Skip to main content

Ages and Geologic Histories of Martian Meteorites

  • Conference paper
Chronology and Evolution of Mars

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 12))

Abstract

We review the radiometric ages of the 16 currently known Martian meteorites, classified as 11 shergottites (8 basaltic and 3 lherzolitic), 3 nakhlites (clinopyroxenites), Chassigny (a dunite), and the orthopyroxenite ALH84001. The basaltic shergottites represent surface lava flows, the others magmas that solidified at depth. Shock effects correlate with these compositional types, and, in each case, they can be attributed to a single shock event, most likely the meteorite’s ejection from Mars. Peak pressures in the range 15 – 45 GPa appear to be a “launch window”: shergottites experienced ~ 30 – 45 GPa, nakhlites ~ 20 ± 5 GPa, Chassigny ~35 GPa, and ALH84001 ~35 – 40 GPa. Two meteorites, lherzolitic shergottite Y-793605 and orthopyroxenite ALH84001, are monomict breccias, indicating a two-phase shock history in toto: monomict brecciation at depth in a first impact and later shock metamorphism in a second impact, probably the ejection event.

Crystallization ages of shergottites show only two pronounced groups designated S1 (~175 Myr), including 4 of 6 dated basalts and all 3 lherzolites, and S2 (330 – 475 Myr), including two basaltic shergottites and probably a third according to preliminary data. Ejection ages of shergottites, defined as the sum of their cosmic ray exposure ages and their terrestrial residence ages, range from the oldest (~20 Myr) to the youngest (~0.7 Myr) values for Martian meteorites. Five groups are distinguished and designated SDho (one basalt, ~20 Myr), SL (two lherzolites of overlapping ejection ages, 3.94 ± 0.40 Myr and 4.70 ± 0.50 Myr), S (four basalts and one lherzolite, ~2.7 – 3.1 Myr), SDaG(two basalts, ~1.25 Myr), and SE (the youngest basalt, 0.73 ± 0.15 Myr). Consequently, crystallization age group S1 includes ejection age groups SL, SE and 4 of the 5 members of S, whereas S2 includes the remaining member of S and one of the two members of SDaG. Shock effects are different for basalts and lherzolites in group S/S1. Similarities to the dated meteorite DaG476 suggest that the two shergottites that are not dated yet belong to group S2. Whether or not S2 is a single group is unclear at present. If crystallization age group S1 represents a single ejection event, pre-exposure on the Martian surface is required to account for ejection ages of SL that are greater than ejection ages of S, whereas secondary breakup in space is required to account for ejection ages of SE less than those of S. Because one member of crystallization age group S2 belongs to ejection group S, the maximum number of shergottite ejection events is 6, whereas the minimum number is 2.

Crystallization ages of nakhlites and Chassigny are concordant at ~1.3 Gyr. These meteorites also have concordant ejection ages, i.e., they were ejected together in a single event (NC). Shock effects vary within group NC between the nakhlites and Chassigny.

The orthopyroxenite ALH84001 is characterized by the oldest crystallization age of ~4.5 Gyr. Its secondary carbonates are ~3.9 Gyr old, an age corresponding to the time of Ar-outgassing from silicates. Carbonate formation appears to have coincided with impact metamorphism, either directly, or indirectly, perhaps via precipitation from a transient impact crater lake.

The crystallization age and the ejection age of ALH84001, the second oldest ejection age at 15.0 ± 0.8 Myr, give evidence for another ejection event (0). Consequently, the total number of ejection events for the 16 Martian meteorites lies in the range 4 – 8.

The Martian meteorites indicate that Martian magmatism has been active over most of Martian geologic history, in agreement with the inferred very young ages of flood basalt flows observed in Elysium and Amazonis Planitia with the Mars Orbital Camera (MOC) on the Mars Global Surveyor (MGS). The provenance of the youngest meteorites must be found among the youngest volcanic surfaces on Mars, i.e., in the Tharsis, Amazonis, and Elysium regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow, N.G.: 1997, ‘The Search for Possible Craters for Martian Meteorite ALH84001’, Proc. 28th Lunar Planet. Sci. Conf., 65–66.

    Google Scholar 

  • Becker, R.H., and Pepin, R.O.: 1984, ‘The Case for a Martian Origin of the Shergottites: Nitrogen and Noble Gases in EET 79001’, Earth Planet. Sci. Lett. 69, 225–242.

    Article  ADS  Google Scholar 

  • Becker, R.H., and Pepin, R.O.: 1986, ‘Nitrogen and Light Noble Gases in Shergotty’, Geochim. Cosmochim. Acta 50, 993–1000.

    Article  ADS  Google Scholar 

  • Becker, R.H., and Pepin, R.O.: 1993, ‘Nitrogen and Noble Gases in a Glass Sample from the LEW88516 Shergottite’, Meteoritics 28, 637–640.

    Article  ADS  Google Scholar 

  • Becker, L., Glavin, D.P., and Bada, J.L.: 1997, ‘Polycyclic Aromatic Hydrocarbons (PAHs) in Antarctic Martian Meteorites, Carbonaceous Chondrites, and Polar Ice’, Geochim. Cosmochim. Acta 61, 475–481.

    Article  ADS  Google Scholar 

  • Berkley, J.L., and Keil, K.: 1981, ‘Olivine Orientation in the ALHA77005 Achondrite’, Am. Mineral. 66, 1233–1236.

    ADS  Google Scholar 

  • Berkley, J.L., and Boynton, N.J.: 1992, ‘Minor/major Element Variation Within and Among Diogenite and Howardite Orthopyroxenite Groups’, Meteoritics 27, 387–394.

    Article  ADS  Google Scholar 

  • Binns R.W.: 1967, ‘Stony Meteorites Bearing Maskelynite’, Nature 214, 1111–1112.

    Article  ADS  Google Scholar 

  • Bischoff, A., and Stöffler, D.: 1992, ‘Shock Metamorphism as a Fundamental Process in the

    Google Scholar 

  • Evolution of Planetary Bodies: Information from Meteorites’, Eur. J. Minerals 4, 707–755.

    Google Scholar 

  • Bell, J.F. III, McSween, H.Y., Jr., Crisp, J.A., Morris, R.V., Murchie, S.L., Bridges, N.T., John-son, J.R., Britt, D.T., Golombek, M.P., Moore, H.J., Ghosh, A., Bishop, J.L., Anderson, R.C.

    Google Scholar 

  • Brückner, J., Economou, T., Greenwood, J.P., Gunnlaugsson, H.P., Hargraves, R.M., Hviid, S.

    Google Scholar 

  • Knudsen, J.M., Madsen, M.B., Reid, R., Rieder, R., and Soderblom, L.: 2000, ‘Mineralogic and

    Google Scholar 

  • Compositional Properties of Martian Soil and Dust: Results from Mars Pathfinder’, J. Geophys.Res. 105, 1721–1755.

    Google Scholar 

  • Blichert-Toft, J., Gleason J.D., Telouk, P., and Albarède, F.: 1999, ‘The Lu-Hf Isotope Geochemistry of Shergottites and the Evolution of the Martian Mantle-crust System’, Earth Plan. Sci. Lett. 173, 25–39.

    Article  ADS  Google Scholar 

  • Boctor, N.Z., Fei, Y., Bertka, C.M., O’D Alexander, C.M., and Hauri, E.: 1998, ‘Vitrification and High Pressure Phase Transition in Olivine Megacrysts from Lithology A in Martian Meteorite EETA79001’, Proc. 29th Lunar Planet. Sci. Conf., abstract #1492.

    Google Scholar 

  • Bogard, D.D.: 1995, ‘Impact Ages of Meteorites: A Synthesis’, Meteoritics 30, 244–268.

    Article  ADS  Google Scholar 

  • Bogard, D.D., and Husain, L.: 1977, ‘A new 1.3 Aeon-young Achondrite’, Geophys. Res. Lett. 4, 69–71.

    Article  ADS  Google Scholar 

  • Bogard, D.D., and Johnson, P.: 1983, ‘Martian Gases in an Antarctic Meteorite?’, Science 221, 651654.

