Skip to main content
Log in

Impact history and origin of lunar meteorite Northwest Africa 15528

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

No samples from the Moon’s far side have been returned to Earth. Thus, lunar meteorite study can deepen the understanding of the Moon’s far side (if we can identify which lunar meteorites came from the Moon’s far side). The Northwest Africa (NWA) 15528 meteorite is a lunar feldspathic regolith breccia meteorite and we speculated it might originate from the Feldspathic Highlands Terrane (FHT) on the far side of the Moon. Here, we report detailed petrography, major and trace elements, and noble gas (He, Ne, and Ar) isotopes for the clasts and matrix, respectively. The results show that the NWA 15528 lunar meteorite contains diverse clasts, including anorthosite, granulite, basalt, and impact melt clasts. The coarse, well-crystallized, uniform chemical composition minerals may come from intrusive plutonic rocks. Among the anorthosite clasts, the norite/olivine clasts originate from the deep lunar crust, whereas the other anorthosite clasts are from lunar highlands. The Sm concentrations in NWA 15528 were similar to those in the fourth group of Apollo 16 melt samples, demonstrating that NWA 15528 has a typical plagioclase highland meteorite composition. Compared with the Apollo sample data and remote sensing results, the chemical composition of NWA 15528 indicated strong affinities with the FHT area and ferroan anorthosite (FAN) material from the far side of the Moon. The noble gas isotopic composition of NWA 15528 is consistent with a binary mixture of solar wind and cosmogenic components; during stepwise pyrolytic extractions, we observed that the abundance of cosmogenic components decreased, whereas that of solar wind components increased with increasing temperature. The average cosmic-ray exposure (CRE) age of the matrix and granulite is 42±6 Ma, with a shielding depth in the same range of 10–20 g cm−2. The gas retention age of NWA 15528 is 2.14 Ga, and the antiquity age of NWA 15528 is (0.69–0.74)±0.2 Ga (considering 50% 40Arm is 40Artrap) which indicates the different clasts of NWA 15528 are assembled after 0.69–0.74 Ga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta, 53: 197–214

    Article  Google Scholar 

  • Arai T, Warren P H. 1999. Lunar meteorite Queen Alexandra Range 94281: Glass compositions and other evidence for launch pairing with Yamato 793274. Meteorit Planet Sci, 34: 209–234

    Article  Google Scholar 

  • Arai T, Warren P H, Takeda H. 1996. Four lunar mare meteorites: Crystallization trends of pyroxenes and spinels. Meteorit Planet Sci, 31: 877–892

    Article  Google Scholar 

  • Arai T, Takeda H, Yamaguchi A, Ohtake M. 2008. A new model of lunar crust: Asymmetry in crustal composition and evolution. Earth Planet Sp, 60: 433–444

    Article  Google Scholar 

  • Bogard D D. 1995. Impact ages of meteorites: A synthesis. Meteoritics, 30: 244–268

    Article  Google Scholar 

  • Bogard D D. 2011. K-Ar ages of meteorites: Clues to parent-body thermal histories. Geochemistry, 71: 207–226

    Article  Google Scholar 

  • Bunch T E, Wittke J H, Korotev R L. 2006. Petrology and composition of Lunar feldspathic breccias NWA 2995, Dhofar 1180 and Dhofar 1428. Meteorit Planet Sci, 41: 5254

    Google Scholar 

  • Cahill J T, Floss C, Anand M, Taylor L A, Nazarov M A, Cohen B A. 2004. Petrogenesis of lunar highlands meteorites: Dhofar 025, Dhofar 081, Dar al Gani 262, and Dar al Gani 400. Meteorit Planet Sci, 39: 503–529

    Article  Google Scholar 

  • Cahill J T S, Siegler M A, Greenhagen B T, Bussey D B J, McGovern J A, Even M. 2013. Characterization of Lunar Polar and Non-Polar Permanent shadow physical and thermal characteristics via Mini-RF and DIVINER 2590. Woodlands: 44th Lunar and Planetary Science Conference. 2590

  • Calzada-Diaz A, Joy K H, Crawford I A, Nordheim T A. 2015. Constraining the source regions of lunar meteorites using orbital geochemical data. Meteorit Planet Sci, 50: 214–228

