Skip to main content
Log in

Somma-Vesuvius’ activity: a mineral chemistry database

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Clinopyroxene and olivine are ubiquitous phases in Somma-Vesuvius (SV) volcanics and for the first time they were systematically studied in several products younger than 40 ka. In this manuscript chemical compositions (major, trace and rare earth elements) of a large set of olivine and clinopyroxene crystals from selected rock samples are presented and discussed. Fourteen pumice samples from Plinian pyroclastic deposits as well as three scoriae and eight lava samples from inter-Plinian deposits were collected. A representative number of olivine and clinopyroxene crystals (n ~ 50) were selected for each sample and analysed by electron microprobe and laser ablation inductively coupled plasma mass spectrometer, resulting in a large database, which is now available to the scientific community. All studied eruptive products contain olivine and clinopyroxene crystals spanning a wide range of compositions. Olivines show Fo content varying from 91 to 68, while clinopyroxenes display Mg# ranging from 93 to 71. In samples younger than A.D. 79, the more evolved (Mg#82–72) clinopyroxene crystals show clear Ca enrichment (~23.5–24.5 wt% CaO) with respect to those from older samples (before-A.D.79, ~23–21 wt% CaO). The results corroborate disequilibrium between olivine, clinopyroxene and the hosting melt, and an increasing role of carbonate assimilation in SV magma evolution in the last 2 ka. The database here produced is thought as a share product that makes available mineral data and can be used for further studies by researchers to investigate geochemical evolution of the SV system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agostinetti N, Amato A (2009) Moho depth and Vp/Vs ratio in peninsular Italy from teleseismic receiver functions. J Geophys Res 114:1–17. doi:10.1029/2008JB005899

    Google Scholar 

  • Ariskin A, Frenkel M, Barmina G, Nielsen R (1993) COMAGMAT: a Fortran program to model magma differentiation processes. Comput Geosci 19(8):1155–1170

    Article  Google Scholar 

  • Auger E, Gasparini P, Virieux J, Zollo A (1999) Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 294:1510–1512

    Article  Google Scholar 

  • Aulinas M, Civetta L, Di Vito M, Orsi G, Gimeno D, Férnandez-Turiel J (2008) The “Pomici di mercato” Plinian eruption of Somma-Vesuvius: magma chamber processes and eruption dynamics. B Volcanol 70:825–840. doi:10.1007/s00445-007-0172-z

    Article  Google Scholar 

  • Ayuso R, De Vivo B, Rolandi G, Seal R II, Paone A (1998) Geochemical and isotopic Nd-Pb-Sr-O variations bearing on the genesis of volcanic rocks from Vesuvius, Italy. J Volcanol Geoth Res 82:53–78. doi:10.1016/s0377-0273(97)00057-7

    Article  Google Scholar 

  • Barberi F, Leoni L (1980) Metamorphic carbonate ejecta from Vesuvius Plinian eruptions: evidence of the occurrence of shallow magma chambers. B Volcanol 43:107–120. doi:10.1007/bf02597615

    Article  Google Scholar 

  • Barberi F, Bizouard H, Clocchiatti R, Metrich N, Santacroce R, Sbrana A (1981) The Somma-Vesuvius magma chamber; a petrological and volcanological approach. B Volcanologique 44(3):295–315. doi:10.1007/bf02600566

    Article  Google Scholar 

  • Barnes CG, Prestvik T, Sundvoll B, Surratt D (2005) Pervasive assimilation of carbonate and silicate rocks in the Hortavaer igneous complex, north-central Norway. Lithos 80(1):179–199

    Article  Google Scholar 

  • Barton M, Bergen M (1981) Green clinopyroxenes and associated phases in a potassium-rich lava from the Leucite Hills, Wyoming. Contrib Mineral Petr 77:101–114. doi:10.1007/BF00636514

    Article  Google Scholar 

  • Belkin H, De Vivo B (1993a) Fluid inclusion studies of ejected nodules from Plinian eruptions of Somma-Vesuvius. J Volcanol Geoth Res 58:89–100. doi:10.1016/0377-0273(93)90103-X

    Article  Google Scholar 

  • Belkin H, De Vivo B, Roedder E, Cortini M (1985) Fluid inclusion geobarometry from ejected Mt. Somma-Vesuvius nodules. Am Mineral 70:288–303