    Google Scholar 

  • Bogard, D.D., and Garrison, D.H.: 1998, ‘Relative Abundances of Argon, Krypton, and Xenon in the Martian Atmosphere as Measured in Martian Meteorites’, Geochim. Cosmochim. Acta 62, 1829–1835.

    Article  ADS  Google Scholar 

  • Bogard, D.D., and Garrison, D.H.: 1999, ‘Argon-39-argon-40 “Ages” and Trapped Argon in Martian Shergottites, Chassigny, and Allan Hills 84001’, Met. Planet. Sci. 34, 451–473.

    Article  ADS  Google Scholar 

  • Bogard, D.D., Husain, L., Nyquist, L.E.: 1979, ‘40Ar-39Ar Age of the Shergotty Achondrite and Implications for its Post-shock Thermal History’, Geochim. Cosmochim. Acta 43, 1047–1056.

    Article  ADS  Google Scholar 

  • Bogard, D.D., Nyquist, L.E., and Johnson, P.: 1984, ‘Noble Gas Contents of Shergottites and Implications for the Martian Origin of SNC Meteorites’, Geochim. Cosmochim. Acta 48, 1723–1739.

    Article  ADS  Google Scholar 

  • Bogard, D.D., Hörz, F., and Johnson, P.: 1986, ‘Shock-implanted Noble Gases: An Experimental Study with Implications for the Origin of Martian Gases in Shergottite Meteorites’, Proc. I7th Lunar Planet. Sci. Conf, J. Geophys Res. 91, E99 - E114.

    Article  ADS  Google Scholar 

  • Borg, L.E., Nyquist, L.E., Taylor, L.A., Wiesmann, H., Shih, C.-Y.: 1997, ‘Constraints on Martian Differentiation Processes from Rb-Sr and Sm-Nd Isotopic Analyses of the Basaltic Shergottite QUE 94201’, Geochim. Cosmochim. Acta 61, 4915–4931.

    Article  ADS  Google Scholar 

  • Borg, L.E., Nyquist, L.E., Wiesmann, H.: 1998a, ‘Rb-Sr Isotopic Systematics of the Lherzolitic Shergottite LEW88516’, Proc. 29th Lunar Planet. Sci. Conf, abstract #1233 (CD-ROM).

    Google Scholar 

  • Borg, L.E., Nyquist, L.E., Wiesmann, H., Reese, Y: 1998b, ‘Samarium-neodymium Isotopic Systematics of the Lherzolitic Shergottite Lewis Cliff 88516’ Met. Planet. Sci. 33, A20.

    Google Scholar 

  • Borg, L.E., Connelly, J.N., Nyquist, L.E., Shih, C.-Y., Wiesmann, H., Reese, Y.: 1999, ‘The Age of the Carbonates in Martian Meteorite ALH84001’, Science 286, 90–94.

    Article  ADS  Google Scholar 

  • Borg, L.E., Nyquist, L.E., Wiesmann, H., Reese Y., Papike, J.J.: 2000, ‘Sr-Nd Isotopic Systematics of Martian Meteorite DaG476’, Proc. 31st Lunar Planet. Sci., abstract #1036 (CD-ROM).

    Google Scholar 

  • Borg, L.E., Nyquist, L.E., Reese, Y., Wiesmann, H., Shih C.Y., Taylor, L.A., and Ivanova, M.: 2001a, ‘The Age of Dhofar 019 and its Relationship to the Other Martian Meteorites’, Proc. 32nd Lunar Planet. Sci. Conf, abstract #1144 (CD-ROM).

    Google Scholar 

  • Borg, L.E., Nyquist, L.E., Wiesmann, H., and Reese, Y.: 2001b, ‘Constraints on Secondary Alteration, Shock Metamorphism, and Petrogenetic Relationships of the Martian Meteorites LEW 88516 and ALHA77005 from Their Rb-Sr and Sm-Nd Isotopic Systematics’, Geochim. Cosmochim. Acta, submitted.

    Google Scholar 

  • Boston, P.J., Ivanov, M.V., and McKay, C.P.: 1992, ‘On the Possibility of Chemosynthetic Ecosystems in Subsurface Habitats on Mars’, Icarus 95, 300–308.

    Article  ADS  Google Scholar 

  • Bunch, T.E., and Reid, A.M.: 1975, ‘The Nakhlites. Part I. Petrography and Mineral Chemistry’, Meteoritics 10, 303–315.

    Article  ADS  Google Scholar 

  • Bridges, J.C., and Grady, M.M.: 2000, ‘Evaporite Mineral Assemblages in the Nakhlite (Martian Meteorites)’, Earth Planet. Sci. Lett. 176, 267–279.

    Article  ADS  Google Scholar 

  • Chen, J.H., and Wasserburg, G.J.: 1986, ‘Formation Ages and Evolution of Shergotty and its Parent Planet from U-Th-Pb Systemics’, Geochim. Cosmochim. Acta 50, 955–968.

    Article  ADS  Google Scholar 

  • Chen, J.H., and Wasserburg, G.J.: 1993, ‘LEW88516 and SNC Meteorites’, Proc. 24th Lunar Planet. Sci. Conf, 275–276, (abstract).

    Google Scholar 

  • Clayton, R.N., and Mayeda T.K.: 1996, ‘Oxygen Isotope Studies of Achondrites’, Geochim. Cosmochim. Acta 60, 1999–2017.

    Google Scholar 

  • Crozaz, G., and Wadhwa, M.: 1999, ‘Chemical Alteration of hot Desert Meteorites: The Case of Shergottite Dar al Gani 476’, in: Workshop on Extraterrestrial Materials from Cold and Hot Deserts. Kwa Maritane, Pilanesberg, South Africa, July 6–8.

    Google Scholar 

  • Dreibus, G., PalmeH. Rammensee, W., Spettel, B., Weckwerth, G., and Wanke, H.: 1982, ‘Composition of the Shergotty Parent Body: Further Evidence of a two Component Model for Planet Formation’, Proc. 13th Lunar Planet. Sci. Conf,186–187.

    Google Scholar 

  • Dreibus, G., and Wänke, H.: 1987, ‘Volatiles on Earth and Mars: A Comparison’, Icarus 71, 225–240.

    Article  ADS  Google Scholar 

  • Dreibus, G., Burghele, A., Jochum, K.P., Spettel, B., Wlotzka, F., and Wanke, H.: 1994, ‘Chemical and Mineral Composition of ALH84001: A Martian Orthopyroxenite’, Meteoritics 29, 461.

    ADS  Google Scholar 

  • Dreibus, G., Spettel, B., Wlotzka, E, Schultz, L., Weber, H.W., Jochum, K.P., and Wänke, H.: 1996, ‘QUE94001: An Unusual Martian Basalt’, Met. Planet. Sci. 31 Suppl., A39–A40 (abstract). Duke, M.B.: 1968, ‘The Shergotty Meteorite: Magmatic and Shock Metamorphic Features’, in B.M.

    Google Scholar 

  • French and N.M. Short (eds.), Shock Metamorphism of Natural Materials,Mono Book Corp.,Baltimore, pp. 613–621.

    Google Scholar 

  • Eberhardt, P., and Hess, D.C.: 1960, ‘Helium in Stone Meteorites’, Astrophys. J. 131, 38–46.

    Article  ADS  Google Scholar 

  • El Goresy, A., Dubrovinsky, L., Sharp, T.G., Saxena, S.K., and Chen, M.: 2000, ‘A Monoclinic Post-shishovite Polymorph of Silica in the Shergotty Meteorite’, Science 288, 1632–1634.

    Article  ADS  Google Scholar 

  • Engelhardt, W., von, and Graup, G.: 1984, ‘Suevite of the Ries Crater, Germany: Source Rocks and Implications for Cratering Mechanics’, Geol. Rundschau 73, 447–481.

    Article  ADS  Google Scholar 

  • Eugster, O.: 1994, ‘Orthopyroxenite ALH84001: Ejection from Mars (?) 15 Ma Ago’, Meteoritics 29, 464 (abstract)

    ADS  Google Scholar 

  • Eugster, O., and Michel, T.: 1995, ‘Common Asteroid Break-up Events of Eucrites, Diogenites, and Howardites and Cosmic-ray Production Rates for Noble Gases in Achondrites’, Geochim. Cosmochim. Acta 59, 177–199.