    Article  Google Scholar 

  • Cao H J. 2019. Petrology, mineralogy and possible source regions of lunar meteorites NWA4884 and NWA11460. Dissertation for Master’s Degree. Jinan: Shandong University

    Google Scholar 

  • Cartwright J A, Ott U, Mittlefehldt D W, Herrin J S, Herrmann S, Mertzman S A, Mertzman K R, Peng Z X, Quinn J E. 2013. The quest for regolithic howardites. Part 1: Two trends uncovered using noble gases. Geochim Cosmochim Acta, 105: 395–421

    Article  Google Scholar 

  • Dalrymple G B, Ryder G. 1991. 40Ar/39Ar ages of six Apollo 15 impact melt rocks by laser step heating. Geophys Res Lett, 18: 1163–1166

    Article  Google Scholar 

  • Delano J W. 1991. Geochemical comparison of impact glasses from lunar meteorites ALHA81005 and MAC88105 and Apollo 16 regolith 64001. Geochim Cosmochim Acta, 55: 3019–3029

    Article  Google Scholar 

  • Delano J W. 1986. Pristine lunar glasses: Criteria, data, and implications. J Geophys Res, 91: 201–213

    Article  Google Scholar 

  • Eberhardt P, Eugster O, Marti K. 1965. A Redetermination of Isotopic Composition of Atmospheric Neon. Z Naturforsch A, 20: 623–624

    Article  Google Scholar 

  • Eberhardt P, Geiss J, Graf H, Grögler N, Mendia M D, Mörgeli M, Schwaller H, Stettler A, Krähenbühl U, von Gunten H R. 1972. Trapped solar wind noble gases in Apollo 12 lunar fines 12001 and Apollo 11 breccia 10046. Lunar and Planetary Science Conference Proceedings, 3: 1821–1856

    Google Scholar 

  • Eugster O, Lorenzetti S, Krähenbühl U, Marti K. 2007. Comparison of cosmic-ray exposure ages and trapped noble gases in chondrule and matrix samples of ordinary, enstatite, and carbonaceous chondrites. Meteorit Planet Sci, 42: 1351–1371

    Article  Google Scholar 

  • Eugster O, Michel T. 1995. Common asteroid break-up events of eucrites, diogenites, and howardites and cosmic-ray production rates for noble gases in achondrites. Geochim Cosmochim Acta, 59: 177–199

    Article  Google Scholar 

  • Eugster O, Niedermann S, Burger M, Krahenbuhl U, Weber H, Clayton R N, Mayeda T K. 1989. Preliminary report on the Yamato86032 lunar meteorite: III. Ages noble gas isotopes, oxygen isotopes and chemical abundances. Tokyo: Proceedings of the NIPR Symposium, National Institute of Polar Research

  • Fagan A L, Gross J. 2020. Preliminary melt models of troctolite and anorthosite clasts within northwest Africa 11303. Woodlands: 51th Lunar and Planetary Science Conference. 2904

  • Farley K A. 2002. (U-Th)/He dating: Techniques, calibrations, and applications. Rev Mineral Geochem, 47: 819–844

    Article  Google Scholar 

  • Floss C, James O B, McGee J J, Crozaz G. 1998. Lunar ferroan anorthosite petrogenesis: Clues from trace element distributions in FAN subgroups. Geochim Cosmochim Acta, 62: 1255–1283

    Article  Google Scholar 

  • Füri E, Deloule E, Trappitsch R. 2017. The production rate of cosmogenic deuterium at the Moon’s surface. Earth Planet Sci Lett, 474: 76–82

    Article  Google Scholar 

  • Füri E, Zimmermann L, Saal A E. 2018. Apollo 15 green glass He-Ne-Ar signatures—In search for indigenous lunar noble gases. Geochem Persp Let, 1–5

  • Gattacceca J, McCubbin F M, Bouvier A, Grossman J N. 2020. The Meteoritical Bulletin, no. 108. Meteorit Planet Sci, 55: 1146–1150

    Article  Google Scholar 

  • Gnos E, Hofmann B A, Al-Kathiri A, Lorenzetti S, Eugster O, Whitehouse M J, Villa I M, Jull A J T, Eikenberg J, Spettel B, Krahenbuhl U, Franchi I A, Greenwood R C. 2004. Pinpointing the source of a Lunar meteorite: Implications for the evolution of the Moon. Science, 305: 657–659

