Skip to main content
Log in

Ferrodifferentiation regulates neurodevelopment via ROS generation

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Iron is important for life, and iron deficiency impairs development, but whether the iron level regulates neural differentiation remains elusive. In this study, with iron-regulatory proteins (IRPs) knockout embryonic stem cells (ESCs) that showed severe iron deficiency, we found that the Pax6- and Sox2-positive neuronal precursor cells and Tuj1 fibers in IRP1−/−IRP2−/− ESCs were significantly decreased after inducing neural differentiation. Consistently, in vivo study showed that the knockdown of IRP1 in IRP2−/− fetal mice remarkably affected the differentiation of neuronal precursors and the migration of neurons. These findings suggest that low intracellular iron status significantly inhibits neurodifferentiation. When supplementing IRP1−/−IRP2−/− ESCs with iron, these ESCs could differentiate normally. Further investigations revealed that the underlying mechanism was associated with an increase in reactive oxygen species (ROS) production caused by the substantially low level of iron and the down-regulation of iron-sulfur cluster protein ISCU, which, in turn, affected the proliferation and differentiation of stem cells. Thus, the appropriate amount of iron is crucial for maintaining normal neural differentiation that is termed ferrodifferentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All relevant data in this study are available from the corresponding author (yzchang@hebtu.edu.cn) upon reasonable request.

References

  • Anderson, C.P., Shen, M., Eisenstein, R.S., and Leibold, E.A. (2012). Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta 1823, 1468–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Androutsellis-Theotokis, A., Leker, R.R., Soldner, F., Hoeppner, D.J., Ravin, R., Poser, S.W., Rueger, M.A., Bae, S.K., Kittappa, R., and McKay, R.D.G. (2006). Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826.

    Article  CAS  PubMed  Google Scholar 

  • Armitage, A.E., and Drakesmith, H. (2014). The battle for iron. Science 346, 1299–1300.

    Article  CAS  PubMed  Google Scholar 

  • Ashraf, A., Clark, M., and So, P.W. (2018). The aging of iron man. Front Aging Neurosci 10, 65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai, X., Yan, Y., Canfield, S., Muravyeva, M.Y., Kikuchi, C., Zaja, I., Corbett, J.A., and Bosnjak, Z.J. (2013). Ketamine enhances human neural stem cell proliferation and induces neuronal apoptosis via reactive oxygen species-mediated mitochondrial pathway. Anesth Analg 116, 869–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braymer, J.J., Freibert, S.A., Rakwalska-Bange, M., and Lill, R. (2021). Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochim Biophys Acta 1868, 118863.

    Article  CAS  Google Scholar 

  • Camaschella, C. (2019). Iron deficiency. Blood 133, 30–39.

    Article  CAS  PubMed  Google Scholar 

  • Celotto, A.M., Liu, Z., VanDemark, A.P., and Palladino, M.J. (2012). A novel Drosophila SOD2 mutant demonstrates a role for mitochondrial ROS in neurodevelopment and disease. Brain Behav 2, 424–434.

    Article  PubMed  PubMed Central  Google Scholar 

  • Che, Y., Tian, Y., Chen, R., Xia, L., Liu, F., and Su, Z. (2021). IL-22 ameliorated cardiomyocyte apoptosis in cardiac ischemia/reperfusion injury by blocking mitochondrial membrane potential decrease, inhibiting ROS and cytochrome C. Biochim Biophys Acta 1867, 166171.

    Article  CAS  Google Scholar 

  • Chen, Y., Fan, J., Zhang, Z., Wang, G., Cheng, X., Chuai, M., Lee, K.K.H., and Yang, X. (2013). The negative influence of high-glucose ambience on neurogenesis in developing quail embryos. PLoS ONE 8, e66646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ci, Y.Z., Li, H., You, L.H., Jin, Y., Zhou, R., Gao, G., Hoi, M.P.M., Wang, C., Chang, Y.Z., and Yu, P. (2020). Iron overload induced by IRP2 gene knockout aggravates symptoms of Parkinson’s disease. Neurochem Int 134, 104657.

    Article  CAS  PubMed  Google Scholar 

  • Cooke, M.S., Evans, M.D., Dizdaroglu, M., and Lunec, J. (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17, 1195–1214.