    Google Scholar 

  • Belkin H, Kilburn C, De Vivo B (1993b) Sampling and major element chemistry of the recent (A.D. 1631-1944) Vesuvius activity. J Volcanol Geoth Res 58(1–4):273–290. doi:10.1016/s0377-0273(97)00058-9

    Article  Google Scholar 

  • Berrino G, Corrado G, Riccardi U (1998) Sea gravity data in the Gulf of Naples: a contribution to delineating the structural pattern of the Vesuvian area. J Volcanol Geoth Res 82(1):139–150

    Article  Google Scholar 

  • Bertagnini A, Landi P, Rosi M, Vigliargio A (1998) The Pomici di Base Plinian eruption of Somma-Vesuvius. J Volcanol Geoth Res 83(3–4):219–239. doi:10.1016/s0377-0273(98)00025-0

    Article  Google Scholar 

  • Black S, Macdonald R, De Vivo B, Kilburn C, Rolandi G (1998) U-series disequilibria in young (AD 1944) Vesuvius rocks: preliminary implications for magma residence times and volatile addition. J Volcanol Geoth Res 82(1–4):97–111. doi:10.1016/s0377-0273(97)00059-0

    Article  Google Scholar 

  • Borgia A, Tizzani P, Solaro G, Manzo M, Casu F, Luongo G, Pepe A, Berardino P, Fornaro G, Sansosti E (2005) Volcanic spreading of Vesuvius, a new paradigm for interpreting its volcanic activity. Geophys Res Lett 32. doi:10.1029/2004GL022155

  • Borisov A, Shapkin A (1990) A new empirical equation rating Fe3+/Fe2+ in magmas to their composition, oxygen fugacity, and temperature. Geochem Int 27:111–116

    Google Scholar 

  • Brocchini D, Principe C, Castradori D, Laurenzi M, Gorla L (2001) Quaternary evolution of the southern sector of the Campanian Plain and early Somma-Vesuvius activity: insights from the Trecase 1 well. Miner Petrol 73(1):67–91. doi:10.1007/s007100170011

    Article  Google Scholar 

  • Brooks C, Printzlau I (1978) Magma mixing in mafic alkaline volcanic rocks: the evidence from relict phenocryst phases and other inclusions. J Volcanol Geoth Res 4:315–331. doi:10.1016/0377-0273(78)90020-3

    Article  Google Scholar 

  • Caprarelli G (1993) Preliminary Sr and Nd isotopic data for recent lavas from Vesuvius volcano. J Volcanol Geoth Res 58:377–381. doi:10.1016/0377-0273(93)90119-c

    Article  Google Scholar 

  • Chadwick JP, Troll VR, Ginibre C, Morgan D, Gertisser R, Waight TE, Davidson JP (2007) Carbonate assimilation at Merapi Volcano, Java, Indonesia: insights from crystal isotope stratigraphy. J Petrol 48(9):1793–1812. doi:10.1093/petrology/egm038

    Article  Google Scholar 

  • Cigolini C (2007) Petrography and termobarometry of high pressure ultramafic ejecta from Mount Vesuvius, Italy: inferences on the deep feeding system. Period Mineral 76(2–3):5–24. doi:10.2451/2007 pm0015

    Google Scholar 

  • Cioni R, Civetta L, Marianelli P, Metrich N, Santacroce R, Sbrana A (1995) Compositional layering and syn-eruptive mixing of a periodically refilled shallow magma chamber: the AD 79 Plinian eruption of Vesuvius. J Petrol 36(3):739–776. doi:10.1093/petrology/36.3.739

    Article  Google Scholar 

  • Cioni R, Marianelli P, Santacroce R (1998) Thermal and compositional evolution of the shallow magma chambers of Vesuvius: evidence from pyroxene phenocrysts and melt inclusions. J Geophys Res 103:18277–18294. doi:10.1029/98jb01124

    Article  Google Scholar 

  • Cioni R, Sulpizio R, Garruccio N (2003) Variability of the eruption dynamics during a sub-Plinian event: the Greenish Pumice eruption of Somma–Vesuvius (Italy. J Volcanol Geoth Res 124(1):89–114. doi:10.1016/s0377-0273(03)00070-2

    Article  Google Scholar 

  • Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. J Volcanol Geoth Res 178:331–346. doi:10.1038/srep24271