    Article  Google Scholar 

  • Head J W, Wilson L. 1992. Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim Cosmochim Acta, 56: 2155–2175

    Article  Google Scholar 

  • Heber V S, Wieler R, Baur H, Olinger C, Friedmann T A, Burnett D S. 2009. Noble gas composition of the solar wind as collected by the Genesis mission. Geochim Cosmochim Acta, 73: 7414–7432

    Article  Google Scholar 

  • Herzog G F, Caffee M W. 2014. Cosmic-ray exposure ages of meteorites, meteorites and cosmochemical processes. In: Davis A M, ed. Meteorites and Cosmochemical Processes, Volume 1 of Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 419–454

    Chapter  Google Scholar 

  • Hill P J A, Osinski G R, Banerjee N R, Korotev R L, Nasir S J, Herd C D K. 2019. Petrography and geochemistry of lunar meteorites Dhofar 1673, 1983, and 1984. Meteorit Planet Sci, 54: 300–320

    Article  Google Scholar 

  • Hohenberg C M, Marti K, Podosek F A, Reedy R C, Shirck J R. 1978. Comparisons between observed and predicted cosmogenic noble gases in lunar samples. Houston: Lunar and Planetary Science Conference, 9th. 2311–2344

  • James O, Hammarstrom J. 1977. Petrology of four clasts from consortium breccia 73215. Houston: Lunar Science Conference

  • Jerde E A, Morris R V, Warren P H. 1990. In quest of lunar regolith breccias of exotic provenance: a uniquely anorthositic sample from the Fra Mauro (Apollo 14) highlands. Earth Planet Sci Lett, 98: 90–108

    Article  Google Scholar 

  • Jolliff B L. 2006. PREFACE. Rev Mineral Geochem, 60: v–xv

    Article  Google Scholar 

  • Jolliff B L, Gillis J J, Haskin L A, Korotev R L, Wieczorek M A. 2000. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J Geophys Res, 105: 4197–4216

    Article  Google Scholar 

  • Jolliff B L, Haskin L A. 1995. Cogenetic rock fragments from a lunar soil: Evidence of a ferroan noritic-anorthosite pluton on the Moon. Geochim Cosmochim Acta, 59: 2345–2374

    Article  Google Scholar 

  • Joy K H, Crawford I A, Anand M, Greenwood R C, Franchi I A, Russell S S. 2008. The petrology and geochemistry of Miller Range 05035: A new lunar gabbroic meteorite. Geochim Cosmochim Acta, 72: 3822–3844

    Article  Google Scholar 

  • Joy K H, Crawford I A, Russell S S, Kearsley A T. 2010. Lunar meteorite regolith breccias: An in situ study of impact melt composition using LA-ICP-MS with implications for the composition of the lunar crust. Meteorit Planet Sci, 45: 917–946

    Article  Google Scholar 

  • Joy K H, Kring D A, Bogard D D, McKay D S, Zolensky M E. 2011. Re-examination of the formation ages of the Apollo 16 regolith breccias. Geochim Cosmochim Acta, 75: 7208–7225

    Article  Google Scholar 

  • Joy K H, Nemchin A, Grange M, Lapen T J, Peslier A H, Ross D K, Zolensky M E, Kring D A. 2014. Petrography, geochronology and source terrain characteristics of lunar meteorites Dhofar 925, 961 and Sayh al Uhaymir 449. Geochim Cosmochim Acta, 144: 299–325

    Article  Google Scholar 

  • Kelley S. 2002. K-Ar and Ar-Ar dating. Rev Mineral Geochem, 47: 785–818

    Article  Google Scholar 

  • Korotev R L. 1994. Compositional variation in Apollo 16 impact-melt breccias and inferences for the geology and bombardment history of the Central Highlands of the Moon. Geochim Cosmochim Acta, 58: 3931–3969

    Article  Google Scholar 

  • Korotev R L. 2005. Lunar geochemistry as told by lunar meteorites. Geochemistry, 65: 297–346

    Article  Google Scholar 

  • Korotev R L, Irving A J. 2021. Lunar meteorites from northern Africa. Meteorit Planet Scien, 56: 206–240

    Article  Google Scholar 

  • Korotev R, Jolliff B. 2001. The curious case of the Lunar magnesian granulitic breccias. Houston: Lunar and Planetary Science XXXII