    Article  ADS  Google Scholar 

  • Eugster, O., Eberhardt, P., and Geiss, J.: 1967, ‘81 Kr in Meteorites and 81 Kr Radiation Ages’, Earth Planet. Sci. Lett. 2, 77–82.

    Google Scholar 

  • Eugster, O., Polnau, E., and Terribilini, D.: 1997a, ‘Ejection Age of Martian Lherzolite Yamato 793605, Chassigny, and Shergotty and Formation Age of Shergotty Maskelynite’, Met. Planet. Sci. 32, A40.

    Google Scholar 

  • Eugster, O., Weigel, A., and Polnau, E.: 1997b, ‘Ejection Times of Martian Meteorites’, Geochim. Cosmochim. Acta. 61, 2749–2757.

    Article  ADS  Google Scholar 

  • Evans, J.C., Wacker, J., and Reeves, J.H.: 1992, ‘Terrestrial Ages of Victoria Land Meteorites Collected by the United States Expeditions 1985–1987’, in Marvin and Mc Pherson (eds.), Smithson. Contrib. Earth Sci. 30, Washington DC, 45–56.

    Google Scholar 

  • Floran, R.J., Prinz, M., Hlava P.F., Keil, K., Nehru C.E., and Hinthorne, J.R.: 1978, ‘The Chassigny Meteorite: A Cumulate Dunite with Hydrous Amphibole-bearing Melt Inclusions’, Geochim. Cosmochim. Acta 42, 1213–1229.

    Article  ADS  Google Scholar 

  • Folco, L., Franchi, I.A., Scherer, P., Schultz, L., and Pillinger, C.T.: 1999, Dar al Gani 489 Basaltic Shergottite: A new Find from the Sahara Likely Paired with Dar al Gani 476’, Meteorit. Planet. Sci. 34 (Suppl.), A36 - A37 (abstract).

    Google Scholar 

  • Gale, N.H., Arden. J.W., Hutchison. R.: 1975, ‘The Chronology of the Nakhla Achondritic Meteorite’, Earth Planet. Sci. Leu. 26, 195–206.

    Article  ADS  Google Scholar 

  • Ganapathy, R., and Anders, E.: 1969, ‘Ages of Calcium-rich Achondrites–II. Howardites, Nakhlites, and the Angra dos Reis Angrite’, Geochim. Cosmochim. Acta 33, 775–787.

    Article  ADS  Google Scholar 

  • Garrison, D.H., and Bogard, D.D.: 1998, ‘Isotopic Composition of Trapped and Cosmogenic Noble Gases in Several Martian Meteorites’, Met. Planet. Sci. 33, 721–736.

    Article  ADS  Google Scholar 

  • Garrison, D.H., and Bogard, D.D.: 2000, ‘Cosmogenic and Trapped Noble Gases in the Los Angeles

    Google Scholar 

  • Martian Meteorite’, 63rd Annual Met. Soc. Mtg. Aug. 28-Sept. 1, 2000, Chicago,(abstract). Geiss, J., and Hess, D.C.: 1958, ‘Argon-potassium Ages and the Isotopic Composition of Argon from

    Google Scholar 

  • Meteorites’, Astrophys..1. 127, 224–236.

    Google Scholar 

  • Gladman, B.: 1997, ‘Destination: Earth. Martian Meteorite Delivery’, Icarus 130, 228–246.

    Article  ADS  Google Scholar 

  • Gleason, J.D., Kring, D.A., Hill, D.H., and Boynton, W.V.: 1997, ‘Petrography and Bulk Chemistry of Martian Orthopyroxenite ALH84001: Implications for the Origin of Secondary Carbonates’,Geochim. Cosmochim. Acta 61, 3503–3512.

    Google Scholar 

  • Golden, D.C., Ming, D.W., Schwandt, C.S., Lauer, H.V., Socki, R.A., Morris, R.V., Lofgren, G.E., and McKay, G.: 2000a, ‘Inorganic Formation of Zoned Mg-Fe-Ca Carbonate Globules with Magnetite and Sulfide Rims Similar to those in Martian Meteorite ALH84001’, Proc. 31st Lunar Planet. Sci. Conf., LPI, Houston, abstract #1799 (CD-ROM).

    Google Scholar 

  • Golden, D.C., Ming, D.W., Schwandt, C.S., Morris, R.V., Yang S.V., and Lofgren, G.E.: 2000b, ‘An Experimental Study on Kinetically-driven Precipitation of Calcium-magnesium-iron Carbonates from Solution: Implications for the Low-temperature Formation of Carbonates in Martian Allan Hills 84001’, Met. Planet. Sci. 35, 457–465.

    Article  ADS  Google Scholar 

  • Gooding, J.L., Wentworth, S.J., and Zolensky, M.E.: 1991, ‘Aqueous Alteration of the Nakhla Meteorite’, Meteoritics 26, 135–143.

    Article  ADS  Google Scholar 

  • Greshake, A.: 1998, ‘Transmission Electron Microscope Charactrization of Shock Defects in Minerals from the Nakhla SNC Meteorite’, Meteorit. Planet. Sci. 33, A63.

    Google Scholar 

  • Greshake, A., and Stöffler, D.: 1999, ‘Shock Metamorphic Features in the SNC Meteorite Dar al Gani 476’, Proc. 30th Lunar Planet. Sci., LPI, Houston abstract #1377 (CD-ROM).

    Google Scholar 

  • Greshake, A., and Stöffler, D.: 2000, ‘Shock Related Melting Phenomena in the SNC Meteorite Dar al Gani 476’, Proc. 31st Lunar Planet. Sci. Conf., LPI, Houston abstract #1043 (CD-ROM).

    Google Scholar 

  • Greshake, A., Stephan, T., and Rost, D.: 1998, ‘Symplectic Exsolutions in Olivine from the Martian Meteorite Chassigny: Evidence for Slow Cooling Under Highly Oxidizing Conditions’, Proc. 29th Lunar Planet. Sci. Conf., abstract #1069.

    Google Scholar 

  • Greshake, A., Schmitt, R.T., Stöffler, D., Pätsch, M., and Schultz, L.: 2001, ‘Dhofar 081: A new Lunar Highland Meteorite’, Meteoritics and Planet. Sci.,in press.

    Google Scholar 

  • Grossman, J.N.: 2000, The Meteoritical Bulletin, No. 84, Meteorit. Planet. Sci. 35, A199 - A225.

    Article  ADS  Google Scholar 

  • Harper, C.L., Jr., Nyquist, L.E., Bansal, B.M., Wiesmann, H., and Shih, C.-Y.: 1995, ‘Rapid Accre-tion and Early Differentiation of Mars Indicated by 142Nd/144Nd in SNC Meteorites’, Science 267, 213–216.

    Article  ADS  Google Scholar 

  • Hartmann, W.K.: 1999, ‘Martian Cratering VI: Crater Count Isochrons and Evidence for Recent Volcanis from Mars Global Surveyor’, Met. Planet. Sci. 34, 167–177.

    Article  ADS  Google Scholar 

  • Hartmann, W.K.: 2001, ‘Martian Seeps and Their Relation to Youthful Geothermal Activity’, Space Sci. Rev., this volume.

    Google Scholar 

  • Hartmann, W.K., and Berman, D.C.: 2000, ‘Elysium Planitia Lava Flows: Crater Count Chronology and Geological Implications’, J. Geophys. Res. 105, 15,011–15,025.

    Google Scholar 

  • Hartmann, W.K., and Neukum, G.: 2001, ‘Cratering Chronology and Evolution of Mars’, Space Sci. Rev., this volume.

    Google Scholar 

  • Hartmann, W.K., Anguita, J., de la Casa, M., Berman, D.C., and Ryan, E.V.: 2000, ‘Martian Cratering 7: The Role of Impact Gardening’, Icarus 148 in press.

    Google Scholar 

  • Harvey, R., and McSween, H.Y., Jr.: 1996, ‘A Possible High-temperature Origin for the Carbonates in the Martian Meteorite ALH84001’, Nature 382, 49–51.

