Skip to main content
Log in

Effects of thermal boundary conditions on the joule heating of electrolyte in a microchannel

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Joule heating effects on a slit microchannel filled with electrolytes are comprehensively investigated with emphasis on the thermal boundary conditions. An accurate analytical expression is proposed for the electrical field and the temperature distributions due to Joule heating are numerically obtained from the energy balance equation. The results show that a thermal design based on the average electric potential difference between electrodes can cause severe underestimation of Joule heating. In addition, the parametric study of thermal boundary conditions gives us an insight into the best cooling scenario for microfluidic devices. Other significant thermal characteristics, including Nusselt number, thermophoretic force, and entropy generation, are discussed as well. This study will provide useful information for the optimization of a bioMEMS device in relation to the thermal aspect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RAHMAT A., SHADLOO M. The electrohydrodynamic deformation of quiescent bubble under electric field[C]. 8th International SPHERIC Workshop. Trondheim, Norway, 2014, 87–94.

    Google Scholar 

  2. XUAN X. Joule heating in electrokinetic flow[J]. Electrophoresis, 2008, 29(1): 33–43.

    Article  Google Scholar 

  3. CHAUREY V., ROHANI A. and SU Y.-H. et al. Scaling down constriction-based (electrodeless) dielectrophoresis devices for trapping nanoscale bioparticles in physiological media of high-conductivity[J]. Electrophoresis, 2013, 34(7): 1097–1104.

    Article  Google Scholar 

  4. GAO J., SIN M. L. Y. and LIU T. et al. Hybrid electrokinetic manipulation in high-conductivity media[J]. Lab on A Chip, 2011, 11(10): 1770–5.

    Article  Google Scholar 

  5. SHAHIDIAN A., GHASSEMI M. and KHORASANI-ZADE S. et al. Flow analysis of non-newtonian blood in a magnetohydrodynamic pump[J]. IEEE Transactions on Magnetics, 2009, 45(6): 2667–2670.

    Article  Google Scholar 

  6. JAMALABADI M. Y. A. Analytical study of magneto-hydrodynamic propulsion stability[J]. Journal of Marine Science and Application, 2014, 13(3): 281–290.

    Article  Google Scholar 

  7. DESAI S. P., VOLDMAN J. Cell-based sensors for quantifying the physiological impact of Micro-systems[J]. Integrative Biology, 2011, 3(1): 48–56.

    Article  Google Scholar 

  8. ERICKSON D., SINTON D. and LI D. Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems[J]. Lab on A Chip, 2003, 3(3): 141–149.

    Article  Google Scholar 

  9. TANG G., YAN D. and YANG C. et al. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels[J]. Electrophoresis, 2006, 27(3): 628–639.

    Article  Google Scholar 

  10. De Mello A. J., HABGOOD M. N. and LANCASTER L. et al. Precise temperature control in microfluidic devices using Joule heating of ionic liquids[J]. Lab on A Chip, 2004, 4(5): 417–419.

    Article  Google Scholar 

  11. ROSS D., GAITAN M. and LOCASCIO L. E. Tempera ture measurement in microfluidic systems using a tempe rature-dependent uorescent dye[J]. Analytical Chemistry, 2001, 73(17): 4117–4123.

    Article  Google Scholar 

  12. ABDOLLAHZADEH JAMALABADI M. Y. Joule heating in low-voltage electroosmotic with electrolyte containing nano-bubble mixtures through microchannel rectangular orifice[J]. Chemical Engineering Research and Design, 2015, 102: 407–415.

    Article  Google Scholar 

  13. BURG B. R., BIANCO V. and SCHNEIDER J. et al. Electrokinetic framework of dielectrophoretic deposition devices[J]. Journal of Applied Physics, 2010, 107(12): ID124308.

    Article  Google Scholar 

  14. CASTELLANOS A., RAMOS A. and GONZALEZ A. et al. Electrohydrodynamics and dielectrophoresis in micro-systems: Scaling laws[J]. Journal of Physics D Applied Physics, 2003, 36(20): 2584–2597.

    Article  Google Scholar 

  15. SRIDHARAN S., ZHU J. and HU G. et al. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis[J]. Electrophoresis, 2011, 32(17): 2274–2281.

    Google Scholar 

  16. CETIN B., LI D. Effect of Joule heating on electrokinetic transport[J]. Electrophoresis, 2008, 29(5): 994–1005.

    Article  Google Scholar 

  17. KUA C. H., LAM Y. C. and RODRIGUEZ I. et al. Dynamic cell fractionation and transportation using moving dielectrophoresis[J]. Analytical Chemistry, 2007, 79(18): 6975–6987.

    Article  Google Scholar 

  18. JAMALABADI M. Y. A., GHASEMI M. and HAMEDI M. H. Numerical investigation of thermal radiation effects on open cavity with discrete heat sources[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2013, 23(4): 649–661.

    Article  MathSciNet  Google Scholar 

  19. JAMALABADI M. Y. A., GHASEMI M. and HAMEDI M. H. Two-dimensional simulation of thermal loading with horizontal heat sources[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226(5): 1302–1308.

    Google Scholar 

  20. JAMALABADI M. Y. A. Experimental investigation of thermal loading of a horizontal thin plate using infrared camera[J]. Journal of King Saud University Engineering Sciences, 2014, 26(2): 159–167.

    Article  Google Scholar 

  21. VALYASHKO V. M. Hydrothermal experimental data[M]. New York, USA: John Wiley and Sons, 2008.

    Book  Google Scholar 

  22. RAMIRES M. L. V., De CASTRO C. A. N. Thermal conductivity of aqueous potassium chloride solutions[J]. International Journal of Thermophysics, 2000, 21(3): 671–679.

    Article  Google Scholar 

  23. GOLDHIRSCH I., RONIS D. Theory of thermophoresis. I. General considerations and mode-coupling analysis[J]. Physical Review A, 1983, 27(3): 1616–1634.

    Article  Google Scholar 

  24. JAMALABADI M. Y. A., PARK J. H. and LEE C. Y. Optimal design of mhd mixed convection ow in a vertical channel with slip boundary conditions and thermal radiation effects by using entropy generation minimization method[J]. Entropy, 2015, 17(2): 866–881.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Biography: M. Y. ABDOLLAHZADEH JAMALABADI (1983-), Male, Ph. D., Assistant Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahzadeh Jamalabadi, M.Y., Park, J.H., Rashidi, M.M. et al. Effects of thermal boundary conditions on the joule heating of electrolyte in a microchannel. J Hydrodyn 28, 850–862 (2016). https://doi.org/10.1016/S1001-6058(16)60705-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(16)60705-9

Keywords

Navigation