    Article  CAS  PubMed  Google Scholar 

  • Daley, G.Q. (2007). Gametes from embryonic stem cells: a cup half empty or half full? Science 316, 409–410.

    Article  CAS  PubMed  Google Scholar 

  • Dlouhy, A.C., and Outten, C.E. (2013). The iron metallome in eukaryotic organisms. In: Banci, L., ed. Metallomics and the Cell. Metal Ions in Life Sciences. Dordrecht: Springer. 241–278.

    Google Scholar 

  • Evans, M.D., Dizdaroglu, M., and Cooke, M.S. (2004). Oxidative DNA damage and disease: induction, repair and significance. Mutat Res Rev Mutat Res 567, 1–61.

    Article  CAS  Google Scholar 

  • Favaro, E., Ramachandran, A., McCormick, R., Gee, H., Blancher, C., Crosby, M., Devlin, C., Blick, C., Buffa, F., Li, J.L., et al. (2010). MicroRNA-210 regulates mitochondrial free radical response to hypoxia and Krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU. PLoS ONE 5, e10345.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu, X., He, Q., Tao, Y., Wang, M., Wang, W., Wang, Y., Yu, Q.C., Zhang, F., Zhang, X., Chen, Y.G., et al. (2021). Recent advances in tissue stem cells. Sci China Life Sci 64, 1998–2029.

    Article  PubMed  Google Scholar 

  • Galaris, D., Barbouti, A., and Pantopoulos, K. (2019). Iron homeostasis and oxidative stress: An intimate relationship. Biochim Biophys Acta 1866, 118535.

    Article  CAS  Google Scholar 

  • Galy, B., Ferring-Appel, D., Kaden, S., Gröne, H.J., and Hentze, M.W. (2008). Iron regulatory proteins are essential for intestinal function and control key iron absorption molecules in the duodenum. Cell Metab 7, 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Galy, B., Ferring-Appel, D., Sauer, S.W., Kaden, S., Lyoumi, S., Puy, H., Kölker, S., Gröne, H.J., and Hentze, M.W. (2010). Iron regulatory proteins secure mitochondrial iron sufficiency and function. Cell Metab 12, 194–201.

    Article  CAS  PubMed  Google Scholar 

  • Ganz, T. (2013). Systemic iron homeostasis. Physiol Rev 93, 1721–1741.

    Article  CAS  PubMed  Google Scholar 

  • Gao, G., Li, J., Zhang, Y., and Chang, Y.Z. (2019). Cellular Iron Metabolism and Regulation. In: Chang, Y.Z., ed. Brain Iron Metabolism and CNS Diseases. Advances in Experimental Medicine and Biology. Singapore: Springer. 21–32.

    Chapter  Google Scholar 

  • Ghosh, M.C., Zhang, D.L., and Rouault, T.A. (2015). Iron misregulation and neurodegenerative disease in mouse models that lack iron regulatory proteins. Neurobiol Dis 81, 66–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentze, M.W., Muckenthaler, M.U., Galy, B., and Camaschella, C. (2010). Two to tango: regulation of Mammalian iron metabolism. Cell 142, 24–38.

    Article  CAS  PubMed  Google Scholar 

  • Hitoshi, S., Alexson, T., Tropepe, V., Donoviel, D., Elia, A.J., Nye, J.S., Conlon, R.A., Mak, T.W., Bernstein, A., and van der Kooy, D. (2002). Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16, 846–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes-Hampton, G.P., Ghosh, M.C., Rouault, T.A., and David, S.S.P. (2018). Methods for studying iron regulatory protein 1: an important protein in human iron metabolism. Methods in Enzymology. New York: Academic Press. 139–155.

    Google Scholar 

  • Jeong, S.Y., Crooks, D.R., Wilson-Ollivierre, H., Ghosh, M.C., Sougrat, R., Lee, J., Cooperman, S., Mitchell, J.B., Beaumont, C., and Rouault, T.A. (2011). Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice. PLoS ONE 6, e25404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsarou, A., and Pantopoulos, K. (2020). Basics and principles of cellular and systemic iron homeostasis. Mol Aspects Med 75, 100866.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H.Y., LaVaute, T., Iwai, K., Klausner, R.D., and Rouault, T.A. (1996). Identification of a conserved and functional iron-responsive element in the 5′-untranslated region of mammalian mitochondrial aconitase. J Biol Chem 271, 24226–24230.