  • Korotev R L, Jolliff B L, Zeigler R A, Gillis J J, Haskin L A. 2003. Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochim Cosmochim Acta, 67: 4895–4923

    Article  Google Scholar 

  • Korotev R L, Jolliff B L, Rockow K M. 1996. Lunar meteorite Queen Alexandra Range 93069 and the iron concentration of the lunar high-lands surface. Meteorit Planet Sci, 31: 909–924

    Article  Google Scholar 

  • Korotev R L, Zeigler R A, Jolliff B L. 2006. Feldspathic lunar meteorites Pecora Escarpment 02007 and Dhofar 489: Contamination of the surface of the lunar highlands by post-basin impacts. Geochim Cosmochim Acta, 70: 5935–5956

    Article  Google Scholar 

  • Korotev R L, Zeigler R A, Jolliff B L, Irving A J, Bunch T E. 2009. Compositional and lithological diversity among brecciated lunar meteorites of intermediate iron concentration. Meteorit Planet Sci, 44: 1287–1322

    Article  Google Scholar 

  • Lawrence D J, Elphic R C, Feldman W C, Prettyman T H, Gasnault O, Maurice S. 2003. Small-area thorium features on the lunar surface. J Geophys Res, 108: 5102

    Article  Google Scholar 

  • Lawrence D J, Feldman W C, Barraclough B L, Binder A B, Elphic R C, Maurice S, Thomsen D R. 1998. Global elemental maps of the Moon: The Lunar prospector Gamma-ray spectrometer. Science, 281: 1484–1489

    Article  Google Scholar 

  • Lawrence D J, Feldman W C, Elphic R C, Little R C, Prettyman T H, Maurice S, Lucey P G, Binder A B. 2002. Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. J Geophys Res, 107: 13-1–13-26

    Article  Google Scholar 

  • Li Q L, Zhou Q, Liu Y, Xiao Z, Lin Y, Li J H, Ma H X, Tang G Q, Guo S, Tang X, Yuan J Y, Li J, Wu F Y, Ouyang Z, Li C, Li X H. 2021. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature, 600: 54–58

    Article  Google Scholar 

  • Lindstrom M M, Lindstrom D J. 1986. Lunar granulites and their precursor anorthositic norites of the early lunar crust. J Geophys Res, 91: 263–276

    Article  Google Scholar 

  • Liu S, Zhou Q, Li Q, Hu S, Yang W. 2021. Chang’e-5 samples reveal two-billion-year-old volcanic activity on the Moon and its source characteristics. Sci China Earth Sci, 64: 2083–2089

    Article  Google Scholar 

  • Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 257: 34–43

    Article  Google Scholar 

  • Lorenzetti S, Busemann H, Eugster O. 2005. Regolith history of lunar meteorites. Meteorit Planet Sci, 40: 315–327

    Article  Google Scholar 

  • Lucey P, Korotev R L, Gillis J J, Taylor L A, Maurice S. 2006. Understanding the Lunar surface and space-Moon interactions. Rev Mineral Geochem, 60: 83–219

    Article  Google Scholar 

  • Lunning N G, Gross J. 2019. Lunar feldspathic regolith breccia with magnesium-rich components: Northwest Africa 11303. Woodlands: 50th Lunar and Planetary Science Conference. 2407

  • Mahajan R R. 2015. Lunar meteorite Yamato-983885: Noble gases, nitrogen and cosmic ray exposure history. Planet Space Sci, 117: 24–34

    Article  Google Scholar 

  • Mamyrin B A, Anufriev G S, Kamenskii I L, Tolstikhin I N. 1970. Determination of the isotopic composition of atmospheric helium. Geochem Int, 7: 498–505

    Google Scholar 

  • McKay G, Wagstaff J, Yang S R. 1986. Zirconium, hafnium, and rare earth element partition coefficients for ilmenite and other minerals in high-Ti lunar mare basalts: An experimental study. J Geophys Res, 91: 229–237

    Article  Google Scholar 

  • McKay D S, Heiken G, Basu A, Blanford G, Simon S, Reedy R, French B M, Papike J J. 1991. The lunar regolith. In: Grant H H, David V T, Bevan F M, eds. Lunar Sourcebook—A user’s Guide to the Moon. 285–356