    Article  Google Scholar 

  • Civetta L, Galati R, Santacroce R (1991) Magma mixing and convective compositional layering within the Vesuvius magma chamber. Bull Volcanol 53:287–300. doi:10.1007/bf00414525

    Article  Google Scholar 

  • Civetta L, D'Antonio M, De Lorenzo S, Di Renzo V, Gasparini P (2004) Thermal and geochemical constraints on the deep magmatic structure of Mt. Vesuvius. J Volcanol Geoth Res 133(1–4):1–12. doi:10.1016/s0377-0273(03)00387-1

    Article  Google Scholar 

  • Costa F, Dohmen R, Chakraborty S (2008) Time scales of magmatic processes from modeling the zoning patterns of crystals. Rev Mineral Geochem 69(1):545–594. doi:10.2138/mg.2008.69.14

    Article  Google Scholar 

  • Coulson IM, Westphal M, Anderson R, Kyser T (2007) Concomitant skarn and syenitic magma evolution at the margins of the Zippa Mountain pluton. Miner Petrol 90:199–221. doi:10.1007/s00710-006-0178-9

    Article  Google Scholar 

  • Dallai L, Freda C, Gaeta M (2004) Oxygen isotope geochemistry of pyroclastic clinopyroxene monitors carbonate contributions to Roman-type ultrapotassic magmas. Contrib Mineral Petr 148:247–263. doi:10.1007/s00410-004-0602-2

    Article  Google Scholar 

  • Dallai L, Cioni R, Boschi C, D' Oriano C (2011) Carbonate-derived CO2 purging magma at depth: influence on the eruptive activity of Somma-Vesuvius, Italy. Earth Planet Sc Lett 310(1):84–95. doi:10.1016/j.epsl.2011.07.013

    Article  Google Scholar 

  • Danyushevsky LV, Lima A (2001) Relationships between Campi Flegrei and Mt. Somma volcanism: evidence from melt inclusions in clinopyroxene phenocrysts from volcanic breccia xenoliths. Miner Petrol 73:107–119. doi:10.1007/s007100170013

    Article  Google Scholar 

  • Danyushevsky LV, Plechov P (2011) Petrolog3: Integrated software for modeling crystallisation processes. Geochem Geophy Geosy 12(7). doi:10.1029/2011GC003516

  • Davidson JP, Morgan DJ, Charlier BLA (2007) Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Annu Rev Earth Pl Sc 35:273–311. doi:10.1146/annurev.earth.35.031306.140211

    Article  Google Scholar 

  • De Vivo B, Ayuso R, Belkin H, Fedele L, Lima A, Rolandi G, Somma R, Webster J (2003) Chemistry, fluid/melt inclusions and isotopic data of lavas, tephra and nodules from >25 ka to 1944 AD of the Mt Somma-Vesuvius Volcanic Activity. Mt. Somma-Vesuvius Geochemical Archive. Dipartimento di Geofisica e Vulcanologia Università di Napoli Federico II Open File Report 143

  • De Vivo B, Petrosino P, Lima A, Rolandi G, Belkin HE (2010) Research progress in volcanology in Neapolitan area, Southern Italy: a review and alternative views. Miner Petrol 99:1–28. doi:10.1007/s00710.009.0098.6

    Article  Google Scholar 

  • Deegan FM, Troll VR, Freda C, Misiti V, Chadwick JP, McLeod CL, Davidson JP (2010) Magma carbonate interaction processes and associated CO2 release at Merapi Volcano, Indonesia: insights from experimental petrology. J Petrol 51(5):1027–1051. doi:10.1093/petrology/egq010

    Article  Google Scholar 

  • Delibrias G, Di Paola G, Rosi M, Santacroce R (1979) La storia eruttiva del complesso vulcanico Somma-Vesuvio ricostruita dalle successioni piroclastiche del Monte Somma. Rend Soc It Min Petr 35:411–438

    Google Scholar 

  • Di Renzo V, Di Vito M, Arienzo I, Carandente A, Civetta L, D' Antonio M, Giordano F, Orsi G, Tonarini S (2007) Magmatic history of Somma-Vesuvius on the basis of new geochemical and isotopic data from a deep borehole (Camaldoli della Torre). J Petrol 48(4):753–784. doi:10.1093/petrology/egq010

