Skip to main content
Log in

Mechanism of iron on the intestinal epithelium development in suckling piglets

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

This study aimed to investigate the mechanism of iron on intestinal epithelium development of suckling piglets. Compared with newborn piglets, 7-day-old and 21-day-old piglets showed changes in the morphology of the jejunum, increased proliferation, differentiated epithelial cells, and expanded enteroids. Intestinal epithelium maturation markers and iron metabolism genes were significantly changed. These results suggest that lactation is a critical stage in intestinal epithelial development, accompanied by changes in iron metabolism. In addition, deferoxamine (DFO) treatment inhibited the activity of intestinal organoids at passage 4 (P4) of 0-day-old piglets, but no significant difference was observed in epithelial maturation markers at passage 1 (P1) and P4, and only argininosuccinate synthetase 1 (Ass1) and β-galactosidase (Gleb) were up-regulated at passage 7 (P7). These results in vitro show that iron deficiency may not directly affect intestinal epithelium development through intestinal stem cells (ISCs). The iron supplementation significantly down-regulated the mRNA expression of interleukin-22 receptor subunit alpha-2 (IL-22RA2) in the jejunum of piglets. Furthermore, the mRNA expression of IL-22 in 7-day-old piglets was significantly higher than that in 0-day-old piglets. Adult epithelial markers were significantly up-regulated in organoids treated with recombinant murine cytokine IL-22. Thus, IL-22 may play a key role in iron-affecting intestinal epithelium development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Armstrong, A., Mandala, A., Malhotra, M., and Gnana-Prakasam, J.P. (2022). Canonical Wnt signaling in the pathology of iron overload-induced oxidative stress and age-related diseases. Oxid Med Cell Longev 2022, 7163326.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beyaz, S., Mana, M.D., Roper, J., Kedrin, D., Saadatpour, A., Hong, S.J., Bauer-Rowe, K.E., Xifaras, M.E., Akkad, A., Arias, E., et al. (2016). High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biton, M., Haber, A.L., Rogel, N., Burgin, G., Beyaz, S., Schnell, A., Ashenberg, O., Su, C.W., Smillie, C., Shekhar, K., et al. (2018). T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175, 1307–1320.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, D.C., Maxwell, C.V., Erf, G.F., Davis, M.E., Singh, S., and Johnson, Z.B. (2006). Ontogeny of T lymphocytes and intestinal morphological characteristics in neonatal pigs at different ages in the postnatal period. J Anim Sci 84, 567–578.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., Wu, X., Wang, X., Shao, Y., Tu, Q., Yang, H., Yin, J., and Yin, Y. (2020). Responses of intestinal microbiota and immunity to increasing dietary levels of iron using a piglet model. Front Cell Dev Biol 8, 603392.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collard, K.J. (2009). Iron homeostasis in the neonate. Pediatrics 123, 1208–1216.

    Article  PubMed  Google Scholar 

  • D’Inca, R., Kloareg, M., Gras-Le Guen, C., and Le Huërou-Luron, I. (2010). Intrauterine growth restriction modifies the developmental pattern of intestinal structure, transcriptomic profile, and bacterial colonization in neonatal pigs. J Nutr 140, 925–931.

    Article  PubMed  Google Scholar 

  • Damasceno, L.E.A., Prado, D.S., Veras, F.P., Fonseca, M.M., Toller-Kawahisa, J.E., Rosa, M.H., Públio, G.A., Martins, T.V., Ramalho, F.S., Waisman, A., et al. (2020). PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation. J Exp Med 217, e20190613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, Q., Tan, X., Wang, H., Wang, Q., Huang, P., Li, Y., Li, J., Huang, J., Yang, H., and Yin, Y. (2020). Changes in cecal morphology, cell proliferation, antioxidant enzyme, volatile fatty acids, lipopolysaccharide, and cytokines in piglets during the postweaning period. J Anim Sci 98, skaa046.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong, Z., Wan, D., Li, G., Zhang, Y., Yang, H., Wu, X., and Yin, Y. (2020). Comparison of oral and parenteral iron administration on iron homeostasis, oxidative and immune status in anemic neonatal pigs. Biol Trace Elem Res 195, 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, T.M., Navis, M., Wildenberg, M.E., van Elburg, R.M., and Muncan, V. (2019). Recapitulating suckling-to-weaning transition in vitro using fetal intestinal organoids. J Vis Exp 153.

  • Gehart, H., and Clevers, H. (2019). Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol 16, 19–34.