  • Mercer C N, Treiman A H, Joy K H. 2013. New lunar meteorite Northwest Africa 2996: A window into farside lithologies and petrogenesis. Meteorit Planet Sci, 48: 289–315

    Article  Google Scholar 

  • Mighani S, Wang H, Shuster D L, Borlina C S, Nichols C I O, Weiss B P. 2020. The end of the lunar dynamo. Sci Adv, 6: eaax0883 Mészáros M, Leya I, Hofmann B A. 2017. Cosmic-ray exposure histories of the lunar meteorites AaU 012 and Shişr 166. Meteorit Planet Sci, 52: 2040–2050

    Google Scholar 

  • Nielsen R L, Drake M J. 1978. The case for at least three mare basalt magmas at the Luna 24 landing site. Mare Crisium: The view from Luna 24 Proceedings of the Conference. 419–428

  • Nottingham M C, Stuart F M, Chen B, Zurakowska M, Gilmour J D, Alexander L, Crawford I A, Joy K H. 2022. Complex burial histories of Apollo 12 basaltic soil grains derived from cosmogenic noble gases: Implications for local regolith evolution and future in situ investigations. Meteorit Planet Sci, 57: 603–634

    Article  Google Scholar 

  • Nyquist L E, Bogard D D, Shih C-Y, Greshake A, Stöffler D, Eugster O. 2001. Ages and geologic histories of Martian meteorites. In: Kallenbach R, Geiss J, Hartmann W K, eds. Chronology and Evolution of Mars, Space Sciences Series of ISSI. Dordrecht: Springer Netherlands. 105–164

    Chapter  Google Scholar 

  • Ott U. 2002. Noble gases in meteorites—Trapped components. Rev Mineral Geochem, 47: 71–100

    Article  Google Scholar 

  • Osinski G R. 2020. Investigation of a hybrid Lunar feldspathic breccia Northwest Africa 11515. Woodlands: 51st Lunar and Planetary Science Conference. 2

  • Papike J J. 1996. Pyroxene as a recorder of cumulate formational processes in asteroids, Moon, Mars, Earth; reading the record with the ion microprobe. Am Mineral, 81: 525–544

    Article  Google Scholar 

  • Papike J J. 1998. Comparative planetary mineralogy: Chemistry of melt-derived pyroxene, feldspar, and olivine. Planet Mater, 36: G1–G11

    Google Scholar 

  • Papike J J, Fowler G W, Shearer C K. 1997. Evolution of the lunar crust: SIMS study of plagioclase from ferroan anorthosites. Geochim Cosmochim Acta, 61: 2343–2350

    Article  Google Scholar 

  • Patzer A, Schultz L, Franke L. 2003. New noble gas data of primitive and differentiated achondrites including Northwest Africa 011 and Tafassasset. Meteorit Planet Sci, 38: 1485–1497

    Article  Google Scholar 

  • Pearce N J G, Perkins W T, Westgate J A, Gorton M P, Jackson S E, Neal C R, Chenery S P. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Geoanal Res, 21: 115–144

    Article  Google Scholar 

  • Pepin R O, Schlutter D J, BeckerR H, Reisenfeld D B. 2012. Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials. Geochim Cosmochim Acta, 89: 62–80

    Article  Google Scholar 

  • Prettyman T H, Hagerty J J, Elphic R C, Feldman W C, Lawrence D J, McKinney G W, Vaniman D T. 2006. Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector. J Geophys Res, 111: E12007

    Article  Google Scholar 

  • Ranjith P M, He H, Miao B, Su F, Zhang C, Xia Z, Xie L, Zhu R. 2017. Petrographic shock indicators and noble gas signatures in a H and an L chondrite from Antarctica. Planet Space Sci, 146: 20–29

    Article  Google Scholar 

  • Schultz L, Franke L. 2004. Helium, neon, and argon in meteorites: A data collection. Meteorit Planet Sci, 39: 1889–1890

    Article  Google Scholar 

  • Shearer C K. 2006. Thermal and Magmatic Evolution of the Moon. Rev Mineral Geochem, 60: 365–518

    Article  Google Scholar 

  • Shervais J W, McGee J J. 1998. Ion and electron microprobe study of troctolites, norite, and anorthosites from Apollo 14: Evidence for urKREEP assimilation during petrogenesis of Apollo 14 Mg-suite rocks. Geochim Cosmochim Acta, 62: 3009–3023