    Article  Google Scholar 

  • Di Rocco T, Freda C, Gaeta M, Mollo S, Dallai L (2012) Magma chambers emplaced in carbonate substrate: petrogenesis of skarn and cumulate rocks and implications for CO2 degassing in volcanic areas. J Petrol 53(11):2307–2332. doi:10.1093/petrology/egs051

    Article  Google Scholar 

  • Dobosi G (1989) Clinopyroxene zoning patterns in the young alkali basalts of Hungary and their petrogenetic significance. Contrib Mineral Petr 101(1):112–121. doi:10.1007/BF00387205

    Article  Google Scholar 

  • Donaldson CH (1990) Forsterite dissolution in superheated basaltic, andesitic and rhyolitic melts. Mineral Mag 54:67–74. doi:10.1180/minmag.1990.054.374.06

    Article  Google Scholar 

  • Downes M (1974) Sector and oscillatory zoning in calcic augites from Mt Etna, Sicily. Contrib Mineral Petr 47:187–196. doi:10.1007/f00371538

  • Duda A, Schmincke H (1985) Polybaric differentiation of alkali basaltic magmas: evidence from green-core clinopyroxenes (Eifel, FRG). Contrib Mineral Petr 91:340–353. doi:10.1007/BF00374690

    Article  Google Scholar 

  • Ferri M, Cubellis E, Luongo G (1990) Strutture crostali del graben della Piana Campana da indagini gravimetriche. Procedure XI Meeting GNGTS CNR I:737–747

  • Freda C, Gaeta M, Karner D, Marra F, Renne P, Taddeucci J, Scarlato P, Christensen J, Dallai L (2006) Eruptive history and petrologic evolution of the Albano multiple maar (Alban Hills, Central Italy). B Volcanol 68:567–591. doi:10.1007/s00445-005-0033-6

    Article  Google Scholar 

  • Freda C, Gaeta M, Misiti V, Mollo S, Dolfi D, Scarlato P (2008) Magma–carbonate interaction: An experimental study on ultrapotassic rocks from Alban Hills (Central Italy. Lithos 101(3–4):397–415. doi:10.1016/j.lithos.2007.08.008

    Article  Google Scholar 

  • Fryer B, Jackson S, Longerich H (1995) The design, operation and role of the laser ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM-ICP-MS) in the Earth Sciences. Can Mineral 33:303–312

    Google Scholar 

  • Fulignati P, Marianelli P, Santacroce S, Sbrana A (2004) Probing the Vesuvius magma chamberhost rock interface through xenoliths. Geol Mag 141(4):417–428. doi:10.1017/s0016756804009392

    Article  Google Scholar 

  • Gaeta M, Rocco T, Freda C (2009) Carbonate assimilation in open magmatic systems: the role of melt-bearing skarns and cumulate-forming processes. J Petrol 50(2):361–385. doi:10.1093/petrology/egp002

    Article  Google Scholar 

  • Giaccio B, Isaia R, Fedele FG, Di Canzio E, Hoffecker J, Ronchitelli A, Sinitsyn AA, Anikovich M, Lisitsyn S, Popov VV (2008) The Campanian Ignimbrite and Codola tephra layers: two temporal/stratigraphic markers for the Early Upper Palaeolithic in southern Italy and eastern Europe. J Volcanol Geoth Res 177:208–226. doi:10.1016/j.jvolgeores.2007.08.017

    Article  Google Scholar 

  • Gilg H, Lima A, Somma R, Belkin H, De Vivo B, Ayuso R (2001) Isotope geochemistry and fluid inclusion study of skarns from Vesuvius. Miner Petrol 73:145–176. doi:10.1007/s007100170015

    Article  Google Scholar 

  • Gioncada A, Mazzuoli R, Milton A (2005) Magma mixing at Lipari (Aeolian Islands, Italy): insights from textural and compositional features of phenocrysts. J Volcanol Geoth Res 145:97–118. doi:10.1016/j.jvolgeores.2005.01.002

    Article  Google Scholar 

  • Humayun M, Davis FA, Hirschmann MM (2010) Major element analysis of natural silicates by laser ablation ICP-MS: J. Anal Atom Spectrom 25(7):998–1005

    Article  Google Scholar 

  • Iacono-Marziano G, Gaillard F, Pichavant M (2008) Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes. Contrib Mineral Petr 155:719–738. doi:10.1007/s00410-007-0267-8

