Skip to main content
Log in

Model of nonlinear coupled thermo-hydro-elastodynamics response for a saturated poroelastic medium

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Based on the Biot’s wave equation and theory of thermodynamic, Darcy law of fluid and the modified Fourier law of heat conduction, a nonlinear fully coupled thermo-hydro-elastodynamic response model (THMD) for saturated porous medium is derived. The compressibility of the medium, the influence of fluid flux on the heat flux, and the influence of change of temperature on the fluid flux are considered in this model. With some simplification, the coupled nonlinear thermo-hydro-elastodynamic response model can be reduced to the thermo-elastodynamic (TMD) model based on the traditional Fourier law and, further more, to the Biot’s wave equation without considering the heat phase. At last, the problem of one dimensional cylindrical cavity subjected to a time-dependent thermal/mechanical shock is analyzed by using the Laplace technique, the numerical results are used to discuss the influence of Biot’s modulus M and coefficient of thermo-osmosis on displacement and to compare with the results of thermo-elastodynamic response to ascertain the validity of this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campanella R G, Mitchell J K. Influence of temperature variation on soil behavior. J Soil Mech Found Engng DV-ASCE, 1968, 94(3): 709–734

    Google Scholar 

  2. Sultan N, Delage P, Cui Y J. Temperature effects on the volume change behaviour of Boom clay. Eng Geol, 2002, 64: 135–145

    Article  Google Scholar 

  3. Bai B, Zhao C G. Temperature effects on mechanical characteristics of clay soil (in Chinese). Rock Soil Mech, 2003, 23(4): 533–537

    Google Scholar 

  4. Detournay E, Senjuntichai T, Berchenko I. An in situ thermo- hydraulic experiment in a saturated granite II: analysis and parameter estimation. Int J Rock Mech Min Sci, 2004, 41: 1395–1411

    Article  Google Scholar 

  5. Ou X D, Wu H, Zhou D. Comparative study on thermodynamics characteristics of red clay and expansive soils in Guangxi (in Chinese). Rock Soil Mech, 2005, 26(7): 1068–1072

    Google Scholar 

  6. Ou X D, Wu H, Zhou D. Experimental study on thermo- chemical-mechanical effect of undisturbed soil and remolded soil (in Chinese). J Guangxi Univ, 2005, 30(3): 184–188

    Google Scholar 

  7. Neumann F. Vorlesungen über die Theorie der Elasticität. Brestau: Meyer, 1885

    Book  MATH  Google Scholar 

  8. Biot M. Thermoelasticity and irreversible thermo-dynamics. J Appl Phys, 1956, 27: 240–253

    Article  MathSciNet  MATH  Google Scholar 

  9. Lord H, Shulman Y. A generalized dynamical theory of thermoelasticity. J Mech Phys Solid, 1967, 15: 299–309

    Article  MATH  Google Scholar 

  10. Green A E, Lindsay K A. Thermoelasticity. J Elasticity, 1972, 2: 1–7

    Article  MATH  Google Scholar 

  11. Sherief H H, Saleh H A. A problem for an infinite thermoelastic body with a spherical cavity. Int J Eng Sci, 1998, 36(4): 473–487

    Article  MathSciNet  MATH  Google Scholar 

  12. Kundu M, Mukhopadyay B. A thermoviscoelastic problem of an infinite medium with a spherical cavity using generalized theory of thermoelasticity. Math Comput Mod, 2005, 41: 25–32

    Article  MathSciNet  MATH  Google Scholar 

  13. Lykotrafitis G, Georgiadis H G, Brock L M. Three-dimensional thermoelastic wave motions in a half-space under the action of a buried source. Int J Solids Struct, 2001, 38: 4857–4878

    Article  MATH  Google Scholar 

  14. Nowacki W. Dynamical problem of thermodiffusion in elastic solids. Proc Vib Prob, 1974, 15: 105–128

    MathSciNet  MATH  Google Scholar 

  15. Sherief H H, Hamza F A, Saleh H A. The theory of generalized thermoelastic diffusion. Int J Eng Sci, 2004, 42: 591–608

    Article  MathSciNet  MATH  Google Scholar 

  16. Singh B. Reflection of Pand SV waves from free surface of an elastic solid with generalized thermodiffusion. J Earth Syst Sci, 2005, 114: 159–168

