Skip to main content
Log in

Variations in soil moisture over the ‘Huang-Huai-Hai Plain’ in China due to temperature change using the CNOP-P method and outputs from CMIP5

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

In this study, the variations in surface soil liquid water (SSLW) due to future climate change are explored in the ‘Huang-Huai-Hai Plain’ (‘3H’) region in China with the Common Land Model (CoLM). To evaluate the possible maximum response of SSLW to climate change, the combination of the conditional nonlinear optimal perturbation related to the parameter (CNOP-P) approach and projections from 10 general circulation models (GCMs) of the Coupled Model Intercomparison Project 5 (CMIP5) are used. The CNOP-P-type temperature change scenario, a new type of temperature change scenario, is determined by using the CNOP-P method and constrained by the temperature change projections from the 10 GCMs under a high-emission scenario (the Representative Concentration Pathway 8.5 scenario). Numerical results have shown that the response of SSLW to the CNOP-P-type temperature scenario is stronger than those to the 11 temperature scenarios derived from the 10 GCMs and from their ensemble average in the entire ‘3H’ region. In the northern region, SSLW under the CNOP-P-type scenario increases to 0.1773 m3 m‒3; however, SSLW in the scenarios from the GCMs fluctuates from 0.1671 to 0.1748 m3 m‒3. In the southern region, SSLW decreases, and its variation (–0.0070 m3 m‒3) due to the CNOP-P-type scenario is higher than each of the variations (–0.0051 to –0.0026 m3 m‒3) due to the scenarios from the GCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aich V, Liersch S, Vetter T, Huang S, Tecklenburg J, Hoffmann P, Koch H, Fournet S, Krysanova V, Müller E N, Hattermann F F. 2014. Comparing impacts of climate change on streamflow in four large African river basins. Hydrol Earth Syst Sci, 18: 1305–1321

    Article  Google Scholar 

  • Bastola S, Murphy C, Sweeney J. 2011. The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments. Adv Water Resour, 34: 562–576

    Article  Google Scholar 

  • Bonan G B, Stillwell-Soller L M. 1998. Soil water and the persistence of floods and droughts in the Mississippi River Basin. Water Resour Res, 34: 2693–2701

    Article  Google Scholar 

  • Chen H, Xu C Y, Guo S. 2012. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. J Hydrol, 434-435: 36–45

    Article  Google Scholar 

  • Chen J, Brissette F P, Chaumont D, Braun M. 2013. Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. J Hydrol, 479: 200–214

    Article  Google Scholar 

  • Chen L, Duan W S, Xu H. 2015. A SVD-based ensemble projection algorithm for calculating the conditional nonlinear optimal perturbation. Sci China Earth Sci, 58: 385–394

    Article  Google Scholar 

  • Chen L, Frauenfeld O W. 2014a. A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections. J Geophys Res-Atmos, 119: 5767–5786

    Article  Google Scholar 

  • Chen L, Frauenfeld O W. 2014b. Surface air temperature changes over the Twentieth and Twenty-First Centuries in China simulated by 20 CMIP5 models. J Clim, 27: 3920–3937

    Article  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J L, Fichefet T, Friedlingstein P, Gao X, Gutowski W J, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver A J, Wehner M. 2013. Long-term Climate Change: Projections, Commitments and Irreversibility. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 1079–1080

    Google Scholar 

  • Conil S, Douville H, Tyteca S. 2006. The relative influence of soil moisture and SST in climate predictability explored within ensembles of AMIP type experiments. Clim Dyn, 28: 125–145

    Article  Google Scholar 

  • Dai A. 2012. Increasing drought under global warming in observations and models. Nat Clim Change, 3: 52–58

    Article  Google Scholar 

  • Dai Y, Zeng X, Dickinson R E, Baker I, Bonan G B, Bosilovich M G, Denning A S, Dirmeyer P A, Houser P R, Niu G, Oleson K W, Schlosser C A, Yang Z L. 2003. The common land model. Bull Amer Meteorol Soc, 84: 1013–1023

    Article  Google Scholar 

  • Dan L, Ji J, Xie Z, Chen F, Wen G, Richey J E. 2012. Hydrological projections of climate change scenarios over the 3H region of China: A VIC model assessment. J Geophys Res, 117: D11102