    Article  Google Scholar 

  • Jackson S, Longerich H, Dunning G, Freyer B (1992) The application of laser-ablation microprobe; inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals. Can Mineral 30(4):1049–1064. doi:10.1016/0009-2541(93)90058-Q

    Google Scholar 

  • Jarosewich E (2002) Smithsonian microbeam standards. J Research of the National Institute of Standards and. Technology 107(6):681–685

    Google Scholar 

  • Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostandard Newslett 4(1):43–47

    Article  Google Scholar 

  • Jochum K, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann A (2005) GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards. Geostand Geoanal Res 29:333–338

    Article  Google Scholar 

  • Jolis E, Freda C, Troll VR, Deegan FM, Blythe LS, McLeod CL, Davidson JP (2013) Experimental simulation of magma carbonate interaction beneath Mt. Vesuvius, Italy. Contrib Mineral Petr 166(5):1335–1353. doi:10.1007/s00410-013-0931-0

    Article  Google Scholar 

  • Jolis E, Troll V, Harris C, Freda C, Gaeta M, Orsi G, Siebe C (2015) Skarn xenolith record crustal CO2 liberation during Pompeii and Pollena eruptions, Vesuvius volcanic system, central Italy. Chem Geol 415:17–36. doi:10.1016/j.chemgeo.2015.09.003

    Article  Google Scholar 

  • Joron J, Metrich N, Rosi M, Santacroce R, Sbrana A (1987) Chemistry and petrography. Somma Vesuvius. CNR Monograph:105–174

  • Libourel G (1999) Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivines:. Contrib Mineral Petr 136(1–2):63–80

    Article  Google Scholar 

  • Lima A, Belkin H, Török K (1999) Understanding Vesuvius magmatic processes: evidence from primitive silicate-melt inclusions in medieval scoria clinopyroxenes (Terzigno Formation. Miner Petrol 65(3–4):185–206. doi:10.1007/BF01161960

    Article  Google Scholar 

  • Lima A, Danyushevsky L, De Vivo B, Fedele L (2003) A model for the evolution of Mt. Somma-Vesuvius magmatic system based on fluid and melt inclusions investigations. Dev Volcano 5:227–249. doi:10.1016/S1871-644X(03)80032-3

    Article  Google Scholar 

  • Ludden J, Rui F, Gauthier F, Stix J, Lang S, Francis D, Machado N, Wu G (1995) Applications of LAM-ICP-MS analysis to minerals. Can Mineral 33:419–434

    Google Scholar 

  • Macdonald R, Bagiński B, Rolandi G, De Vivo B, Kopczyńska A (2016) Petrology of parasitic and eccentric cones on the flanks and base of Somma-Vesuvius. Miner Petrol 110:65–85. doi:10.1007/s00710-015-0410-6

    Article  Google Scholar 

  • Marianelli P, Metrich N, Santacroce R, Sbrana A (1995) Mafic magma batches at Vesuvius: a glass inclusion approach to the modalities of feeding stratovolcanoes. Contrib Mineral Petr 120(2):159–169. doi:10.1007/BF00287113

    Article  Google Scholar 

  • Marianelli P, Métrich N, Sbrana A (1999) Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius. B Volcanol 61(1–2):48–63. doi:10.1130/0091-7613(1999)027 < 0443:TOVM > 2.3.CO;2

    Article  Google Scholar 

  • Max-Planck-Institut (2013) Max Planck Institute database for references materials of geological and environmental interest. http://georem.mpch-mainz.gwdg.de/. Accessed 20 February 2016

  • McDonough W, Sun S (1995) The composition of the Earth. Chem Geol, Geol Soc London Spec Publ 120(3):223–253. doi:10.1016/0009-2541(94)00140-4

    Google Scholar 

  • Melson W, Vallier T, Wright T, Byerly G, Nelen J (1976) Chemical diversity of abyssal volcanic glass erupted along Pacific, Atlantic and Indian Ocean sea-floor spreading center. AGU Monograph 19:351–367. doi:10.1029/GM019p0351

    Google Scholar 

  • Milia A, Torrente M, Russo M, Zuppetta A (2003) Tectonics and crustal structure of the Campania continental margin: relationships with volcanism. Miner Petrol 79:33–47. doi:10.1007/s00710-003-0005-5

    Article  Google Scholar 

  • Mollo S, Gaeta M, Freda C, Rocco DT, Misiti V (2010) Carbonate assimilation in magmas: a reappraisal based on experimental petrology. Lithos 114:503–514. doi:10.1016/j.lithos.2009.10.013