    Article  Google Scholar 

  • Signer P, Baur H, Derksen U, Etique P, Funk H, Horn P, Wieler R. 1977. Helium, neon, and argon records of lunar soil evolution. Houston: Lunar Science Conference, 8th. 3657–3683

  • Simon S B, Papike J J, Gosselin D C, Laul J C. 1985. Petrology and chemistry of Apollo 12 regolith breccias. J Geophys Res, 90: 75

    Article  Google Scholar 

  • Snyder G A, Borg L E, Nyquist L E, Taylor L A. 2000. Chronology and isotopic constraints on Lunar evolution. In: Canup R M, Righter K, eds. Origin of the Earth and Moon. Tucson: University of Arizona Press

    Google Scholar 

  • Swindle T D. 2002. Noble gases in the Moon and meteorites: Radiogenic components and early volatile chronologies. Rev Mineral Geochem, 47: 101–124

    Article  Google Scholar 

  • Takeda H, Yamaguchi A, Bogard D D, Karouji Y, Ebihara M, Ohtake M, Saiki K, Arai T. 2006. Magnesian anorthosites and a deep crustal rock from the farside crust of the moon. Earth Planet Sci Lett, 247: 171–184

    Article  Google Scholar 

  • Thalmann C, Eugster O, Herzog G F, Xue S, Klein J, Krähenbühl U, Vogt S. 1996. History of lunar meteorites Queen Alexandra Range 93069, Asuka 881757, and Yamato 793169 based on noble gas isotopic abundances, radionuclide concentrations, and chemical composition. Meteorit Planet Sci, 31: 857–868

    Article  Google Scholar 

  • Treiman A H, Maloy A K, Shearer Jr. C K, Gross J. 2010. Magnesian anorthositic granulites in lunar meteorites Allan Hills A81005 and Dhofar 309: Geochemistry and global significance. Meteoritics Planet Sci, 45: 163–180

    Article  Google Scholar 

  • Turner G, Cadogan P, Yonge C. 1973. Argon selenochronology. Houston: Proceedings of the Lunar Science Conference Vinogradov A, Zadorozhny I. 1973. Rare gases in regolith and fragments of rocks supplied by the automatic station “Luna-20”: Lunar and Planetary Science Conference Proceedings, 4: 2065

    Google Scholar 

  • Wang H, Jiang X, Wen C, Cao T, Hu S. 2019. Extremely low paleointensity recorded by a Lunar meteorite northwest Africa 11303. In: AGU Fall Meeting Abstracts, GP31A-03

  • Wang N, Wang G, Zhang T, Gu L, Zhang C, Hu S, Miao B, Lin Y. 2021. Metallographic cooling rate and petrogenesis of the recently found Huoyanshan iron meteorite shower. J Geophys Res-Planets, 126: e06847

    Article  Google Scholar 

  • Warren P H. 1985. The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci, 13: 201–240

    Article  Google Scholar 

  • Warren P H. 1989. KREEP: Major-element diversity, trace-element uniformity. In: Conference Moon in Transition: Apollo 14, KREEP, and Evolved Lunar Rocks. 149–153

  • Warren P H, Haack H, Rasmussen K L. 1991. Megaregolith insulation and the duration of cooling to isotopic closure within differentiated asteroids and the Moon. J Geophys Res, 96: 5909–5923

    Article  Google Scholar 

  • Warner J L, Phinney W C, Bickel C E, Simonds C H. 1977. Feldspathic granulitic impactites and pre-final bombardment lunar evolution. Houston: Proceedings of the Lunar Science Conference. 8: 2051–2066

    Google Scholar 

  • Wieczorek M A, Zuber M T, Phillips R J. 2001. The role of magma buoyancy on the eruption of lunar basalts. Earth Planet Sci Lett, 185: 71–83

    Article  Google Scholar 

  • Wieler R. 2002. Cosmic-ray-produced noble gases in meteorites. Rev Mineral Geochem, 47: 125–170

    Article  Google Scholar 

  • Will P, Busemann H, Riebe M E I, Maden C. 2019. Regolith history of six Lunar regolith breccias derived from noble gas elemental and isotopic abundances. Sapporo: 82nd Annual Meeting of the Meteoritical Society. 6494