    Article  PubMed  Google Scholar 

  • Gray, G.M., and Santiago, N.A. (1969). Intestinal β-galactosidases. I. Separation and characterization of three enzymes in normal human intestine. J Clin Invest 48, 716–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, F., Hu, L., Xuan, Y., Ding, X., Luo, Y., Bai, S., He, S., Zhang, K., and Che, L. (2013). Effects of high nutrient intake on the growth performance, intestinal morphology and immune function of neonatal intra-uterine growth-retarded pigs. Br J Nutr 110, 1819–1827.

    Article  CAS  PubMed  Google Scholar 

  • Harper, J., Mould, A., Andrews, R.M., Bikoff, E.K., and Robertson, E.J. (2011). The transcriptional repressor Blimp1/Prdm1 regulates postnatal reprogramming of intestinal enterocytes. Proc Natl Acad Sci USA 108, 10585–10590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuberger, J., Kosel, F., Qi, J., Grossmann, K.S., Rajewsky, K., and Birchmeier, W. (2014). Shp2/MAPK signaling controls goblet/paneth cell fate decisions in the intestine. Proc Natl Acad Sci USA 111, 3472–3477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, G.W., Lin, L., DeMartino, J., Zheng, X., Staliarova, N., Dayton, T., Begthel, H., van de Wetering, W.J., Bodewes, E., van Zon, J., et al. (2022). Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation. Cell Stem Cell 29, 1333–1345.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jowett, G.M., Coales, I., and Neves, J.F. (2022). Organoids as a tool for understanding immune-mediated intestinal regeneration and development. Development 149, dev199904.

    Article  CAS  PubMed  Google Scholar 

  • Jin, Q., Yang, X., Gou, S., Liu, X., Zhuang, Z., Liang, Y., Shi, H., Huang, J., Wu, H., Zhao, Y., et al. (2022). Double knock-in pig models with elements of binary Tet-On and phiC31 integrase systems for controllable and switchable gene expression. Sci China Life Sci 65, 2269–2286.

    Article  CAS  PubMed  Google Scholar 

  • Kempski, J., Giannou, A.D., Riecken, K., Zhao, L., Steglich, B., Lücke, J., Garcia-Perez, L., Karstens, K.F., Wöstemeier, A., Nawrocki, M., et al. (2020). IL22BP mediates the antitumor effects of lymphotoxin against colorectal tumors in mice and humans. Gastroenterology 159, 1417–1430.e3.

    Article  CAS  PubMed  Google Scholar 

  • Le Bourgot, C., Ferret-Bernard, S., Le Normand, L., Savary, G., Menendez-Aparicio, E., Blat, S., Appert-Bossard, E., Respondek, F., and Le Huërou-Luron, I. (2014). Maternal short-chain fructooligosaccharide supplementation influences intestinal immune system maturation in piglets. PLoS ONE 9, e107508.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindemans, C.A., Calafiore, M., Mertelsmann, A.M., O’Connor, M.H., Dudakov, J.A., Jenq, R.R., Velardi, E., Young, L.F., Smith, O.M., Lawrence, G., et al. (2015). Interleukin-22 promotes intestinal-stemcell-mediated epithelial regeneration. Nature 528, 560–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lourenco, J.M., Hampton, R.S., Johnson, H.M., Callaway, T.R., Rothrock Jr., M.J., and Azain, M.J. (2021). The effects offeeding antibiotic on the intestinal microbiota of weanling pigs. Front Vet Sci 8, 601394.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meran, L., Baulies, A., and Li, V.S.W. (2017). Intestinal stem cell niche: the extracellular matrix and cellular components. Stem Cells Int 2017, 1–11.

    Article  Google Scholar 

  • Muncan, V., Heijmans, J., Krasinski, S.D., Büller, N.V., Wildenberg, M.E., Meisner, S., Radonjic, M., Stapleton, K.A., Lamers, W.H., Biemond, I., et al. (2011). Blimp1 regulates the transition of neonatal to adult intestinal epithelium. Nat Commun 2, 452.

    Article  PubMed  Google Scholar 

  • Mihi, B., Gong, Q., Nolan, L.S., Gale, S.E., Goree, M., Hu, E., Lanik, W.E., Rimer, J.M., Liu, V., Parks, O.B., et al. (2021). Interleukin-22 signaling attenuates necrotizing enterocolitis by promoting epithelial cell regeneration. Cell Rep Med 2, 100320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moniruzzaman, M., Wang, R., Jeet, V., McGuckin, M.A., and Hasnain, S.Z. (2019). Interleukin (IL)-22 from IL-20 subfamily of cytokines induces colonic epithelial cell proliferation predominantly through ERK1/2 pathway. Int J Mol Sci 20, 3468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navis, M., Martins Garcia, T., Renes, I.B., Vermeulen, J.L., Meisner, S., Wildenberg, M.E., van den Brink, G.R., van Elburg, R.M., and Muncan, V. (2019). Mouse fetal intestinal organoids: new model to study epithelial maturation from suckling to weaning. EMBO Rep 20, e46221.