    Article  ADS  Google Scholar 

  • Harvey, R.P., Wadhwa, M., McSween, H.Y., Jr., and Crozaz, G.: 1993, ‘Petrography, Mineral Chemistry and Petrogenesis of Antarctic Shergottite LEW88516’, Geochim. Cosmochim. Acta 57, 4769–4783.

    Article  ADS  Google Scholar 

  • Head, J.N., Melosh, H.J.: 2000, ‘Launch Velocity Distribution of the Martian Clan Meteorites’, Proc. 31st Lunar Planet. Sci., LPI, Houston, abstract #1937 (CD-ROM).

    Google Scholar 

  • Heymann, D., Mazor, E., and Anders, E.: 1968, ‘Ages of Ca-rich achondrites–I. Eucrites’, Geochim. Cosmochim. Acta 32, 1241–1268.

    Article  ADS  Google Scholar 

  • Ikeda, Y.: 1994, ‘Petrography and Petrology of the ALH-77005 Shergottite’, Proc. NIPR Symp. Antarct. Meteorites 7, 9–29.

    ADS  Google Scholar 

  • Ilg, S., Jessberger, E.K., El Goresy, A.: 1997, ‘Argon-40/argon-39 Laser Extraction Dating of

    Google Scholar 

  • Individual Maskelynites in SNC Pyroxenite Allan Hills 84001’, Met. and Planet. Sci. 32 A65. Ivanov, B.: 2001, ‘Mars/Moon Cratering Rate Ratio Estimates’, Space Sci. Rev.,this volume. Jagoutz, E.: 1989, ‘Sr and Nd Isotopic Systematics in ALHA77005: Age of Shock Metamorphism in

    Google Scholar 

  • Shergottites and Magmatic Differentiation on Mars’, Geochim. Cosmochim. Acta 53 2429–2441.

    Google Scholar 

  • Jagoutz, E.: 1996, ‘Nd Isotopic Systematics of Chassigny’, Proc. 27th Lunar Planet. Sci., 597–598 (abstract).

    Google Scholar 

  • Jagoutz, E., and Wänke H.: 1986, ‘Sr and Nd Isotopic Systematics of Shergotty Meteorite’, Geochim. Cosmochim. Acta 50, 939–953.

    Article  ADS  Google Scholar 

  • Jagoutz, E., and Jotter, R.: 1999, ‘SNC Meteorites: Relatives Finally Finding Each Other’, Met. Planet. Sci. 34, A59.

    Google Scholar 

  • Jagoutz, E., and Jotter, R.: 2000, ‘New Sm-Nd Isotope Data on Nakhla Minerals’, Proc. 31st Lunar Planet. Sci., abstract #1609 (CD-ROM).

    Google Scholar 

  • Jagoutz, E., Sorowka, A., Vogel, J.D., Wänke, H.: 1994, ‘ALH84001: Alien or Progenitor of the SNC Family?’, Meteoritics 29, 478–479 (abstract).

    ADS  Google Scholar 

  • Jagoutz, E., Bogdanovski, O., Krestina, N., Jotter, R.,: 1999, ‘DAG: A new age in the SNC Family, or the First Gathering of Relatives’, Proc. 30th Lunar Planet. Sci., abstract #1808 (CD-ROM).

    Google Scholar 

  • Jones, J.H.: 1986, ‘A Discussion of Isotopic Systematics and Mineral Zoning in the Shergottites:

    Google Scholar 

  • Evidence for a 180 Myr Igneous Crystallization Age’, Geochim. Cosmochim. Acta 50, 969–977.

    Google Scholar 

  • Jones, J.H.: 1989, ‘Isotopic Relationships Among the Shergottites, Nakhlites, and Chassigny’, Proc. 19th Lunar Planet. Sci. Conf., 465–474.

    Google Scholar 

  • Jull, A.J.T., and Donahue, D.J.: 1988, ‘Terrestrial 14C Age of the Antarctic Shergottite EETA79001’, Geochim. Cosmochim. Acta 52, 1309–1311.

    Article  ADS  Google Scholar 

  • Jull, A.J.T., Cielaszyk, E., Brown, S.T., and Donahue, D.J.: 1994, ‘14C Terrestrial Ages of Achondrites from Victoria Land Antarctica’, Proc. 25th Lun. Planet. Sci.,647–648.

    Google Scholar 

  • Jull, A.J.T., Eastoe, C.J., Xue, S., and Herzog, G.F.: 1995, ‘Isotopic Composition of Carbonate in the SNC Meteorites ALH84001 and Nakhla’, Meteoritics 30, 311–318.

    Article  ADS  Google Scholar 

  • Jull, A.J.T., Eastoe, C.J., and Clout, S.: 1997, ‘Terrestrial Age of the Lafayette Meteorite and Stable-isotopic Composition of Weathering Products’, Proc. 28th Lun. Planet. Sci., 685–686.

    Google Scholar 

  • Jull, A.J.T., Courtney, C., Jeffrey, D.A., and Beck, J.W.: 1998, ‘Isotopic Evidence for a Terrestrial Source of Organic Compounds Found in Martian Meteorites Allan Hills 84001 and Elephant Moraine 79001’, Science 279, 366–369.

    Article  ADS  Google Scholar 

  • Kadano, T., and Fugiwara, A.: 1996, ‘Observation of Expanding Vapor Cloud Generated by Hypervelocity Impact’, J. Geophys. Res. 101, 26,097–26,109.

    Google Scholar 

  • Keller, L.P., Treiman A.H., and Wentworth S.J.: 1992, ‘Shock Effects in the Shergottite LEW88516: Optical and Electron Microscope Observations’, Meteoritics 27, 242.

    Article  ADS  Google Scholar 

  • Keszthelyi, L., McEwen, A.S., and Thordarson, T.;, 2000, ‘Terrestrial Analogs and Thermal Models for Martian Flood Lavas’, J. Geophys. Res. 105, 15,027–15,049.

    Google Scholar 

  • Kieffer, S.W., Schaal, R., Gibbons, R., Hörz, F., Milton, D., and Duba, A.: 1976, ‘Shocked Basalt from Lonar Crater, India, and Experimental Analogues’, Proc. 7th Lunar Planet. Sci. Conf, 1391–1412.

    Google Scholar 

  • Knott, S.F., Ash, R.D., and Turner, G: 1996, ‘40Ar-39Ar Dating of ALH84001: Evidence for the Early Bombardment of Mars’, Proc. 26th Lunar Planet. Sci. Conf., 765–766 (abstract).

    Google Scholar 

  • Kring, D.A., and Gleason, J.D.: 1997, ‘Magmatic Temperatures and Compositions on Early Mars as

    Google Scholar 

  • Inferred from the Orthopyroxene-silica Assemblage in Allan Hills 84001’, Meteoritics 32, A74. Kring, D.A., Swindle, T.D., Gleason, J.D., and Grier, J.A.: 1998, ‘Formation and Relative Ages of

    Google Scholar 

  • Maskelynite and Carbonate in ALH84001’, Geochim. Cosmochim. Acta 62, 2155–2166. Lambert, P.: 1985, ‘Metamorphic Record in Shergottites’, Meteoritics 20, 690–691.

    Google Scholar 

  • Lambert, P., and Grieve, R.A.F.: 1984, ‘Shock-experiments on Maskelynite-bearing Anorthosite’,Earth Planet. Sci. Lett. 68, 159–171.

    Google Scholar 

  • Lancet, M.S., and Lancet, K.: 1971, ‘Cosmic-ray and Gas Retention Ages of the Chassigny Meteorite’, Meteoritics 6, 81–86.

    Article  ADS  Google Scholar 

  • Langenhorst, F., and Greshake, A.: 1999, ‘A TEM Study of Chassigny: Evidence for Strong Shock Metamorphism’, Met. Planet. Sci. 34, 43–48.

    Article  ADS  Google Scholar 

  • Langenhorst, F., and Poirier, J.-P.: 2000, “‘Eclogitic” Minerals in a Shocked Basaltic Meteorite’, Earth Planet. Sci. Lett. 176, 259–265.

    Article  ADS  Google Scholar 

  • Langenhorst, F., Stöffler, D., and Klein, D.: 1991, ‘Shock Metamorphism of the Zagami Achondrite’, Proc. 22nd Lunar Planet. Sci. Conf, 779–780.