    Article  Google Scholar 

  • Morgan D, Blake S, Rogers N, DeVivo B, Rolandi G, Macdonald R, Hawkesworth C (2004) Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth Planet Sc Lett 222:933–946. doi:10.1016/j.epsl.2004.03.030

    Article  Google Scholar 

  • Morgan D, Blake S, Rogers N, De Vivo B, Rolandi G, Davidson J (2006) Magma chamber recharge at Vesuvius in the century prior the eruption of A.D. 79. Geology 34:845–848. doi:10.1130/G22604.1

    Article  Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Miner Petrol 39(1):55–76. doi:10.1180/minmag.1988.052.367.15

    Article  Google Scholar 

  • Nunziata C (2011) Low shear-velocity zone in the Neapolitan-area crust between the Campi Flegrei and Vesuvius volcanic area. Terra Nov. 22(3):208–217. doi:10.1111/j.1365-3121.2010.00936.x

  • Paone A, Ayuso R, De Vivo B (2001) A metallogenic survey of alkalic rocks of Mt. Somma-Vesuvius volcano. Miner Petrol 73(1–3):201–233. doi:10.1007/s007100170017

    Article  Google Scholar 

  • Pappalardo L, Mastrolorenzo G (2010) Short residence times for alkaline Vesuvius magmas in a multi-depth supply system; evidence from geochemical and textural studies. Earth Planet Sc Lett 296(1–2):133–143. doi:10.1016/j.epsl.2010.05.010

    Article  Google Scholar 

  • Pappalardo L, Piochi M, Mastrolorenzo G (2004) The 3800 yr BP-1944 A.D. magma plumbing system of Somma-Vesuvius: constraints on its behaviour and present state through a review of isotope data. Ann Geophys-Italy 47:1363–1375

    Google Scholar 

  • Peccerillo A (2005) Plio-quaternary volcanism in. Springer, Italy. doi:10.1007/3-540-29092-3

    Google Scholar 

  • Perkins D, Vielzeuf D (1992) Experimental investigation of Fe-Mg distribution between olivine and clinopyroxene: Implications for mixing properties of Fe-Mg in clinopyroxene and garnet-clinopyroxene thermometry. Am Mineral 77:774–783

    Google Scholar 

  • Piochi M, Ayuso R, De Vivo B, Somma R (2006a) Crustal contamination and crystal entrapment during polybaric magma evolution at Mt Somma Vesuvius volcano, Italy: geochemical and Sr isotope evidence. Lithos 86:303–329. doi:10.1016/j.lithos.2005.05.009

    Article  Google Scholar 

  • Piochi M, De Vivo B, Ayuso R (2006b) The magma feeding system of Somma-Vesuvius (Italy) strato-volcano: new inferences from a review of geochemical and Sr, Nd, Pb and O isotope data. Dev Volcano 9:181–202

    Article  Google Scholar 

  • Principe C, Tanguy JC, Arrighi S, Paiotti A, Le Goff M, Zoppi U (2004) Chronology of Vesuvius' activity from AD 79 to 1631 based on archeomagnetism of lavas and historical sources. B Volcanol 66:703–724. doi:10.1007/s00445-004-0348-8

    Article  Google Scholar 

  • Raia F, Webster JD, De Vivo B (2000) Pre-eruptive volatile contents of Vesuvius magmas constraints on eruptive history and behaviour. I-The medieval and modern inter-Plinian activities. Eur J Mineral 12(1):179–193. doi:10.1127/0935-1221/2000/0012-0179

    Article  Google Scholar 

  • Rolandi G (1997) The eruptive history of Somma-Vesuvius. Volcanism and Archeology in Mediterranean Area. Reserch Signpost. Trivandrum:77–88

  • Rolandi G, Barrella A, Borrelli A (1993a) The 1631 eruption of Vesuvius. J Volcanol Geoth Res 58(1):183–201. doi:10.1016/0377-0273(93)90107-3

    Article  Google Scholar 

  • Rolandi G, Maraffi S, Petrosino P, Lirer L (1993b) The Ottaviano eruption of Somma-Vesuvius (8000 y BP): a magmatic alternating fall and flow-forming eruption. J Volcanol Geoth Res 58(1):43–65. doi:10.1016/0377-0273(93)90101-V