    Article  PubMed  Google Scholar 

  • Pu, Y., Li, S., Xiong, H., Zhang, X., Wang, Y., and Du, H. (2018). Iron promotes intestinal development in neonatal piglets. Nutrients 10, 726.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavlidis, P., Tsakmaki, A., Treveil, A., Li, K., Cozzetto, D., Yang, F., Niazi, U., Hayee, B.H., Saqi, M., Friedman, J., et al. (2021). Cytokine responsive networks in human colonic epithelial organoids unveil a molecular classification of inflammatory bowel disease. Cell Rep 40, 111439.

    Article  Google Scholar 

  • Quintero-Gutiérrez, A.G., González-Rosendo, G., Sánchez-Muñoz, J., Polo-Pozo, J., and Rodríguez-Jerez, J.J. (2008). Bioavailability of heme iron in biscuit filling using piglets as an animal model for humans. Int J Biol Sci 4, 58–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rakshit, J., Priyam, A., Gowrishetty, K.K., Mishra, S., and Bandyopadhyay, J. (2020). Iron chelator deferoxamine protects human neuroblastoma cell line SH-SY5Y from 6-Hydroxydopamine-induced apoptosis and autophagy dysfunction. J Trace Elem Med Biol 57, 126406.

    Article  CAS  PubMed  Google Scholar 

  • Ren, W., Yu, B., Yu, J., Zheng, P., Huang, Z., Luo, J., Mao, X., He, J., Yan, H., Wu, J., et al. (2022). Lower abundance of Bacteroides and metabolic dysfunction are highly associated with the post-weaning diarrhea in piglets. Sci China Life Sci 65, 2062–2075.

    Article  CAS  PubMed  Google Scholar 

  • Shen, Y., Li, X., Su, Y., Badshah, S.A., Zhang, B., Xue, Y., and Shang, P. (2019). HAMP downregulation contributes to aggressive hepatocellular carcinoma via mechanism mediated by Cyclin4-dependent Kinase-1/STAT3 pathway. Diagnostics 9, 48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skrzypek, TH., Kazimierczak, W., Skrzypek, H., Valverde Piedra, J.L., Godlewski, M.M., Zabielski, R. (2018). Mechanisms involved in the development of the small intestine mucosal layer in postnatal piglets. J Physiol Pharmacol 69, 127–138.

    CAS  PubMed  Google Scholar 

  • Song, S., Christova, T., Perusini, S., Alizadeh, S., Bao, R.Y., Miller, B.W., Hurren, R., Jitkova, Y., Gronda, M., Isaac, M., et al. (2011). Wnt inhibitor screen reveals iron dependence of β-catenin signaling in cancers. Cancer Res 71, 7628–7639.

    Article  CAS  PubMed  Google Scholar 

  • Tao, J., Krutsenko, Y., Moghe, A., Singh, S., Poddar, M., Bell, A., Oertel, M., Singhi, A.D., Geller, D., Chen, X., et al. (2021). Nuclear factor erythroid 2-related factor 2 and β-catenin coactivation in hepatocellular cancer: biological and therapeutic implications. Hepatology 74, 741–759.

    Article  CAS  PubMed  Google Scholar 

  • Verdile, N., Mirmahmoudi, R., Brevini, T.A.L., and Gandolfi, F. (2019). Evolution of pig intestinal stem cells from birth to weaning. Animal 13, 2830–2839.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Zhang, B., Zhang, H., Yang, W., Meng, Q., Shi, B., and Shan, A. (2020a). Effect of dietary pyrroloquinoline quinone disodium in sows on intestinal health of the offspring. Food Funct 11, 7804–7816.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Yan, S., Li, J., Li, Y., Ding, X., Yin, J., Xiong, X., Yin, Y., and Yang, H. (2019). Rapid communication: the relationship of enterocyte proliferation with intestinal morphology and nutrient digestibility in weaning piglets. J Anim Sci 97, 353–358.

    Article  PubMed  Google Scholar 

  • Wang, M., Yang, C., Wang, Q., Li, J., Huang, P., Li, Y., Ding, X., Yang, H., and Yin, Y. (2020b). The relationship between villous height and growth performance, small intestinal mucosal enzymes activities and nutrient transporters expression in weaned piglets. J Anim Physiol Anim Nutr 104, 606–615.