  • Xue D S, Su B X, Zhang D P, Liu Y H, Guo J J, Guo Q, Sun J F, Zhang S Y. 2020. Quantitative verification of 1:100 diluted fused glass beads for X-ray fluorescence analysis of geological specimens. J Anal At Spectrom, 35: 2826–2833

    Article  Google Scholar 

  • Yamaguchi A, Karouji Y, Takeda H, Nyquist L, Bogard D, Ebihara M, Shih C Y, Reese Y, Garrison D, Park J, McKay G. 2010. The variety of lithologies in the Yamato-86032 lunar meteorite: Implications for formation processes of the lunar crust. Geochim Cosmochim Acta, 74: 4507–4530

    Article  Google Scholar 

  • Zeigler R A, Korotev R L, Jolliff B L, Haskin L A, Floss C. 2006. The geochemistry and provenance of Apollo 16 mafic glasses. Geochim Cosmochim Acta, 70: 6050–6067

    Article  Google Scholar 

  • Zeng X, Joy K H, Li S, Pernet-Fisher J F, Li X, Martin D J P, Li Y, Wang S. 2018. Multiple lithic clasts in lunar breccia Northwest Africa 7948 and implication for the lithologic components of lunar crust. Meteorit Planet Sci, 53: 1030–1050

    Article  Google Scholar 

  • Zeng X, Li S, Joy K H, Li X, Liu J, Li Y, Li R, Wang S. 2020. Occurrence and implications of secondary olivine veinlets in lunar highland breccia Northwest Africa 11273. Meteorit Planet Sci, 55: 36–55

    Article  Google Scholar 

  • Zeng X J. 2018. Revealing the composition and geological process of the lunar crust by lunar highland breccia meteorites (in Chinese). Dissertation for Doctoral Degree. Guiyang: University of Chinese Academy of Sciences

    Google Scholar 

  • Zhang A, Hsu W. 2009. Petrography, mineralogy, and trace element geochemistry of lunar meteorite Dhofar 1180. Meteorit Planet Sci, 44: 1265–1286

    Article  Google Scholar 

  • Zhang C, He H, Miao B. 2018. Study progress and prospect of noble gas and cosmic exposure age for Lunar meteorites. Bull Mineral Petrol Geochem, 37: 588–600

    Google Scholar 

Download references

Acknowledgements

We thank Professor Hejiu HUI from Nanjing University for kind editorial handling and two anonymous reviewers for constructive and thoughtful review comments, which significantly improved the quality of the manuscript. Their comments have greatly improved the quality of the article. We thank Professor Bingkui MIAO from the Guilin University of Technology for his kind help during the experiment and Dr. Guozhu CHEN and Xiaojing JIA for their guidance and assistance in sample processing and electron probe experiments. We thank Professor Xiaojia ZENG from the Guiyang Institute of Geochemistry, Chinese Academy of Sciences, for using the remote sensing software ENVI to complete Figure 12, which benefited greatly from the interpretation of the origin of NWA 15528. We thank Dr. Lihui JIA of the Electron Probe Laboratory and Professor Zhuyin CHU of the Solid Isotope Laboratory of the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS) for their kind help, as well as Professor Sen HU and Dr. Jianglong JI of the Nano-Sims Laboratory of IGGCAS for their help and guidance in sample pre-processing. We also greatly benefited from discussions with Dr. Min ZHANG of the Paleomagnetism and Geochronology Laboratory of IGGCAS and Dr. Zhuang GUO from Peking University. We thank Professor Weiwei BIAN of the China University of Geosciences (Beijing) for his careful review. Finally, the authors would like to thank academicians Ziyuan OUYANG and Professor Yangting LIN, whose academic thoughts, works, and reports greatly benefited us. This work was supported by the Strategic Priority Program B of the Chinese Academy of Sciences (Grant No. XDB41010205), the Civil Aerospace Pre-Research Project (Grant No. D020302), the Strategic Priority Program A of the Chinese Academy of Sciences (Grant Nos. XDA17010403 and XDB41010304) and the National Natural Science Foundation of China (Grant Nos. 42030205 and 41874079).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaiyu He or Thomas Smith.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., He, H., Smith, T. et al. Impact history and origin of lunar meteorite Northwest Africa 15528. Sci. China Earth Sci. 66, 1399–1422 (2023). https://doi.org/10.1007/s11430-022-1049-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1049-4

Keywords

Navigation