    Article  CAS  PubMed  Google Scholar 

  • LaVaute, T., Smith, S., Cooperman, S., Iwai, K., Land, W., Meyron-Holtz, E., Drake, S.K., Miller, G., Abu-Asab, M., Tsokos, M., et al. (2001). Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 27, 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Zhao, H., Hao, S., Shang, L., Wu, J., Song, C., Meyron-Holtz, E.G., Qiao, T., and Li, K. (2018). Iron regulatory protein deficiency compromises mitochondrial function in murine embryonic fibroblasts. Sci Rep 8, 5118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, P., Chen, S., Wang, Y., Chen, X., Guo, Y., Liu, C., Wang, H., Zhao, Y., Wu, D., Shan, Y., et al. (2021). Efficient induction of neural progenitor cells from human ESC/iPSCs on Type I Collagen. Sci China Life Sci 64, 2100–2113.

    Article  CAS  PubMed  Google Scholar 

  • Meyron-Holtz, E.G., Ghosh, M.C., Iwai, K., LaVaute, T., Brazzolotto, X., Berger, U.V., Land, W., Ollivierre-Wilson, H., Grinberg, A., Love, P., et al. (2004). Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J 23, 386–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mleczko-Sanecka, K., and Silvestri, L. (2021). Cell-type-specific insights into iron regulatory processes. Am J Hematol 96, 110–127.

    Article  CAS  PubMed  Google Scholar 

  • Muckenthaler, M.U., Galy, B., and Hentze, M.W. (2008). Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 28, 197–213.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, T., Naguro, I., and Ichijo, H. (2019). Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim Biophys Acta 1863, 1398–1409.

    Article  CAS  Google Scholar 

  • Orrenius, S., Nicotera, P., and Zhivotovsky, B. (2011). Cell death mechanisms and their implications in toxicology. Toxicol Sci 119, 3–19.

    Article  CAS  PubMed  Google Scholar 

  • Páll, E., Lichner, Z., Bontovics, B., and Gócza, E. (2013). Differentiation of embryonic stem cells: lessons from embryonic development. Lucrari Stiintifice Zootehnie Si Biotehnol 41, 130–137.

    Google Scholar 

  • Pantopoulos, K. (2004). Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Romero, A., Ramos, E., de Los Ríos, C., Egea, J., del Pino, J., and Reiter, R.J. (2014). A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 56, 343–370.

    Article  CAS  PubMed  Google Scholar 

  • Rouault, T.A. (2006). The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2, 406–414.

    Article  CAS  PubMed  Google Scholar 

  • Rouault, T.A. (2013). Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14, 551–564.

    Article  CAS  PubMed  Google Scholar 

  • Rouault, T.A. (2019). The indispensable role of mammalian iron sulfur proteins in function and regulation of multiple diverse metabolic pathways. Biometals 32, 343–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha, P.P., Kumar, S.K.P., Srivastava, S., Sinha, D., Pareek, G., and D’Silva, P. (2014). The presence of multiple cellular defects associated with a novel G50E Iron-Sulfur Cluster Scaffold Protein (ISCU) mutation leads to development of mitochondrial myopathy. J Biol Chem 289, 10359–10377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavi, A., Strappazzon, F., and Ventura, N. (2020). Mitophagy and iron: two actors sharing the stage in age-associated neuronal pathologies. Mech Ageing Dev 188, 111252.