    Google Scholar 

  • Longhi, J.: 1991, ‘Complex Magmatic Processes on Mars: Inferences from the SNC Meteorites’, Proc. Lunar Planet. Sci. Conf. 21, 695–709.

    ADS  Google Scholar 

  • Lodders, K.: 1998, ‘A Survey of Shergottite, Nakhlite and Chassigny Meteorites Whole-rock Compositions’, Met. Planet. Sci. 33, A183 - A190.

    Article  ADS  Google Scholar 

  • Lorenzetti, S., and Eugster, 0.: 2001, ‘Ejection Ages of the Shergottites Los Angeles and Say al Uhaymir’, to be published.

    Google Scholar 

  • Lugmair, G.W., and Galer, S.J.: 1992, ‘Age and Isotopic Relationships Among the Angrites Lewis Cliff 86010 and Angra dos Reis’, Geochim. Cosmochim. Acta 56, 1673–1694.

    Article  ADS  Google Scholar 

  • Malin, M.C., and Edgett, K.S.: 2000, ‘Evidence for Recent Groundwater Seepage and Surface Runoff on Mars’, Science 288, 2330–2335.

    Article  ADS  Google Scholar 

  • Marti, K.: 1967, ‘Mass-spectrometric Detection of Cosmic-ray-produced Kr-81 in Meteorites and the Possibility of Kr-Kr Dating’, Phys. Rev. Lett. 18, 264–266.

    Article  MathSciNet  ADS  Google Scholar 

  • Marti, K., and Matthew, K. J.: 2000, ‘Ancient Martian Nitrogen’, Geophys. Res. Lett. 27, 1463–1466. Marti, K., Kim, J.S., Thakur, A.N., McCoy, T.J., and Keil, K.: 1995, ‘Signatures of the Martian Atmosphere in Glass of the Zagami Meteorite’, Science 267, 1981–1984.

    Article  ADS  Google Scholar 

  • McCoy, T.J., Taylor, G.J., and Keil, K.: 1992, ‘Zagami: Product of a Two-stage Magmatic History’, Geochim. Cosmochim. Acta 56, 3571–3582.

    Article  ADS  Google Scholar 

  • McKay, D.S., Gibson, E.K., Jr., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R., and Zare, R.N.: 1996, ‘Search for Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001’, Science 273, 924–930.

    Article  ADS  Google Scholar 

  • McSween, H.Y., Jr.: 1994, ‘What Have we Learned about Mars from SCN Meteorites’, Meteoritics 29, 757–779.

    Article  ADS  Google Scholar 

  • McSween, H.Y., Jr., and Stöffler, D.: 1980, ‘Shock Metamorphic Features in ALHA77005 Meteorite’, Proc. Il th Lunar Planet. Sci. Conf, 717–719.

    Google Scholar 

  • McSween, H.Y., Jr., and Harvey, R.P.: 1998, ‘An Evaporation Model for Formation of Carbonates in the ALH84001 Martian Meteorite’, Intern. Geol. Rev. 40, 774–783.

    Article  Google Scholar 

  • McSween, H.Y., Jr., and Keil, K.: 2000, ‘Mixing Relationships in the Martian Regolith and the Composition of Globally Homogeneous Dust’, Geochim. Cosmochim. Acta 64, 2155–2166.

    Article  ADS  Google Scholar 

  • Melosh, H.J.: 1984, ‘Impact Ejection, Spallation, and the Origin of Meteorites’, Icarus 59, 234–260. Melosh, H.J.: 1985, ‘Ejection of Rock Fragments from Planetary Bodies’, Geology 13, 144–148.

    Article  ADS  Google Scholar 

  • Melosh, H.J.: 1989, ‘Impact Cratering: A Geologic Process’, Sky and Telescope 78, 382.

    ADS  Google Scholar 

  • Melosh, H.J.: 1995, ‘Cratering Dynamics and the Delivery of Meteorites to the Earth’, Meteoritics 30, 545–546.

    ADS  Google Scholar 

  • Metzler, K., Bobe, K.D., Palme, H., Spettel, B. and Stöffler, D.: 1995, ‘Thermal and Impact Metamorphism of the HED-asteroid’, Planet. Space Sci. 43, 499–525.

    Article  ADS  Google Scholar 

  • Meyer, C.: 1998, Mars Meteorite Compendium - 1998, NASA, Houston, Texas, 237 pp.

    Google Scholar 

  • Mikouchi, T., and Miyamoto, M.: 1997, ‘Yamato-793605: A new Lherzolitic Shergottite from the Japanese Antarctic Meteorite Collection’, Antarct. Meteorite Res. 10, 41–60.

    ADS  Google Scholar 

  • Mikouchi, T., and Miyamoto, M.: 1998, ‘Pyroxene and Olivine Microstructures in Nakhlite Martian Meteorites: Implication for Their Thermal History’, Proc. 29th Lunar Planet. Sci., abstract #1574.

    Google Scholar 

  • Mileikowsky, C., Cucinotta, F.A., Wilson, J.W., Gladman, B., Horneck, G., Lindegren, L., Melosh, J., Rickman, H., Valtonen, M., and Zheng, J.Q.: 2000, ‘Natural Transfer of Viable Microbes in Space’, Icarus 145, 391–427.

    Article  ADS  Google Scholar 

  • Minster, J.-F., Birck, J.-L., Allègre, C.-J.: 1982, ‘Absolute Age of Formation of Chondrites by the 87Sr-87Sr Method’, Nature 300, 414 119.

    Google Scholar 

  • Misawa, K., Nakamura, N., Premo, W.R., Tatsumoto, M.: 1997, ‘U-Th-Pb Isotopic Systematics of

    Google Scholar 

  • Lherzolitic Shergottite Yamato 793605’, Antarctic Meteorites XXII,NIPR, 115–117.

    Google Scholar 

  • Mittlefehldt, D.W.: 1994, ALH84001, A Cumulate Orthopyroxenite Member of the Martian Meteorite Clan’, Meteoritics 29, 214–221.

    Article  ADS  Google Scholar 

  • Mittlefehldt, D.W., Lindstrom, D.J., Lindstrom, M.M., and Martinez, R.R.: 1997, ‘Lithology A in EETA79001 - Product of Impact Melting on Mars’, Proc. 28th Lunar Planet. Sci. Conf., 961962.

    Google Scholar 

  • Miura, Y.N., Nagao, K., Sugiura, N., Sagawa, H., and Matsubara, K.: 1995, ‘Orthopyroxenite ALHA84001 and Shergottite ALHA77005: Additional Evidence for a Martian Origin from Noble Gases’, Geochim. Cosmochim. Acta 59, 2105–2113.

    Article  ADS  Google Scholar 

  • Mouginis-Mark, P.J., McCoy, T.J., Taylor, G.J., Keil, K.: 1992, ‘Martian Parent Craters for the SNC Meteorites’, J. Geophys. Res. 97, 10,213–10,225.

    Google Scholar 

  • Müller, W.F.: 1993, ‘Thermal and Deformational History of the Shergotty Meteorite Deduced from Clinopyroxene Microstructure’, Geochim. Cosmochim. Acta 57, 4311–4322.

    Article  Google Scholar 

  • Müller, H.W., and Zähringer, J.: 1969, ‘Rare Gases in Stony Meteorites’, in P.M. Millmann (ed.) Meteorite Research, D. Reidel, Dordrecht, pp. 845–856.

    Google Scholar 

  • Nagao, K., Nakamura, T., Miura, Y., and Takaoka, N.: 1997, ‘Noble Gases and Mineralogy of Primary Igneous Materials of the Yamato-793605 Shergottite’, Natl Inst. Polar Res., Tokyo, Anarct. Meteorit. Res. 10, 125–142.

    ADS  Google Scholar 

  • Nakamura, N., Komi, H., and Kagami, H.: 1982a, ‘Rb-Sr Isotopic and REE Abundances in the Chassigny Meteorite’, Meteoritics 17, 257–258.

    ADS  Google Scholar 

  • Nakamura, N., Unruh, D.M., Tatsumoto, M., and Hutchison, R.: 1982b, ‘Origin and Evolution of the Nakhla Meteorite Inferred from the Sm-Nd and U-Pb Systematics and REE, Ba, Sr, Rb Abundances’, Geochim. Cosmochim. Acta 46, 1555–1573.