    Article  Google Scholar 

  • Rolandi G, Mastrolorenzo G, Barrella A, Borrelli A (1993c) The Avellino Plinian eruption of Somma-Vesuvius (3760 y BP): the progressive evolution from magmatic to hydromagmatic style. J Volcanol Geoth Res 58(1):67–88. doi:10.1016/0377-0273(93)90102-W

    Article  Google Scholar 

  • Rolandi G, Petrosino P, McGeehin J (1998) The inter-Plinian activity at Somma–Vesuvius in the last 3500 years. J Volcanol Geoth Res 82(1–4):19–52. doi:10.1016/S0377-0273(97)00056-5

    Article  Google Scholar 

  • Rolandi G, Bellucci F, Heitzler M, Belkin H, De Vivo B (2003) Tectonic controls on the genesis of the Ignimbrites from the Campanian volcanic zone, southern Italy. Miner Petrol 79:3–31. doi:10.1007/s00710-003-0014-4

    Article  Google Scholar 

  • Rosi M, Santacroce R (1983) The AD 472 “Pollena” eruption: volcanological and petrological data for this poorly-known, Plinian-type event at Vesuvius. J Volcanol Geoth Res 17(1):249–271. doi:10.1016/0377-0273(83)90071-9

    Article  Google Scholar 

  • Rosi M, Principe C, Vecci R (1993) The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data. J Volcanol Geoth Res 58(1):151–182. doi:10.1016/0377-0273(93)90106-2

    Article  Google Scholar 

  • Santacroce R (1983) A general model for the behaviour of the Somma-Vesuvius volcanic complex. J Volcanol Geoth Res 17(1):237–248. doi:10.1016/0377-0273(83)90070-7

    Article  Google Scholar 

  • Santacroce R, Sbrana A (2003) Geological map of Vesuvius at scale 1: 15,000 SELCA editor. Florence

  • Santacroce R, Bertagnini A, Civetta L, Landi P, Sbrana A (1993) Eruptive dynamics and petrogenetic processes in a very shallow magma reservoir: the 1906 eruption of Vesuvius. J Petrol 34(2):383–425. doi:10.1093/petrology/34.2.383

    Article  Google Scholar 

  • Santacroce R, Cioni R, Civetta L, Marianelli P, Métrich N, Sbrana, A (1994) How Vesuvius works. In “large explosive eruptions” Atti Accad Naz Lin 112:185–196

  • Santacroce R, Cioni R, Marianelli P, Sbrana A, Sulpizio R, Zanchetta G, Donahue J, Joron J (2008) Age and whole rock-glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: a review as a tool for distal tephrostratigraphy. J Volcanol Geoth Res 177:1–18. doi:10.1016/j.jvolgeores.2008.06.009

    Article  Google Scholar 

  • Scaillet B, Pichavant M, Cioni R (2008) Upward migration of Vesuvius Magma Chamber over the past 20,000 years. Nature 455:216–220. doi:10.1038/nature07232

    Article  Google Scholar 

  • Scandone R, Giacomelli L, Speranza F (2008) Persistent activity and violent Strombolian eruptions at Vesuvius between 1631 and 1944. J Volcanol Geoth Res 170:167–180. doi:10.1016/j.jvolgeores.2007.09.014

    Article  Google Scholar 

  • Schaaf P, Stimac J, Siebe C, Macías JL (2005) Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, central Mexico. J Petrol 46:1243–1282. doi:10.1093/petrology/egi015

    Article  Google Scholar 

  • Somma R, Ayuso R, De Vivo B, Rolandi G (2001) Major, trace element and isotope geochemistry (Sr-Nd-Pb) of inter-Plinian magmas from Mt. Somma-Vesuvius (Southern Italy. Miner Petrol 73(1–3):121–143. doi:10.1007/s007100170014

    Article  Google Scholar 

  • Streck M (2008) Mineral textures and zoning as evidence for open system processes. Rev Mineral Geochem 69(1):595–622. doi:10.2138/rmg.2008.69.15

    Article  Google Scholar 

  • Sulpizio R, Mele D, Dellino P, La Volpe L (2005) A complex, sub-Plinian type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. B Volcanol 67(8):743–767. doi:10.1007/s00445-005-0414-x