    Article  CAS  PubMed  Google Scholar 

  • Silva, J., and Smith, A. (2008). Capturing pluripotency. Cell 132, 532–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siriwardana, G., and Seligman, P.A. (2013). Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block. Physiol Rep 1, e00176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, S.R., Cooperman, S., Lavaute, T., Tresser, N., Ghosh, M., Meyronholtz, E., Land, W., Ollivierre, H., Jortner, B., Switzer III, R., et al. (2004). Severity of neurodegeneration correlates with compromise of iron metabolism in mice with iron regulatory protein deficiencies. Ann N Y Acad Sci 1012, 65–83.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S.R., Ghosh, M.C., Ollivierre-Wilson, H., Hang Tong, W., and Rouault, T.A. (2006). Complete loss of iron regulatory proteins 1 and 2 prevents viability of murine zygotes beyond the blastocyst stage of embryonic development. Blood Cells Mol Dis 36, 283–287.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian, P., Rodrigues, A.V., Ghimire-Rijal, S., and Stemmler, T.L. (2011). Iron chaperones for mitochondrial Fe-S cluster biosynthesis and ferritin iron storage. Curr Opin Chem Biol 15, 312–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, D.Q., and Suda, T. (2018). Reactive oxygen species and mitochondrial homeostasis as regulators of stem cell fate and function. Antioxid Redox Signal 29, 149–168.

    Article  CAS  PubMed  Google Scholar 

  • Tewari, R.K., Hadacek, F., Sassmann, S., and Lang, I. (2013). Iron deprivation-induced reactive oxygen species generation leads to non-autolytic PCD in Brassica napus leaves. Environ Exp Bot 91, 74–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiriveedi, V.R., Mattam, U., Pattabhi, P., Bisoyi, V., Talari, N.K., Krishnamoorthy, T., and Sepuri, N.B.V. (2020). Glutathionylated and Fe-S cluster containing hMIA40 (CHCHD4) regulates ROS and mitochondrial complex III and IV activities of the electron transport chain. Redox Biol 37, 101725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turrens, J.F. (2003). Mitochondrial formation of reactive oxygen species. J Physiol 552, 335–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volz, K. (2021). Conservation in the iron responsive element family. Genes 12, 1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von der Mark, C., Ivanov, R., Eutebach, M., Maurino, V.G., Bauer, P., and Brumbarova, T. (2020). Reactive oxygen species coordinate the transcriptional responses to iron availability in Arabidopsis. J Exp Bot 72, 2181–2195.

    Article  PubMed Central  Google Scholar 

  • Wang, H., Liu, C., Zhao, Y., and Gao, G. (2019). Mitochondria regulation in ferroptosis. Eur J Cell Biol 99, 151058.

    Article  PubMed  Google Scholar 

  • Wang, X., Tsai, J.W., LaMonica, B., and Kriegstein, A.R. (2011). A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci 14, 555–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warthon-Medina, M., Qualter, P., Zavaleta, N., Dillon, S., Lazarte, F., and Lowe, N. (2015). The long term impact of micronutrient supplementation during infancy on cognition and executive function performance in pre-school children. Nutrients 7, 6606–6627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson, N., and Pantopoulos, K. (2014). The IRP/IRE system in vivo: insights from mouse models. Front Pharmacol 5, 176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson, K., and Sloan, J.M. (2015). Iron-deficiency anemia. N Engl J Med 373, 485.

    CAS  PubMed  Google Scholar 

  • Wu, T., Liang, X., Liu, X., Li, Y., Wang, Y., Kong, L., and Tang, M. (2020). Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia. Part Fibre Toxicol 17, 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, W., Yang, F., Shen, W.L., Zhan, C., Zheng, P., and Hu, J. (2022). Interactions between central nervous system and peripheral metabolic organs. Sci China Life Sci 65, 1929–1958.

    Article  PubMed  Google Scholar 

  • Zhang, C. (2014). Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell 5, 750–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, D.L., Ghosh, M.C., and Rouault, T.A. (2014). The physiological functions of iron regulatory proteins in iron homeostasis—an update. Front Pharmacol 5, 124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Chen, X., Hong, J., Tang, A., Liu, Y., Xie, N., Nie, G., Yan, X., and Liang, M. (2021). Biochemistry of mammalian ferritins in the regulation of cellular iron homeostasis and oxidative responses. Sci China Life Sci 64, 352–362.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30871260), the Natural Science Foundation of Hebei Province (E2021205003, C2019206575) and the Science and Technology Project of Hebei Education Department (QN2019005, BJK2022049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guofen Gao, Xiaoqun Wang or Yan-Zhong Chang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, S., Wang, P., Han, Y. et al. Ferrodifferentiation regulates neurodevelopment via ROS generation. Sci. China Life Sci. 66, 1841–1857 (2023). https://doi.org/10.1007/s11427-022-2297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2297-y

Keywords

Navigation