    Article  ADS  Google Scholar 

  • Neukum, G., Ivanov, B., and Hartmann, W.K.: 2001, ‘Cratering Records in the Inner Solar System in Relation to the Lunar Reference System’, Space Sci. Rev., this volume.

    Google Scholar 

  • Newsom, H.E., Brittelle, G.E., Hibbitts, C.A., Crossey, L.J., and Kudo, A.M.: 1996, ‘Impact Crater Lakes on Mars’, J. Geophys. Res. 101, 14,951–14,955.

    Google Scholar 

  • Nishiizumi, K., and Caffee, W.: 1996, ‘Exposure History of Shergottite Queen Alexandra Range 94201’, Proc. 27th Lun. Planet. Sci. Conf., 961–962.

    Google Scholar 

  • Nishiizumi, K., and Caffee, M.W.: 1997, ‘Exposure History of Shergottite Yamato’–793605 (abstract). Antarctic Meteorites XXII, Natl Inst. Polar Res., Tokyo, 149–151.

    Google Scholar 

  • Nishiizumi, K., Klein, J., Middleton, R., Elmore, D., Kubik, P.W., and Arnold, J.R.: 1986, ‘Exposure History of Shergottites’, Geochim. Cosmochim. Acta 50, 1017–1021.

    Article  ADS  Google Scholar 

  • Nishiizumi, K., Arnold J.R., Caffee, M.W., Finkel, R.C., and Southon, J.: 1992, ‘Exposure Histories of Calcalong Creek and LEW885I6 Meteorites’, Meteoritics 27, 270 (abstract).

    ADS  Google Scholar 

  • Nishiizumi, K., Masarik, J., Welten, K.C., Caffee, M.W., Jull A.J.T., and Klandrud, S.E.: 1999, ‘Exposure History of new Martian Meteorite Dar al Gani 476’, Proc. 30th Lun. Planet. Sci. Cont., abstract #1966 (CD-ROM).

    Google Scholar 

  • Nishiizumi, M.W., and Masarik, J.: 2000, ‘Cosmogenic Radionuclides in Los Angeles Martian Meteorite’, 63rd Annual Met. Soc. Mtg. Aug. 28-Sept. 1, 2000, Chicago (abstract).

    Google Scholar 

  • Norman, M.D.: 1999, ‘The Composition and Thickness of the Crust of Mars Estimated from Rare Earth Elements and Neodymium-isotopic Compositions of Martian Meteorites’, Met. Planet. Sci. 34, 439–449.

    Article  ADS  Google Scholar 

  • Nyquist, L.E.: 1983, ‘Do Oblique Impacts Produce Martian Meteorites?’ Proc. 13th Lunar Planet. Sci. Conf., J. Geophys. Res. 88 Suppl., A785–A798.

    Google Scholar 

  • Nyquist, L.E., Wooden, J., Bansal, B., Wiesmann, H., McKay, G., Bogard, D.D.: 1979a, ‘Rb-Sr age of the Shergotty Achondrite and Implications for Metamorphic Resetting of Isochron Ages’, Geochim. Cosmochim. Acta 43, 1057–1074.

    Article  ADS  Google Scholar 

  • Nyquist, L.E., Bogard, D.D., Wooden, J.L., Wiesmann, H., Shih, C.-Y., Bansal, B.M., and McKay, G.: 1979b, ‘Early Differentiation, Late Magmatism, and Recent Bombardment on the Shergottite Parent Planet’, Meteoritics 14, 502.

    ADS  Google Scholar 

  • Nyquist, L.E., Wiesmann, H., Shih, C.-Y., Bansal, B.M.: 1986, ‘Sr Isotopic Systematics of EETA79001’, Proc. 17th Lunar Planet. Sci. Conf., 624–625 (abstract).

    Google Scholar 

  • Nyquist, L.E., Bansal, B., Wiesmann, H., Shih, C.-Y.: 1994, ‘Neodymium, Strontium and Chromium Isotopic Studies of the LEW86010 and Angra dos Reis Meteorites and the Chronology of the Angrite Parent Body’, Meteoritics 29, 882–885.

    Article  ADS  Google Scholar 

  • Nyquist, L.E., Bansal, B.M., Wiesmann, H., Shih, C.-Y.: 1995, “‘Martians” Young and old: Zagami and ALH84001’, Proc. 26th Lunar Planet. Sci. Conf., 1065–1066 (abstract).

    Google Scholar 

  • Nyquist, L.E., Borg, L.E., Shih, C.-Y.: 1998, ‘The Shergottite Age Paradox and the Relative Probabilities for Martian Meteorites of Differing Ages’, J. Geophys. Res. 103, 31,445–31,455.

    Google Scholar 

  • Nyquist, L.E., Reese, Y.D., Wiesmann, H., Shih, C.-Y., and Schwandt, C.: 2000, ‘RubidiumStrontium Age of the Los Angeles Shergottite’, Met. Planet. Sci. 35, Al21-Al22.

    Google Scholar 

  • Nyquist, L.E., Reese, Y., Wiesmann, H., and Shih, C.-Y.: 2001, ‘Age of EET79001B and Implications for Shergottite Origins’, Proc. 32nd Lunar Planet. Sci. Conf., abstract #1407 (CD-ROM).

    Google Scholar 

  • O’Keefe, J.D., and Ahrens, T.J.: 1986, ‘Oblique Impact: A Process for Obtaining Meteorite Samples from Other Planets’, Science 234, 346–349.

    Article  ADS  Google Scholar 

  • Ostertag, R., Amthauer, G., Rager, H., and McSween, H.Y., Jr.: 1984, ‘Fe3+ in Shocked Olivine Crystals of the ALHA77005 Meteorite’, Earth Planet. Sci. Lett. 67, 162–166.

    Article  ADS  Google Scholar 

  • Ott, U.: 1988, ‘Noble Gases in SNC Meteorites Shergotty, Nakhla, Chassigny’, Geochim. Cosmochim. Acta 52, 1937–1948.

    Article  ADS  Google Scholar 

  • Ott, U., and Löhr, H.P.: 1992, ‘Noble Gases in the new Shergottite LEW88516’, Meteoritics 27, 271 (abstract).

    ADS  Google Scholar 

  • Paetsch, M., Altmaier, M., Herpers, U., Kosuch, H., Michel, R., and Schultz, L.: 2000, ‘Exposure Age of the New SNC Meteorite Sayh al Uhaymir 005’, Met. Planet. Sci. 35, Al24-Al25 (abstract).

    Google Scholar 

  • Pal, D.K., Tuniz, C., Moniot, R.K., Savin,W., Kruse, T., and Herzog, G.F.: 1986, ‘Beryllium-10 Contents of Shergottites, Nakhlites and Chassigny’, Geochim. Cosmochim. Acta 50, 2405–2409.

    Article  ADS  Google Scholar 

  • Papanastassiou, D.A., Wasserburg, G.J.: 1974, ‘Evidence for Late Formation and Young Metamorphism in the Achondrite Nakhla’, Geophy. Res. Lett. 1, 23–26.

    Article  ADS  Google Scholar 

  • Pierazzo, E., and Melosh, H.J.: 1999, ‘Hydocode Modeling of Chicxulub as an Oblique Impact Event’, Earth Planet. Sci. Lett. 165, 163–176.

    Article  ADS  Google Scholar 

  • Pierazzo, E., and Melosh, H.J.: 2000, ‘Melt Production in Oblique Impacts’, Icarus 145, 252–261. Podosek, F.A.: 1973, ‘Thermal History of the Nakhlites by the 40Ar-39Ar Method’, Earth Planet. Sci. Lett. 19, 135–144.

    Google Scholar 

  • Pohl, J., Stöffler, D., Gall, H., and Ernstson, K.: 1977, ‘The Ries Impact Crater’, in D.H. Roddy, R.O. Pepin, and R.B. Merrill (eds.), Impact and Explosion Cratering, Pergamon Press, New York, pp. 343–404.