    Article  Google Scholar 

  • Ding Y, Ren G, Shi G, Gong P, Zheng X, Zhai P, Zhang D, Zhao Z, Wang S, Wang H, Luo Y, Chen D, Gao X, Dai X. 2006. National Assessment Report of Climate Change (I): Climate change in China and its future trend (in Chinese). Adv Climate Change Res, V02: 3–8

    Google Scholar 

  • Dobler C, Hagemann S, Wilby R L, Stötter J. 2012. Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed. Hydrol Earth Syst Sci, 16: 4343–4360

    Article  Google Scholar 

  • Duan W, Zhang R. 2010. Is model parameter error related to a significant spring predictability barrier for El Niño events? Results from a theoretical model. Adv Atmos Sci, 27: 1003–1013

    Article  Google Scholar 

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou S C, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M. 2013. Evaluation of Climate Models. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 790–791

    Google Scholar 

  • Hirschi M, Seneviratne S I, Alexandrov V, Boberg F, Boroneant C, Christensen O B, Formayer H, Orlowsky B, Stepanek P. 2011. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci, 4: 17–21

    Article  Google Scholar 

  • Komuscu A U, Erkan A, Oz S. 1998. Possible impacts of climate change on soil moisture availability in the southeast anatolia development project region (GAP): An analysis from an agricultural drought perspective. Clim Change, 40: 519–545

    Article  Google Scholar 

  • Koster R D, Suarez M J, Liu P, Jambor U, Berg A, Kistler M, Reichle R, Rodell M, Famiglietti J. 2004. Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J Hydrometeorol, 5: 1049–1063

    Article  Google Scholar 

  • Li M, Ma Z. 2010. Comparisons of simulations of soil moisture variations in the Yellow River basin driven by various atmospheric forcing data sets. Adv Atmos Sci, 27: 1289–1302

    Article  Google Scholar 

  • Liu L, Zhang R, Zuo Z. 2014. Intercomparison of spring soil moisture among multiple reanalysis data sets over eastern China. J Geophys Res-Atmos, 119: 54–64

    Article  Google Scholar 

  • Liu S, Lin Z. 2005. Validation of common land model using field experiment data over typical land cover types in East Asia (in Chinese). Clim Environ Res, 10: 684–699

    Google Scholar 

  • Lorenz R, Jaeger E B, Seneviratne S I. 2010. Persistence of heat waves and its link to soil moisture memory. Geophys Res Lett, 37: L09703

    Article  Google Scholar 

  • Ma Z G, Fu C B. 2005. Decadal variations of arid and semi-arid boundary in China (in Chinese). Chin J Geophys, 48: 519–525

    Google Scholar 

  • Mehrotra R. 1999. Sensitivity of runoff, soil moisture and reservoir design to climate change in central Indian River Basins. Clim Change, 42: 725–757

    Article  Google Scholar 

  • Mu M, Duan W, Wang Q, Zhang R. 2010. An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlin Processes Geophys, 17: 211–220

    Article  Google Scholar 

  • Peng F, Mu M, Sun G D. 2017. Responses of soil moisture to climate change based on projections by the end of the 21st century under the high emission scenario in the ‘Huang-Huai-Hai Plain’ region of China. J Hydro- environment Res, 14: 105–118

    Article  Google Scholar 

  • Ren G, Ding Y, Zhao Z, Zheng J, Wu T, Tang G, Xu Y. 2012. Recent progress in studies of climate change in China. Adv Atmos Sci, 29: 958–977

    Article  Google Scholar 

  • Sheffield J, Goteti G, Wood E F. 2006. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J Clim, 19: 3088–3111

    Article  Google Scholar 

  • Song Y, Guo W, Zhang Y, Chen Y. 2009. Performances of CoLM and NCAR_CLM3.0 in simulating land-atmosphere interactions over typical forest ecosystems in China Part I. Preliminary analysis of the simulations based on different models (in Chinese). Clim Environ Res, 14: 229–242

    Google Scholar 

  • Sperna Weiland F C, van Beek L P H, Weerts A H, Bierkens M F P. 2012. Extracting information from an ensemble of GCMs to reliably assess future global runoff change. J Hydrol, 412–413: 66–75

    Article  Google Scholar 

  • Sun G D, Mu M. 2011. Nonlinearly combined impacts of initial perturbation from human activities and parameter perturbation from climate change on the grassland ecosystem. Nonlin Processes Geophys, 18: 883–893

    Article  Google Scholar 

  • Sun G D, Mu M. 2012. Responses of soil carbon variation to climate variability in China using the LPJ model. Theor Appl Climatol, 110: 143–153