    Article  Google Scholar 

  • Sylvester PJ (2008), Laser ablation-ICP-MS in the earth sciences: Current practices and outstanding issues, Mineral Ass Canada. Short course Series volume 40

  • Thompson R (1973) Oscillatory and sector zoning in augite from a Vesuvian lava. Carnegie Institute of Washington 71:463–470. doi:10.1007/BF01082423

    Google Scholar 

  • Trigila R, De Benedetti A (1993) Petrogenesis of Vesuvius historical lavas constrained by Pearce element ratios analysis and experimental phase equilibria. J Volcanol Geoth Res 58(1–4):315–343. doi:10.1016/0377-0273(93)90115-8

    Article  Google Scholar 

  • Turco E, Schettino A, Pierantoni P, Santarelli G (2006) The Pleistocene extension of the Campania Plain in the framework of the southern Tyrrhenian tectonic evolution: morphotectonic analysis, kinematic model and implications for volcanism. In: De Vivo B (ed) Dev Volcano: Elsevier pp 27–51

  • Ventura G, Vilardo G, Bruno PP (1999) The role of flank failure in modifying the shallow plumbing system of volcanoes: An example from Somma-Vesuvius, Italy. Geophys Res Lett 26:3681–3684. doi:10.1029/1999GL005404

    Article  Google Scholar 

  • Villemant B, Trigila R, De Vivo B (1993) Geochemistry of Vesuvius volcanics during 1631–1944 period. J Volcanol Geoth Res 58(1–4):291–313. doi:10.1016/0377-0273(93)90114-7

    Article  Google Scholar 

  • Webster J, Raia F, De Vivo B, Rolandi G (2001) The behaviour of chlorine and sulfur during differentiation of the Mt. Somma-Vesuvius magmatic system. Miner Petrol 73(1):177–200. doi:10.1007/s007100170016

    Article  Google Scholar 

  • Wenzel T, Baumgartner LP, Brügmann GE, Konnikov EG, Kislov EV (2002) Partial melting and assimilation of dolomitic xenoliths by mafic magma: the Ioko-Dovyren intrusion (North Baikal Region, Russia. J Petrol 43(11):2049–2074. doi:10.1093/petrology/43.11.2049

    Article  Google Scholar 

  • Zollo A, Gasparini P, Virieux J, Le Meur H, De Natale D, Biella G, Boschi E, Capuano P, De Franco R, Dell'Aversana P, De Matteis R, Guerra I, Iannaccone G, Mirabile L, Vilardo G (1996) Seismic Evidence for a Low-Velocity Zone in the Upper Crust Beneath Mount Vesuvius. Science 274:592–594

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to K. Goemann, S. Feig, S. Gilbert and J. Thompson for the analytical and technical support received at the laboratory facilities of the University of Tasmania (Utas, Australia) where all analyses were performed. Constructive reviews by R. Macdonald and three anonymous experts are gratefully acknowledged. This study has been carried out as part of the “Faro 2011” project (PI A. lima) and was financed by the University of Napoli “Federico II”; and the Arc Centre of Excellence in Ore Deposits “Codes” of the University of Tasmania. Co-authors C. Cannatelli and P. Petrosino acknowledge financial support from the PRIN 2010-2011 grant (Prot. 2010PMKZX7). We are also appreciative of TetraMetrics 2016 and Google 2016 that provided the satellite image of Fig. 1 through the Google Earth Pro software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Redi.

Additional information

Editorial handling: L. Nasdala

Electronic supplementary material

The online version of this article (doi: xxxxxxxxxxx) contains supplementary material that can be obtained….

Fig. S1

Major and minor elements (as oxides determined by EPMA; wt%) plotted against Mg# for clinopyroxene cores. Gr1, Gr2, and Gr3 as in Fig. 3 (GIF 873 kb)

High resolution image (TIFF 641 kb)

Fig. S2

Major and minor elements (as oxides determined by EPMA; wt%) plotted against Mg# for clinopyroxene rims. Gr1, Gr2, and Gr3 as in Fig. 3 (GIF 746 kb)

High resolution image (TIFF 679 kb)

ESM 1

(DOCX 50 kb)

ESM 2

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redi, D., Cannatelli, C., Esposito, R. et al. Somma-Vesuvius’ activity: a mineral chemistry database . Miner Petrol 111, 43–67 (2017). https://doi.org/10.1007/s00710-016-0462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-016-0462-2

Keywords

Navigation