    Article  CAS  Google Scholar 

  • Wang, Q., Xiong, X., Li, J., Tu, Q., Yang, H., and Yin, Y. (2018). Energy metabolism in the intestinal crypt epithelial cells of piglets during the suckling period. Sci Rep 8, 12948.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Li, J., Wang, Y., Wang, L., Yin, Y., Yin, L., Yang, H., and Yin, Y. (2020c). Dietary vitamin A affects growth performance, intestinal development, and functions in weaned piglets by affecting intestinal stem cells. J Anim Sci 98, skaa020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, B., Tan, Y., Huang, H., Liu, Y., Bai, T., and Yang, L. (2021). Alleviating effect of methionine on intestinal development and intercellular junction induced by nickel. Biol Trace Elem Res 200, 4007–4016.

    Article  PubMed  Google Scholar 

  • Xu, R.J., Mellor, D.J., Tungthanathanich, P., Birtles, M.J., Reynolds, G.W., and Simpson, H.V. (1992). Growth and morphological changes in the small and the large intestine in piglets during the first three days after birth. J Dev Physiol 18, 161–172.

    CAS  PubMed  Google Scholar 

  • Xiang, H., Chen, S., Zhang, H., Zhu, X., Wang, D., Liu, H., Wang, J., Yin, T., Liu, L., Kong, M., et al. (2021). Removal of roosters alters the domestic phenotype and microbial and genetic profile of hens. Sci China Life Sci 64, 1964–1976.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H.S., Fu, D.Z., Kong, X.F., Wang, W.C., Yang, X.J., Nyachoti, C.M., and Yin, Y.L. (2013). Dietary supplementation with N-carbamylglutamate increases the expression of intestinal amino acid transporters in weaned Huanjiang mini-pig piglets. J Anim Sci 91, 2740–2748.

    Article  CAS  PubMed  Google Scholar 

  • Ye, L., Mueller, O., Bagwell, J., Bagnat, M., Liddle, R.A., and Rawls, J.F. (2019). High fat diet induces microbiota-dependent silencing of enteroendocrine cells. Elife 8, e48479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, L., Li, J., Zhang, Y., Yang, Q., Yang, C., Yi, Z., Yin, Y., Wang, Q., Li, J., Ding, N., et al. (2022). Changes in progenitors and differentiated epithelial cells of neonatal piglets. Anim Nutr 8, 265–276.

    Article  CAS  PubMed  Google Scholar 

  • Yin, L., Yang, Q., Zhang, Y., Wan, D., Yin, Y., Wang, Q., Huang, J., Li, J., Yang, H., and Yin, Y. (2021). Dietary copper improves intestinal morphology via modulating intestinal stem cell activity in pigs. Animals 11, 2513.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, C., Zhang, P., Jin, Y., Ullah Shah, A., Zhang, E., and Yang, Q. (2021). Single-blinded study highlighting the differences between the small intestines of neonatal and weaned piglets. Animals 11, 271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, X., Chen, L., Ding, H., Zhao, Y., and Feng, J. (2019). Iron transport from ferrous bisglycinate and ferrous sulfate in DMT1-knockout human intestinal Caco-2 cells. Nutrients 11, 485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., Dong, Z., Wan, D., Wang, Q., Haung, J., Huang, P., Li, Y., Ding, X., Li, J., Yang, H., et al. (2020). Effects of iron on intestinal development and epithelial maturation of suckling piglets. J Anim Sci 98, skaa213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziaei, A., Ardakani, M.R.P., Hashemi, M.S., Peymani, M., Ghaedi, K., Baharvand, H., and Nasr-Esfahani, M.H. (2015). Acute course of deferoxamine promoted neuronal differentiation of neural progenitor cells through suppression of Wnt/β-catenin pathway: a novel efficient protocol for neuronal differentiation. Neurosci Lett 590, 138–144.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Qin, Y., Xiong, X., Wang, Z., Wang, M., Wang, Y., Wang, Q.Y., Yang, H.S., and Yin, Y. (2021). Effects of iron, vitamin A, and the interaction between the two nutrients on intestinal development and cell differentiation in piglets. J Anim Sci 99, skab258.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Sun, Y., Wu, Z., Xiong, X., Zhang, J., Ma, J., Xiao, S., Huang, L., and Yang, B. (2021). Subcutaneous and intramuscular fat transcriptomes show large differences in network organization and associations with adipose traits in pigs. Sci China Life Sci 64, 1732–1746.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32130099), the Science and Technology Innovation Program of Hunan Province (2022RC3060), and the Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process open fund projects (ISA2020113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huansheng Yang.

Ethics declarations

Compliance and ethics The authors declare that they have no conflict of interest. The experimental protocol was approved by the Animal Protection and Utilization Committee of Hunan Normal University, Changsha, Hunan Province.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Zhang, Y., Li, J. et al. Mechanism of iron on the intestinal epithelium development in suckling piglets. Sci. China Life Sci. 66, 2070–2085 (2023). https://doi.org/10.1007/s11427-022-2307-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2307-7

Navigation