    Google Scholar 

  • Rieder, R., Economou, T., Wänke, H., Turkevich, A., Crisp, J., Brückner, J., Dreibus, G., McSween, H.Y., Jr.: 1997, ‘The Chemical Composition of Martian Soil and Rocks Returned by the Mobile Alpha Proton X-ray Spectrometer: Preliminary Results from the X-ray Mode’, Science 278, 1771–1774.

    Article  ADS  Google Scholar 

  • Rubin, A.E., Warren, P.H., Greenwood, J.P., Verish, R.S., Leshin, L.A., Hervig, R.L., Clayton, R.N., and Mayeda, T.K.: 2000, ‘Los Angeles: the Most Differentiated Basaltic Martian Meteorite’, Geology, submitted.

    Google Scholar 

  • Sano, Y., Terada, K., Takeno, S., Taylor, L.A., McSween, H.Y.: 2000, ‘Ion Microprobe Uraniumthorium-lead Dating of Shergotty Phosphates’, Met. Planet. Sci. 35, 341–346.

    Article  ADS  Google Scholar 

  • Sarafin, R., Herpers, U., Signer, P., Wieler, R., Bonani, G., Hofmann, H.J., Morenzoni, E., Nessi, M., Suter, M., and Wölfli, W.: 1985, ‘10Be, 26A1, 53Mn, and Light Noble Gases in the Antarctic Shergottite EETA79001(A)’, Earth Planet. Sci. Lett. 75, 72–76.

    Article  ADS  Google Scholar 

  • Schaal, R.B., and Hörz, F.: 1977, ‘Shock Metamorphism of Lunar and Terrestrial Basalts’, Proc. 8th Lunar Planet. Sci. Conf., 1679–1729.

    Google Scholar 

  • Schmitt, R.T.: 2000, ‘Shock Experiments with the H6 Chondrite Kernouvé: Pressure Calibration of Microscopic Shock Effects’, Met. Planet. Sci. 35, 545–560.

    Article  ADS  Google Scholar 

  • Schultz, L., and Freundel, M.: 1984, ‘Terrestrial Ages of Antarctic Meteorites’, Meteoritics 19, 310 (abstract).

    ADS  Google Scholar 

  • Schultz, P.H., and DSHondt, S.: 1996, ‘Cretaceous-Tertiary (Chicxulub) Impact Angle and its Consequences’, Geology 24, 963–967.

    Article  ADS  Google Scholar 

  • Schultz, L., and Franke, L.: 2000, ‘Helium, Neon, and Argon in Meteorites, a Data Compilation’, Max-Planck-Institut für Chemie, Mainz.

    Google Scholar 

  • Scott, E.R.D.: 1999, ‘Origin of Carbonate-magnetite-sulfide Assemblages in Martian Meteorite ALH84001’, J. Geophys. Res. 104, 3803–3813.

    Article  ADS  Google Scholar 

  • Scott, E.R.D., Krot, A.N., and Yamagouchi, A.: 1998, ‘Carbonates in Fractures of Martian Meteorite ALH84001: Petrologic Evidence for Impact Origin’, Met. Planet. Sci. 33, 709–719.

    Article  ADS  Google Scholar 

  • Sharp, T.G., El Goresy, A., Wopenka, B., and Chen, M.: 1999, ‘A Post-stihovite Si02 Polymorph in the Meteorite Shergotty: Implications for Impact Events’, Science 284, 1511–1513.

    Article  ADS  Google Scholar 

  • Shih, C.-Y., Nyquist, L.E., Bogard, D.D., McKay, G.A., Wooden, J.L., Bansal, B.M., and Wiesmann, H.: 1982, H.: 1982, ‘Chronology and Petrogenesis of Young Achondrites, Shergotty, Zagami, and ALHA 77005: Late Magmatism on a Geologically Active Planet’, Geochim. Cosmochim. Acta 46, 2323 2344.

    Google Scholar 

  • Shih, C.-Y., Nyquist, L.E., Reese, Y., and Wiesmann, H.: 1998, ‘The Chronology of the Nakhlite Lafayette: Rb-Sr and Sm-Nd Isotopic Ages’, Proc. 29th Lunar Planet. Sci.,abstract #1145 (CD-ROM).

    Google Scholar 

  • Shih, C.-Y., Nyquist, L.E., and Wiesmann, H.: 1999, ‘Sm-Nd and Rb-Sr Systematics of Nakhlite Governador Valadares’, Met. Planet. Sci. 34, 647–655.

    Article  ADS  Google Scholar 

  • Shukolyukov, Yu.A., Nazarov, M.A., and Schultz, L.: 2000, ‘Dhofar019: A Shergottite with an Approximately 20-million-year Exposure Age’, Met. Planet. Sci. 35, A (abstract).

    Google Scholar 

  • Stauffer H.: 1962, ‘On the Production Rates of Rare Gas Isotopes in Stone Meteorites’, J. Geophys.Res. 67, 2023–2028.

    Article  ADS  Google Scholar 

  • Steele, I.M. and Smith, J.V.: 1982, ‘Petrography and Mineralogy of two Basalts and Olivine-pyroxene-spinel Fragments in Achondrite EETA79001’, J. Geophys. Res. 87, A375 - A384.

    Article  Google Scholar 

  • Steiger, R.H., and Jäger, E.: 1977, ‘Subcommission on Geochronology: Convention on the use ofDecay Constants in Geo-and Cosmochronology’, Earth Planet. Sci. Lett. 36, 359–362.

    Article  ADS  Google Scholar 

  • Stephan, T., Rost,D., Jessberger, E.K., and Greshake, A.: 1998, ‘Polycyclic Aromatic Hydrocarbons are Everywhere in Allan Hills 84001’, Met. Planet. Sci. 33, A149 - A150.

    Google Scholar 

  • Stephan, T., Greshake, A., Herpers, U., Jessberger, E.K., Jochum, K.-P., Michel, R., Ott, U., and Stöffler, D.: 1999, ‘Systematic and Interdisciplinary Analyses of all SNC Meteorites’, Proposal, Münster, pp. 42.

    Google Scholar 

  • Stöffler, D.: 1972, ‘Deformation and Transformation of Rock-forming Minerals by Natural and Experimental Shock Processes: I. Behavior of Minerals Under Shock Compression’, Fortschr. Miner. 49, 50–113.

    Google Scholar 

  • Stöffler, D.: 1984, ‘Glasses Formed by Hypervelocity Impact’, J. Non-Cryst. Sol. 67, 465–502.

    Article  ADS  Google Scholar 

  • Stöffler, D.: 2000, ‘Maskelynite Confirmed as Diaplectic Glass: Indication for Peak Shock Pressures Below 45 GPa in all Martian Meteorites’, Proc. 31st Lunar Planet. Sci., abstract #1170.

    Google Scholar 

  • Stöffler, D., and Ostertag, R.: 1983, ‘The Ries Impact Crater’, Fortschr. Miner. 61, Beiheft 2,71–116.

    Google Scholar 

  • Stöffler, D., Ostertag, R., Jammes, C., Pfannschmidt, G., Sen Gupta, P.R., Simon, S.B., Papike, J.J., and Beauchamp, R.H.: 1986, ‘Shock Metamorphism and Petrography of the Shergotty Achondrite’, Geochim. Cosmochim. Acta 50, 889–913.

    Article  ADS  Google Scholar 

  • Stöffler, D., Bischoff, A., Buchwald, U., and Rubin, A.E.: 1988, ‘Shock Effects in Meteorites’, in J.F. Kerridge and M.S. Matthews (eds.), Meteorites and the Early Solar System, Univ. Arizona Press, Tucson, pp. 165–205.

    Google Scholar 

  • Swindle, T.D., Caffee, M.W., and Hohenberg, C.M.: 1986, ‘Xenon and Other Noble Gases in Shergottites’, Geochim. Cosmochim. Acta 50, 1001–1015.

    Article  ADS  Google Scholar 

  • Swindle, T.D., Nichols, R., and Olinger C.T.: 1989, ‘Noble Gases in the Nakhlite Governador Valadares’, Proc. 20th Lunar Planet. Sci. Conf., 1097–1098 (abstract).

    Google Scholar 

  • Swindle, T.D., Grier, J.A., Burkland, M.K.: 1995, ‘Noble Gases in Orthopyroxenite ALH84001: A Different Kind of Martian Meteorite with an Atmospheric Signature’, Geochim. Cosmochim. Acta 59, 793–801.