    Article  Google Scholar 

  • Sun G D, Mu M. 2013. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model. Clim Change, 120: 755–769

    Article  Google Scholar 

  • Sun G D, Mu M. 2014. The analyses of the net primary production due to regional and seasonal temperature differences in eastern China using the LPJ model. Ecol Model, 289: 66–76

    Article  Google Scholar 

  • Sun G D, Mu M. 2017a. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund-Potsdam-Jena (LPJ) model as an example. Theor Appl Climatol, 128: 587–601

    Article  Google Scholar 

  • Sun G D, Mu M. 2017b. Projections of soil carbon using the combination of the CNOP-P method and GCMs from CMIP5 under RCP4.5 in northsouth transect of eastern China. Plant Soil, 413: 243–260

    Article  Google Scholar 

  • Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bull Amer Meteorol Soc, 93: 485–498

    Article  Google Scholar 

  • Tao F, Yokozawa M, Hayashi Y, Lin E. 2003. Future climate change, the agricultural water cycle, and agricultural production in China. Agriculture Ecosystems Environ, 95: 203–215

    Article  Google Scholar 

  • Wang A, Lettenmaier D P, Sheffield J. 2011. Soil moisture drought in China, 1950–2006. J Clim, 24: 3257–3271

    Article  Google Scholar 

  • Wang G Q, Zhang J Y, Jin J L, Pagano T C, Calow R, Bao Z X, Liu C S, Liu Y L, Yan X L. 2012. Assessing water resources in China using PRECIS projections and a VIC model. Hydrol Earth Syst Sci, 16: 231–240

    Article  Google Scholar 

  • Wang Q, Mu M, Dijkstra H A. 2012. Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander. Adv Atmos Sci, 29: 118–134

    Article  Google Scholar 

  • Wang J D, Guo W D, Li H Q. 2013. Application of extended Fourier amplitude sensitivity test (EFAST) method in land surface parameter sensitivity analysis. Acta Phys Sin, 62: 050202

    Google Scholar 

  • Wu L Y, Zhang J Y. 2013. Role of land-atmosphere coupling in summer droughts and floods over eastern China for the 1998 and 1999 cases. Chin Sci Bull, 58: 3978–3985

    Article  Google Scholar 

  • Xin Y, Bian L, Zhang X. 2006. The application of CoLM to arid region of northwest China and Qinghai-Xizang Plateau. Plateau Meteorol, 25: 567–574

    Google Scholar 

  • Yang K, Ye B, Zhou D, Wu B, Foken T, Qin J, Zhou Z. 2011. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim Change, 109: 517–534

    Article  Google Scholar 

  • Yang Y, Watanabe M, Wang Z, Sakura Y, Tang C. 2003. Prediction of changes in soil moisture associated with climatic changes and their implications for vegetation changes: Waves model simulation on Taihang Mountain, China. Clim Change, 57: 163–183

    Article  Google Scholar 

  • Zeng X, Shaikh M, Dai Y, Dickinson R E, Myneni R. 2002. Coupling of the common land Model to the NCAR community climate model. J Clim, 15: 1832–1854

    Article  Google Scholar 

  • Zhang R, Zuo Z. 2011. Impact of spring soil moisture on surface energy balance and summer monsoon circulation over east asia and precipitation in East China. J Clim, 24: 3309–3322

    Article  Google Scholar 

  • Zhang R, Wu B, Han J, Zuo Z. 2013. Effects on summer monsoon and rainfall change over China due to Eurasian snow cover and ocean thermal conditions. In: Singh B R, ed. Climate Change-Realities, Impacts over Ice Cap, Sea Level and Risks, InTech. Rijeka. 227–250

    Google Scholar 

  • Zhang R. 2015. Changes in East Asian summer monsoon and summer rainfall over eastern China during recent decades. Chin Sci Bull, 60: 1222–1224

    Google Scholar 

  • Zuo Z Y, Zhang R H. 2007. The spring soil moisture and the summer rainfall in eastern China. Chin Sci Bull, 52: 3310–3312

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 91437111 & 41375111 & 41675104 & 41230420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoDong Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Peng, F. & Mu, M. Variations in soil moisture over the ‘Huang-Huai-Hai Plain’ in China due to temperature change using the CNOP-P method and outputs from CMIP5. Sci. China Earth Sci. 60, 1838–1853 (2017). https://doi.org/10.1007/s11430-016-9061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-9061-3

Keywords

Navigation