    Article  Google Scholar 

  37. He J L, Deng Y C. High Performance Capillary Electrophoresis. Beijing: Science Press, 1996

    Google Scholar 

  38. Cao J, Hong F J, Cheng P. Numerical study on sample stacking in capillary electrophoresis. China J Chromography, 2007, 25(2): 183–188

    Article  Google Scholar 

  39. Osbourn D M, Weiss D J, Lunte C E. On line preconcentration methods for capillary electrophoress. Electrophoresis, 2000, 21(14): 2768–2779

    Article  Google Scholar 

  40. Leung S A, Mello A J D. Electrophoretic analysis of amines using reversed-phase, reversed-polarity, head-column field amplified sample stacking and laser-induced fluorescence detection. J Chromat A. 2002, 979(1–2): 171–178

    Article  Google Scholar 

  41. Yang H, Chien R L. Sample stacking in laboratory-on-a-chip devices. J Chromat A, 2001, 924(1–2): 155–163

    Article  Google Scholar 

  42. Srivastava A, Metaxas A C, So P, et al. Numetrical simulation of DNA sample preconcentration in microdevice electrophoresis. Electrophoresis, 2005, 26(6): 1130–1143

    Article  Google Scholar 

  43. Bharadwaj R, Santiago J G. On-chip field amplified sample stacking under suppressed electroosmotic flow conditions. In: 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems, California: Squaw Valley, 2003

    Google Scholar 

  44. Hirokawa T, Ikuta N, Yoshiyama T, et al. Change of migration time and separation window accompanied by field-enhanced sample stacking in capillary zone electrophoresis. Electrophoresis, 2001, 22(16): 3444–3448

    Article  Google Scholar 

  45. Ren L C, Li D Q. Electrokinetic sample transport in a microchannel with spatial electrical conductivity gradients. J Colloid Interface Sci, 2006, 294(2): 482–491

    Article  Google Scholar 

  46. Cao J, Hong F J, Cheng Ping. Numerical analysis of the influence factors on sample stacking in capillary electrophoresis. China J Chromat, 2007, 25(4): 482–485

    Article  Google Scholar 

  47. Cao J, Hong F J, Cheng P. Numerical simulation on the sample stacking in microfluidic chip with double T microchannel. J Shanghai Jiao Tong Univ, 2007, 41(10): 1667–1671

    Google Scholar 

  48. Ramos A, Morgan H, Green N G, et al. AC electrokinetics: A review of forces in microelectrode structures. J Phys D: Appl Phys, 1998, 31(18): 2338–2353

    Article  Google Scholar 

  49. Green N G, Ramos A, Morgan H. AC electrokinetics: A survey of sub-micrometre particle dynamics. J Phys D: Appl Phys, 2000, 33(6): 632–641

    Article  Google Scholar 

  50. Ramos A, Morgan H, Green N G, et al. AC electric-field-induced fluid flow in microelectrodes. J Colloid Interface Sci, 1999, 217(2): 420–422

    Article  Google Scholar 

  51. Ajdari A. Pumping liquids using asymmetric electrode arrays. Phys Rev E, 2000, 61(1): R45–R48

    Article  Google Scholar 

  52. Ramos A, González A, Castellanos A. Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. Phys Rev E, 2003, 67(5): 056302

    Article  Google Scholar 

  53. Ramos A, Morgan H, Green N G. Pumping of liquids with travelling wave electrophoosmosis. J Appl Phys, 2005, 97(8): 084906–084906-8

    Article  Google Scholar 

  54. García-Sánchez P, Ramos A, Green N G. Experiments on ac electrokinetic pumping of liquids using arrays of microelectrodes. IEEE T Dielect El In, 2006, 13(3): 670–677

    Article  Google Scholar 

  55. Green N G, Ramos A, González A, et al. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E, 2000, 61(4): 4011–4018

    Article  Google Scholar 

  56. González A, Ramos A, Green N G, et al. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Phys Rev E, 2000, 61(4): 4019–4028

    Article  Google Scholar 

  57. Green N G, Ramos A, González A, et al. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Phys Rev E, 2002, 66(2): 026305

    Article  Google Scholar 

  58. Bazant M Z, Ben Y X. Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip, 2006, 6(11): 1455–1461

    Article  Google Scholar 

  59. Lastochkin D, Zhou R, Wang P, et al. Electrokinetic micropump and micromixer design based on ac Faradaic polarization. Appl Phys, 2004, 96(3): 1730–1733

    Article  Google Scholar 

  60. Yang K, Wu J. Investigation of microflow reversal by ac electrokinetics in orthogonal electrodes for micropump design. Biomicrofluidics, 2008, 2(2): 024101

    Article  Google Scholar 

  61. Wu J. AC electro-osmotic micropump by asymmetric electrode polarization. J Appl Phys, 2008, 103(2): 024907–024907-5

    Article  Google Scholar 

  62. Ng W Y, Goh S, Lam Y C, et al. DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab Chip, 2009, 9(6): 802–809

    Article  Google Scholar 

  63. Gregersen M M. AC Asymmetric Electrode Micropumps. Dissertation of Doctor Degree. Denmark: Technical University of Denmark, 2005

    Google Scholar 

  64. Cao J, Hong F J, Cheng P. The impedance spectra analysis in ac electroosmosis pump with asymmetrical planar microelectrodes. Micronanoelectronic Tech, 2008, 45(9): 521–526

    Google Scholar 

  65. Green N G, Morgan H. Dielectrophoretic investigations of sub-micrometre latex spheres. J Phys D: Appl Phys, 1997, 30(18): 2626–2633

    Article  Google Scholar 

  66. Doh I, Cho Y H. A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sensors Actuators A, 2005, 121(1): 59–65

    Article  Google Scholar 

  67. Chen D F, Du H, Li W H. A 3D paired microelectrode array for accumulation and separation of microparticles. J Micromech Microeng, 2006, 16(7): 1162–1169

    Article  Google Scholar 

  68. Pham P, Texier I, Larrea A S, et al. Numerical design of a 3-D microsystem for bioparticle dielectrophoresis: The pyramidal microdevice. J Electrostat, 2007, 95(8): 511–520

    Article  Google Scholar 

  69. Li W H, Du H, Chen D F, et al. Analysis of dielectrophoretic electrode arrays for nanoparticle manipulation. Comput Material Sci, 2004, 30(3–4): 320–325

    Article  Google Scholar 

  70. Chen D F, Du H, Li W H, et al. Numerical modeling of dielectrophoresis using a meshless approach. J Micromech Microeng, 2005, 15(5): 1040–1048

    Article  Google Scholar 

  71. Green N G, Ramos A, Horgan H. Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. J Electrostat, 2002, 56(2): 235–254

    Article  Google Scholar 

  72. Morgan H, Izquierdo A G, Bakewell D, et al. The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: Analytical solution using Fourier series. J Phys D: Appl Phys, 2001, 34(10): 1553–1561

    Article  Google Scholar 

  73. Kua C H, Lam Y C, Rodriguez I, et al. Dynamic cell fractionation and transportation using moving dielectrophoresis. Anal Chem, 2007, 79(18): 6975–6987

    Article  Google Scholar 

  74. Kang Y J, Li D Q, Kalams S A, et al. DC-Dielectrophoretic separation of biological cells by size. Biomed Microdevices, 2008, 10(2): 243–249

    Article  Google Scholar 

  75. Kang K H, Kang Y J, Xuan X C, et al. Continuous separation of microparticles by size with direct current-dielectrophoresis. Electrophoresis, 2006, 27(3): 694–702

    Article  Google Scholar 

  76. Erickson D, Sinton D, Li D Q. Joule heating and heat transfer in poly (dimethylsiloxane) microfluidics systems. Lab Chip, 2001, 3(3): 141–149

    Article  Google Scholar 

  77. Cetin B, Li D Q. Effect of Joule heating on electrokinetic transport. Electrophoresis, 2008, 29(5): 994–1005

    Article  Google Scholar 

  78. Xuan X C. Joule heating in electrokinetic flow. Electrophoresis, 2008, 29(1): 33–43

    Article  Google Scholar 

  79. Tang G Y, Yang C, Chai J C, et al. Numerical simulation of Joule heating effect on sample band transport in capillary electrophoresis. Analytica Chimca Acta, 2006, 561(1–2): 138–149

    Article  Google Scholar 

  80. Tang G Y, Yan D G, Yang C, et al. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels. Electrophoresis, 2006, 27(3): 628–639

    Article  Google Scholar 

  81. Xuan X C, Sinton D, Li D Q, Thermal end effects on electroosmotic flow in a capillary. Int J Heat Mass Transfer, 2004, 47(14–16): 3145–3147

    Article  MATH  Google Scholar 

  82. Xian X C, Xu B, Sinton D, et al. Electroosmotic flow with Joule heating effects. Lab Chip, 2004, 4(3): 230–236

    Article  Google Scholar 

  83. Porras S P, Marzial E I, Gaš B, et al. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis. Electrophoresis, 2003, 24(10): 1553–1564

    Article  Google Scholar 

  84. Palonen S, Jussila M, Porras S P, et al. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: Eehanol as background electrolyte solvent. Electrophoresis, 2004, 25(2): 344–354

    Article  Google Scholar 

  85. Peterson N J, Nikolajsen R P H, Mogensen K B, et al. Effect of Joule heating on efficiency and performance for microchip-based and capillary based electrophoretic separation systems: A closer look. Electrophoresis, 2004, 25(2): 253–269

    Article  Google Scholar 

  86. Xuan X C, Li D Q. Band-broadening in capillary zone electrophoresis with axial temperature gradients. Electrophoresis, 2005, 26(1): 166–175

    Article  Google Scholar 

  87. Cao J, Hong F J, Cheng P. Numerical study of radial temperature gradient effect on separation efficiency in capillary electrophoresis. Int Commun Heat Mass Trans, 2007, 34(9–10): 1048–1055

    Article  Google Scholar 

  88. González A, Ramos A, Morgan H, et al. Electrothermal flows generated by alternating and rotating electric fields in Microsystems. J Fluid Mech, 2006, 564: 415–433

    Article  MATH  MathSciNet  Google Scholar 

  89. Chen D F, Du H. Simulation studies on electrothermal fluid flow induced in a dielectrophoretic microelectrode system. J Micromech Microeng, 2006, 16(11): 2411–2419

    Article  Google Scholar 

  90. Perch-Nielsen I R, Green N G, Wolff A. Numerical simulation of travelling wave induced electrothermal fluid flow. J Phys D: Appl Phys, 2004, 37(16): 2323–2330

    Article  Google Scholar 

  91. Wang D Z, Sinurdson M, Meinhart C D. Experimental analysis of particle and fluid motion in ac electrokinetics. Exp Fluids, 2005, 38(1): 1–10

    Article  Google Scholar 

  92. Green N G, Ramos A, González A, et al. Electric field induced fluid flow on microelectrodes: The effect of illumination. J Phys D: Appl Phys, 2000, 33(2): L13–L17

    Article  Google Scholar 

  93. Green N G, Ramos A, González A, et al. Electrothermally induced fluid flow on microelectrodes. J Electrostat, 2001, 53(2): 71–87

    Article  Google Scholar 

  94. Feldman H C, Sinurdson M, Meinhart C D. AC electrothermal enhancement of heterogeneous assays in microfluidics. Lab Chip, 2007, 7(11): 1553–1559

    Article  Google Scholar 

  95. Cao J, Cheng P, Hong F J. A numerical study of an electrothermal vortex enhanced micromixer. Microfluid Nanofluid, 2008, 5(1): 13–21

    Article  Google Scholar 

  96. Du E, Manoochehri S. Enhanced ac electrothermal fluidic pumping in microgrooved channels. J Appl Phys, 2008, 104(6): 064902

    Article  Google Scholar 

  97. Moritz H, Marco S, Jan G. AC-field-induced fluid pumping in microsystems with asymmetric temperature gradients. Phys Rev E, 2009, 79(2): 026309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Cheng.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 50536010) and the Shanghai Municipal Science & Technology Committee through Key Fundamental (Grant No. 08JC1411100)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Cheng, P. & Hong, F. Applications of electrohydrodynamics and Joule heating effects in microfluidic chips: A review. Sci. China Ser. E-Technol. Sci. 52, 3477–3490 (2009). https://doi.org/10.1007/s11431-009-0313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-009-0313-z

Keywords

Navigation