    Article  Google Scholar 

  17. Aoudi M. A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion. Int J Solids Struct, 2007, 44: 5711–5722

    Article  MATH  Google Scholar 

  18. Booker J R, Savvidou C. Consolidation around a spherical heat source. Int J Solids Struct, 1984, 20: 1079–1090

    Article  Google Scholar 

  19. Zimmerman RW. Coupling in poroelasticity and thermoelasticity. Int J Rock Mech Min Sci, 2000, 37: 79–87

    Article  Google Scholar 

  20. Giraud A, Homand F, Rousset G. Thermoelastic and thermoplastic response of a double-layer porous space containing a decaying heat source. Int J Numer Anal Met Geomech, 1998, 22(2): 133–149

    Article  MATH  Google Scholar 

  21. Liu G B, Yao H L, Yang Y, et al. Coupling thermo-hydro-mechanical dynamic response of a porous elastic medium (in Chinese). Rock Soil Mech, 2007, 28(9): 1784–1789

    Google Scholar 

  22. Hosseini-Tehrani P, Hosseini-Godarzi A R, Tavangar M. Boundary element analysis of stress intensity factor Kf in some two- dimensional dynamic thermoelastic problems. Eng Aanal Bound Elem, 2005, 29: 232–240

    Article  MATH  Google Scholar 

  23. Blond E, Schmitt N, Hild F. Response of saturated porous media to cyclic thermal loading. Int J Numer Anal Met Geomech, 2003, 27(11): 883–904

    Article  MATH  Google Scholar 

  24. Bai M, Abousleiman Y. Thermoporoelastic coupling with application to consolidation. Int J Numer Anal Met Geomech, 1997, 21(2): 121–132

    Article  MATH  Google Scholar 

  25. Bai B. Approximate solution of thermal consolidation of cylindrical heat source with infinite length for saturated soil (in Chinese). J Rock Mech Eng, 2005, 24(6): 1004–1009

    Google Scholar 

  26. Lewis R W, Majorana C E, Schrefler B A. A coupled finite element model for consolidation of a non-isothermal elasto plastic media. Transport Porous Med, 1986, 1: 155–178

    Article  Google Scholar 

  27. Modaressi H, Laloui L. A thermo-viscoplastic constitutive model for clays. Int J Numer Anal Met Geomech, 1997, 2l(5): 313–315

    Article  MATH  Google Scholar 

  28. Wang X, Dong J. Formulation and study of thermal-mechanical coupling for saturated porous media. Comput Struct, 2003, 81: 1019–1029

    Article  Google Scholar 

  29. Zhou Y F. Thermo-hydro-mechanical models for saturated and unsaturated porous medium. University of Manitoba Winnipeg, Manitoba, Canada, 1998

    Google Scholar 

  30. Lewis R W, Schrefler B A. The Finite Element Method in Deformation and Consolidation of Porous Media. New York: Wiley, 1987

    MATH  Google Scholar 

  31. Berchenko I, Detournay E, Chandler N, et al. An in-situ thermo- hydraulic experiment in a saturated granite I: design and results. Int J Rock Mech Min Sci, 2004, 41: 1377–1394

    Article  Google Scholar 

  32. Detournay E, Cheng A H D. Poroelastic response of a borehole in a non-hydrostatic stress field. Int J Mech Min Sci Geomech Abstr, 1988, 25: 171–182

    Article  Google Scholar 

  33. Detournay E, Cheng A D. Fundamentals of Poroelasticity, Comprehensive Rock Engineering. New York: Pergamon, 1993. 113–171

    Google Scholar 

  34. Farouki O T. Thermal properties of soils. Trans Tech, 1986

  35. Fernandez R T. Natural convection from cylinders buried in porous media. Dissertation of Doctoral Degree. Washington: Berkley, 1972

  36. Senjuntichai T, Rajapakse R K N D. Tranisent response of a circular cavity in a porouelastic medium. Int J Numer Anal Met Geomech, 1993, 17: 357–383

    Article  MATH  Google Scholar 

  37. Durbin F. Numerical inversion of Laplace transformation: an efficient improvement to Durbin and Abate’s method. Comput J, 1974, 17(4): 371–376

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GanBin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Xie, K. & Zheng, R. Model of nonlinear coupled thermo-hydro-elastodynamics response for a saturated poroelastic medium. Sci. China Ser. E-Technol. Sci. 52, 2373–2383 (2009). https://doi.org/10.1007/s11431-008-0220-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0220-8

Keywords

Navigation