    Article  ADS  Google Scholar 

  • Swindle, T.D., Li, B., and Kring, D.A.: 1996, ‘Noble Gases in Martian Meteorite QUE94201’, Proc. 27th Lunar Planet. Sci. Conf, 1297–1298 (abstract).

    Google Scholar 

  • Swindle, T.D., Treiman, A.H., Lindstrom, D.J., Burkland, M.K., Cohen, B.A., Grier, J.A., Li, B., Olson, E.K.: 1999, ‘Nobel Gases in Iddingsite from the Lafayette Meteorite: Evidence of Liquid Water on Mars in the Last few Hundred Million Years’, Met. Planet. Sci. 35, 107–175.

    Article  ADS  Google Scholar 

  • Swindle T.D., Treiman, A.H., Lindstrom, D.J., Burkland, M.K., Cohen, B.A., Grier, J.A., Li B., and Olson E.K.: 2000, ‘Noble Gases in Iddingsite from the Lafayette Meteorite’, Met. Planet. Sci. 35, 107–116.

    Article  ADS  Google Scholar 

  • Tanaka, K.L.: 1986, ‘The Stratigraphy of Mars’, Proc. 17th Lunar Planet. Sci. Conf., J. Geophys. Res. Suppl. 91, E139–158.

    Article  ADS  Google Scholar 

  • Tanaka, K.L., Scott, D.H., and Greeley, R.: 1992, ‘Global stratigraphy’, in H.H. Kieffer etal.(ed.) Mars, Univ. of Ariz. Press, Tucson, pp. 345–382.

    Google Scholar 

  • Terribilini, D., Eugster, O., Burger, M., Jakob, A., and Krähenbtihl, U.: 1998, ‘Noble Gases and Chemical Composition of Shergotty Mineral Fractions, Chassigny, and Yamato-793605’, Met. Planet. Sci. 33, 677–684.

    Article  ADS  Google Scholar 

  • Terribilini, D., Busemann, H., and Eugster O.: 2000, ‘8I Kr - Kr Cosmic-ray Exposure Ages of

    Google Scholar 

  • Martian Meteorites Including the new Shergottite Los Angeles’, Met. Planet. Sci. 35 A155. Treiman, A.H.: 1985, ‘Amphibole and Hercynite Spinel in Shergotty and Zagami: Magmatic Water

    Google Scholar 

  • Depth of Crystallization, and Metasomatism’, Meteoritics 20 229–243.

    Google Scholar 

  • Treiman, A.H.: 1987, ‘Geology of the Nakhlite Meteorites: Cumulate Rocks from Flows and Shallow Intrusions’, Proc. 18th Lunar Planet. Sci., 1022–1023.

    Google Scholar 

  • Treiman, A.H.: 1995a, ‘SYNC: Multiple Source Areas for Martian Meteorites’, J. Geophys. Res. 100, 5329–5340.

    Article  ADS  Google Scholar 

  • Treiman, A.H.: 1995b, ‘A Petrographic History of Martian Meteorite ALH84001: Two Shocks and an Ancient Age’, Meteoritics 30, 294–302.

    Article  ADS  Google Scholar 

  • Treiman, A.H.: 1998, ‘The History of ALH84001 Revised: Multiple Shock Events’, Meteorit. Planet. Sci. 33, 753–764.

    Article  ADS  Google Scholar 

  • Treiman, A.H., McKay, G.A., Bogard, D.D., Mittelfehldt, D.W., Wang, M.-S., Keller, L., Lipschutz, M.E., Lindstrom, M.M., and Garrison, D.: 1994, ‘Comparison of the LEW88516 and ALH77005 Martian Meteorites: Similar but Distinct’, Meteoritics 29, 581–592.

    Article  ADS  Google Scholar 

  • Tschermak, G.: 1872, ‘Die Meteoriten von Shergotty and Gopalpur’, Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften 65, 122–146.

    Google Scholar 

  • Turner, G., Knott, S.F., Ash, R.D., Gilmour, J.D.: 1997, ‘Ar-Ar Chronology of the Martian Meteorite ALH84001: Evidence for the Timing of the Early Bombardment of Mars’, Geochim. Cosmochim. Acta 61, 3835–3850.

    Article  ADS  Google Scholar 

  • Vickery, A.: 1986, ‘Effect of an Impact-generated Gas Cloud on the Acceleration of Solid Ejecta’, J. Geophys. Res. 91, 14,139–14,160.

    Google Scholar 

  • Warren, P.H.: 1994, ‘Lunar and Martian Meteorite Delivery Services’, Icarus 111, 338–363. Warren, P.H.: 1998, ‘Petrologic Evidence for Low-temperature, Possible Flood-evaporitic Origin of Carbonates in the ALH84001 Meteorite’, J. Geophys. Res. 103, 16,759–16,773.

    Google Scholar 

  • Wanke, H.: 1991, ‘Chemistry, Accretion and Evolution on Mars’, Space Sci. Rev. 56, 1–8.

    Article  ADS  Google Scholar 

  • Wanke, H., and Dreibus, G.: 1988, ‘Chemical Composition and Accretion History of Terrestrial Planets’, Phil. Trans. Roy. Soc. London A325, 545–557.

    Article  ADS  Google Scholar 

  • Wasson, J.T., and Wetherill, G.W.: 1979, ‘Dynamical, Chemical, and Isotopic Evidence Regarding the Formation Locations of Asteroids and Meteorites’, in T. Gehrels (ed.), Asteroids, Univ. Arizona Press, Tucson, pp. 926–974.

    Google Scholar 

  • Wadhwa, M., and Crozaz, G.: 1994, ‘Rare Earth Element Distributions in Chassigny: Clues to its

    Google Scholar 

  • Petrogenesis and Relation to the Nakhlites’, Proc. 25th Lunar Planet. Sci. 1451–1452.

    Google Scholar 

  • Wadhwa, M., and Lugmair, G.W.: 1996, ‘The Formation Age of Carbonates in ALH84001’, Met. Planet. Sci. 31, A145.

    Google Scholar 

  • Weiss, B.P., Kirschvink, J.L., Baudenbacher, F.J., Vali, H., Peters, N.T., Macdonald, F.A., and Wikswo, J.P.: 2000, ‘A Low Temperature Transfer of ALH84001 from Mars to Earth’, Science 290, 791–795.

    Article  ADS  Google Scholar 

  • Wetherill, G.W.: 1988, ‘Where do the Apollo Objects Come from?’ Icarus 111, 1–18.

    Article  ADS  Google Scholar 

  • Wiens, R.C., and Pepin, R.O.: 1988, ‘Laboratory Shock Emplacement of Noble Gases, Nitrogen and Carbon Dioxide into Basalt, and Implications for Trapped Gases in Shergottite EET79001’, Geochim. Cosmochim. Acta 52 295–307.

    Google Scholar 

  • Wood, C.A., and Ashwal, L.D.: 1981, ‘SNC Meteorites: Igneous Rocks from Mars’, Proc. 12th Lunar Planet. Sci. Conf., 1359–1375.

    Google Scholar 

  • Wooden, J.L., Nyquist, L.E., Bogard, D.D., Bansal, B., Wiesmann, H., Shih C.-Y., and McKay, G.A: 1979, ‘Radiometric Ages for the Achondrites Chervony Kut, Governador Valadares, and Allan Hills 77005’, Proc. 10th Lunar Planet. Sci., 1379–1381 (abstract).

    Google Scholar 

  • Zipfel, J., Scherer, P., Spettel, B., Dreibus, G., and Schultz, L.: 2000, ‘Petrology and Chemistry of the new Shergottite Dar al Gani 476’, Met. Planet. Sci. 35, 95–106.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Nyquist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Nyquist, L.E., Bogard, D.D., Shih, CY., Greshake, A., Stöffler, D., Eugster, O. (2001). Ages and Geologic Histories of Martian Meteorites. In: Kallenbach, R., Geiss, J., Hartmann, W.K. (eds) Chronology and Evolution of Mars. Space Sciences Series of ISSI, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1035-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1035-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5725-9

  • Online ISBN: 978-94-017-1035-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics