Skip to main content
Log in

Recent advances in tissue stem cells

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Stem cells are undifferentiated cells capable of self-renewal and differentiation, giving rise to specialized functional cells. Stem cells are of pivotal importance for organ and tissue development, homeostasis, and injury and disease repair. Tissue-specific stem cells are a rare population residing in specific tissues and present powerful potential for regeneration when required. They are usually named based on the resident tissue, such as hematopoietic stem cells and germline stem cells. This review discusses the recent advances in stem cells of various tissues, including neural stem cells, muscle stem cells, liver progenitors, pancreatic islet stem/progenitor cells, intestinal stem cells, and prostate stem cells, and the future perspectives for tissue stem cell research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abate-Shen, C., and Shen, M.M. (2000). Molecular genetics of prostate cancer. Genes Dev 14, 2410–2434.

    Article  CAS  PubMed  Google Scholar 

  • Aizarani, N., Saviano, A., Sagar, A., Mailly, L., Durand, S., Herman, J.S., Pessaux, P., Baumert, T.F., and Grün, D. (2019). A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Hasani, K., Pfeifer, A., Courtney, M., Ben-Othman, N., Gjernes, E., Vieira, A., Druelle, N., Avolio, F., Ravassard, P., Leuckx, G., et al. (2013). Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes. Dev Cell 26, 86–100.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla, A., and Lim, D.A. (2004). For the long run. Neuron 41, 683–686.

    Article  CAS  PubMed  Google Scholar 

  • Amaral, D.G., and Witter, M.P. (1989). The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571–591.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, J.E. (2000). A role for nitric oxide in muscle repair: nitric oxidemediated activation of muscle satellite cells. Mol Bio Cell 11, 1859–1874.

    Article  CAS  Google Scholar 

  • Anthony, T.E., Klein, C., Fishell, G., and Heintz, N. (2004). Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881–890.

    Article  CAS  PubMed  Google Scholar 

  • Artegiani, B., Lyubimova, A., Muraro, M., van Es, J.H., van Oudenaarden, A., and Clevers, H. (2017). A single-cell RNA sequencing study reveals cellular and molecular dynamics of the hippocampal neurogenic niche. Cell Rep 21, 3271–3284.

    Article  CAS  PubMed  Google Scholar 

  • Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K.L., and Tzukerman, M. (2001). Insulin production by human embryonic stem cells. Diabetes 50, 1691–1697.

    Article  CAS  PubMed  Google Scholar 

  • Ayyaz, A., Kumar, S., Sangiorgi, B., Ghoshal, B., Gosio, J., Ouladan, S., Fink, M., Barutcu, S., Trcka, D., Shen, J., et al. (2019). Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature 569, 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Azevedo, F.A.C., Carvalho, L.R.B., Grinberg, L.T., Farfel, J.M., Ferretti, R. E.L., Leite, R.E.P., Jacob Filho, W., Lent, R., and Herculano-Houzel, S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513, 532–541.

    Article  PubMed  Google Scholar 

  • Bachman, J.F., Klose, A., Liu, W., Paris, N.D., Blanc, R.S., Schmalz, M., Knapp, E., and Chakkalakal, J.V. (2018). Prepubertal skeletal muscle growth requires Pax7-expressing satellite cell-derived myonuclear contribution. Development, doi: https://doi.org/10.1242/dev.167197.

  • Balazs, A.B., Fabian, A.J., Esmon, C.T., and Mulligan, R.C. (2006). Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 107, 2317–2321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  • Baron, C.S., and van Oudenaarden, A. (2019). Unravelling cellular relationships during development and regeneration using genetic lineage tracing. Nat Rev Mol Cell Biol 20, 753–765.

    Article  CAS  PubMed  Google Scholar 

  • Barriga, F.M., Montagni, E., Mana, M., Mendez-Lago, M., Hernando-Momblona, X., Sevillano, M., Guillaumet-Adkins, A., Rodriguez-Esteban, G., Buczacki, S.J.A., Gut, M., et al. (2017). Mex3a marks a slowly dividing subpopulation of Lgr5+ intestinal stem cells. Cell Stem Cell 20, 801–816.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barros-Silva, J.D., Linn, D.E., Steiner, I., Guo, G., Ali, A., Pakula, H., Ashton, G., Peset, I., Brown, M., Clarke, N.W., et al. (2018). Single-cell analysis identifies LY6D as a marker linking castration-resistant prostate luminal cells to prostate progenitors and cancer. Cell Rep 25, 3504–3518.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basak, O., Krieger, T.G., Muraro, M.J., Wiebrands, K., Stange, D.E., Frias-Aldeguer, J., Rivron, N.C., van de Wetering, M., van Es, J.H., van Oudenaarden, A., et al. (2018). Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. Proc Natl Acad Sci USA 115, E610–E619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baser, A., Skabkin, M., Kleber, S., Dang, Y., Gülcüler Balta, G.S., Kalamakis, G., Göpferich, M., Ibañez, D.C., Schefzik, R., Lopez, A.S., et al. (2019). Onset of differentiation is post-transcriptionally controlled in adult neural stem cells. Nature 566, 100–104.

    Article  CAS  PubMed  Google Scholar 

  • Basil, M.C., Katzen, J., Engler, A.E., Guo, M., Herriges, M.J., Kathiriya, J. J., Windmueller, R., Ysasi, A.B., Zacharias, W.J., Chapman, H.A., et al. (2020). The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell 26, 482–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baulies, A., Angelis, N., Foglizzo, V., Danielsen, E.T., Patel, H., Novellasdemunt, L., Kucharska, A., Carvalho, J., Nye, E., De Coppi, P., et al. (2020). The transcription co-repressors MTG8 and MTG16 regulate exit of intestinal stem cells from their niche and differentiation into enterocyte vs secretory lineages. Gastroenterology 159, 1328–1341.e3.

    Article  CAS  PubMed  Google Scholar 

  • Berg, D.A., Su, Y., Jimenez-Cyrus, D., Patel, A., Huang, N., Morizet, D., Lee, S., Shah, R., Ringeling, F.R., Jain, R., et al. (2019). A common embryonic origin of stem cells drives developmental and adult neurogenesis. Cell 177, 654–668.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beumer, J., Artegiani, B., Post, Y., Reimann, F., Gribble, F., Nguyen, T.N., Zeng, H., Van den Born, M., Van Es, J.H., and Clevers, H. (2018). Enteroendocrine cells switch hormone expression along the crypt-tovillus BMP signalling gradient. Nat Cell Biol 20, 909–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beumer, J., and Clevers, H. (2021). Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol 22, 39–53.

    Article  CAS  PubMed  Google Scholar 

  • Bian, S., Hou, Y., Zhou, X., Li, X., Yong, J., Wang, Y., Wang, W., Yan, J., Hu, B., Guo, H., et al. (2018). Single-cell multiomics sequencing and analyses of human colorectal cancer. Science 362, 1060–1063.

    Article  CAS  PubMed  Google Scholar 

  • Biton, M., Haber, A.L., Rogel, N., Burgin, G., Beyaz, S., Schnell, A., Ashenberg, O., Su, C.W., Smillie, C., Shekhar, K., et al. (2018). T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175, 1307–1320.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjornson, C.R.R., Cheung, T.H., Liu, L., Tripathi, P.V., Steeper, K.M., and Rando, T.A. (2012). Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30, 232–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanpain, C. (2013). Tracing the cellular origin of cancer. Nat Cell Biol 15, 126–134.

    Article  CAS  PubMed  Google Scholar 

  • Blanpain, C., and Fuchs, E. (2014). Plasticity of epithelial stem cells in tissue regeneration. Science 344, 1242281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonaguidi, M.A., Stadel, R.P., Berg, D.A., Sun, J., Ming, G., and Song, H. (2016). Diversity of neural precursors in the adult mammalian brain. Cold Spring Harb Perspect Biol 8, a018838.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonkhoff, H., Stein, U., and Remberger, K. (1994). Multidirectional differentiation in the normal, hyperplastic, and neoplastic human prostate: simultaneous demonstration of cell-specific epithelial markers. Hum Pathol 25, 42–46.

    Article  CAS  PubMed  Google Scholar 

  • Bonner-Weir, S., Taneja, M., Weir, G.C., Tatarkiewicz, K., Song, K.H., Sharma, A., and O’Neil, J.J. (2000). In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 97, 7999–8004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourgeois, S., Sawatani, T., Van Mulders, A., De Leu, N., Heremans, Y., Heimberg, H., Cnop, M., and Staels, W. (2021). Towards a Functional Cure for Diabetes Using Stem Cell-Derived Beta Cells: Are We There Yet? Cells 10, 191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouwens, L., Wang, R.N., De Blay, E., Pipeleers, D.G., and Klöppel, G. (1994). Cytokeratins as markers of ductal cell differentiation and islet neogenesis in the neonatal rat pancreas. Diabetes 43, 1279–1283.

    Article  CAS  PubMed  Google Scholar 

  • Bralet, M.P., Branchereau, S., Brechot, C., and Ferry, N. (1994). Cell lineage study in the liver using retroviral mediated gene transfer. Evidence against the streaming of hepatocytes in normal liver. Ame J Pathol 144, 896–905.

    CAS  Google Scholar 

  • Brennand, K., Huangfu, D., and Melton, D. (2007). All β cells contribute equally to islet growth and maintenance. PLoS Biol 5, e163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brubaker, D.K., Kumar, M.P., Chiswick, E.L., Gregg, C., Starchenko, A., Vega, P.N., Southard-Smith, A.N., Simmons, A.J., Scoville, E.A., Coburn, L.A., et al. (2020). An interspecies translation model implicates integrin signaling in infliximab-resistant inflammatory bowel disease. Sci Signal 13.

  • Buczacki, S.J.A., Zecchini, H.I., Nicholson, A.M., Russell, R., Vermeulen, L., Kemp, R., and Winton, D.J. (2013). Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65–69.

    Article  CAS  PubMed  Google Scholar 

  • Burd, G.D., and Nottebohm, F. (1985). Ultrastructural characterization of synaptic terminals formed on newly generated neurons in a song control nucleus of the adult canary forebrain. J Comp Neurol 240, 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Burger, P.E., Gupta, R., Xiong, X., Ontiveros, C.S., Salm, S.N., Moscatelli, D., and Wilson, E.L. (2009). High aldehyde dehydrogenase activity: a novel functional marker of murine prostate stem/progenitor cells. Stem Cells 27, 2220–2228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger, P.E., Xiong, X., Coetzee, S., Salm, S.N., Moscatelli, D., Goto, K., and Wilson, E.L. (2005). Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc Natl Acad Sci USA 102, 7180–7185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrnes, L.E., Wong, D.M., Subramaniam, M., Meyer, N.P., Gilchrist, C.L., Knox, S.M., Tward, A.D., Ye, C.J., and Sneddon, J.B. (2018). Lineage dynamics of murine pancreatic development at single-cell resolution. Nat Commun 9, 3922.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter, B., and Zhao, K. (2021). The epigenetic basis of cellular heterogeneity. Nat Rev Genet 22, 235–250.

    Article  CAS  PubMed  Google Scholar 

  • Centonze, A., Lin, S., Tika, E., Sifrim, A., Fioramonti, M., Malfait, M., Song, Y., Wuidart, A., Van Herck, J., Dannau, A., et al. (2020). Heterotypic cell-cell communication regulates glandular stem cell multipotency. Nature 584, 608–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaker, Z., Codega, P., and Doetsch, F. (2016). A mosaic world: puzzles revealed by adult neural stem cell heterogeneity. WIREs Dev Biol 5, 640–658.

    Article  CAS  Google Scholar 

  • Chen, W., Datzkiw, D., and Rudnicki, M.A. (2020). Satellite cells in ageing: use it or lose it. Open Biol 10, 200048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, H., and Leblond, C.P. (1974). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine I. Columnar cell. Am J Anat 141, 461–479.

    Article  CAS  PubMed  Google Scholar 

  • Cheung, P., Xiol, J., Dill, M.T., Yuan, W.C., Panero, R., Roper, J., Osorio, F.G., Maglic, D., Li, Q., Gurung, B., et al. (2020). Regenerative reprogramming of the intestinal stem cell state via hippo signaling suppresses metastatic colorectal cancer. Cell Stem Cell 27, 590–604.e9.

    Article  CAS  PubMed  Google Scholar 

  • Cho, J., Kuswanto, W., Benoist, C., and Mathis, D. (2019). T cell receptor specificity drives accumulation of a reparative population of regulatory T cells within acutely injured skeletal muscle. Proc Natl Acad Sci USA 116, 26727–26733.

    Article  CAS  PubMed Central  Google Scholar 

  • Choi, N., Zhang, B., Zhang, L., Ittmann, M., and Xin, L. (2012). Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 21, 253–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, T.Y., Ninov, N., Stainier, D.Y.R., and Shin, D. (2014). Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146, 776–788.

    Article  CAS  PubMed  Google Scholar 

  • Chua, C.W., Shibata, M., Lei, M., Toivanen, R., Barlow, L.M.J., Bergren, S. K., Badani, K.K., McKiernan, J.M., Benson, M.C., Hibshoosh, H., et al. (2014). Single luminal epithelial progenitors can generate prostate organoids in culture. Nat Cell Biol 16, 951–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cito, M., Pellegrini, S., Piemonti, L., and Sordi, V. (2018). The potential and challenges of alternative sources of β cells for the cure of type 1 diabetes. Endocr Connect 7, R114–R125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Codega, P., Silva-Vargas, V., Paul, A., Maldonado-Soto, A.R., Deleo, A.M., Pastrana, E., and Doetsch, F. (2014). Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82, 545–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins, C.A., Olsen, I., Zammit, P.S., Heslop, L., Petrie, A., Partridge, T. A., and Morgan, J.E. (2005). Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301.

    Article  CAS  PubMed  Google Scholar 

  • Coskun, V., Wu, H., Blanchi, B., Tsao, S., Kim, K., Zhao, J., Biancotti, J.C., Hutnick, L., Krueger Richard C. J., Fan, G., et al. (2008). CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA 105, 1026–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Criscimanna, A., Speicher, J.A., Houshmand, G., Shiota, C., Prasadan, K., Ji, B., Logsdon, C.D., Gittes, G.K., and Esni, F. (2011). Duct cells contribute to regeneration of endocrine and acinar cells following pancreatic damage in adult mice. Gastroenterology 141, 1451–1462.e6.

    Article  CAS  PubMed  Google Scholar 

  • Crowell, P.D., Fox, J.J., Hashimoto, T., Diaz, J.A., Navarro, H.I., Henry, G. H., Feldmar, B.A., Lowe, M.G., Garcia, A.J., Wu, Y.E., et al. (2019). Expansion of luminal progenitor cells in the aging mouse and human prostate. Cell Rep 28, 1499–1510.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley, L., Cambuli, F., Aparicio, L., Shibata, M., Robinson, B.D., Xuan, S., Li, W., Hibshoosh, H., Loda, M., Rabadan, R., et al. (2020). A single-cell atlas of the mouse and human prostate reveals heterogeneity and conservation of epithelial progenitors. Elife 9, doi: https://doi.org/10.7554/elife.59465.sa1.

  • Cunha, G.R. (1975). Age-dependent loss of sensitivity of female urogenital sinus to androgenic conditions as a function of the epithelial-stromal interaction in mice. Endocrinology 97, 665–673.

    Article  CAS  PubMed  Google Scholar 

  • Dall’Agnese, A., Caputo, L., Nicoletti, C., di Iulio, J., Schmitt, A., Gatto, S., Diao, Y., Ye, Z., Forcato, M., Perera, R., et al. (2019). Transcription factor-directed re-wiring of chromatin architecture for somatic cell nuclear reprogramming toward trans-differentiation. Mol Cell 76, 453–472.e8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis, R.L., Weintraub, H., and Lassar, A.B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000.

    Article  CAS  PubMed  Google Scholar 

  • de Sousa E., Melo, F., and de Sauvage, F.J. (2019). Cellular plasticity in intestinal homeostasis and disease. Cell Stem Cell 24, 54–64.

    Article  Google Scholar 

  • DeCarolis, N.A., Mechanic, M., Petrik, D., Carlton, A., Ables, J.L., Malhotra, S., Bachoo, R., Götz, M., Lagace, D.C., and Eisch, A.J. (2013). In vivo contribution of nestin- and GLAST-lineage cells to adult hippocampal neurogenesis. Hippocampus 23, 708–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degirmenci, B., Valenta, T., Dimitrieva, S., Hausmann, G., and Basler, K. (2018). GLI1-expressing mesenchymal cells form the essential Wntsecreting niche for colon stem cells. Nature 558, 449–453.

    Article  CAS  PubMed  Google Scholar 

  • Deng, X., Zhang, X., Li, W., Feng, R.X., Li, L., Yi, G.R., Zhang, X.N., Yin, C., Yu, H.Y., Zhang, J.P., et al. (2018). Chronic Liver Injury Induces Conversion of Biliary Epithelial Cells into Hepatocytes. Cell Stem Cell 23, 114–122.e3.

    Article  CAS  PubMed  Google Scholar 

  • Desgraz, R., and Herrera, P.L. (2009). Pancreatic neurogenin 3-expressing cells are unipotent islet precursors. Development 136, 3567–3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doetsch, F., Caillé, I., Lim, D.A., García-Verdugo, J.M., and Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716.

    Article  CAS  PubMed  Google Scholar 

  • Donjacour, A.A., and Cunha, G.R. (1993). Assessment of prostatic protein secretion in tissue recombinants made of urogenital sinus mesenchyme and urothelium from normal or androgen-insensitive mice.. Endocrinology 132, 2342–2350.

    Article  CAS  PubMed  Google Scholar 

  • Dor, Y., Brown, J., Martinez, O.I., and Melton, D.A. (2004). Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46.

    Article  CAS  PubMed  Google Scholar 

  • Drost, J., Karthaus, W.R., Gao, D., Driehuis, E., Sawyers, C.L., Chen, Y., and Clevers, H. (2016). Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc 11, 347–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, L., Wang, H., He, L., Zhang, J., Ni, B., Wang, X., Jin, H., Cahuzac, N., Mehrpour, M., Lu, Y., et al. (2008). CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 14, 6751–6760.

    Article  CAS  PubMed  Google Scholar 

  • Dulken, B.W., Leeman, D.S., Boutet, S.C., Hebestreit, K., and Brunet, A. (2017). Single-cell transcriptomic analysis defines heterogeneity and transcriptional dynamics in the adult neural stem cell lineage. Cell Rep 18, 777–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Economo, M.N., Viswanathan, S., Tasic, B., Bas, E., Winnubst, J., Menon, V., Graybuck, L.T., Nguyen, T.N., Smith, K.A., Yao, Z., et al. (2018). Distinct descending motor cortex pathways and their roles in movement. Nature 563, 79–84.

    Article  CAS  PubMed  Google Scholar 

  • Eliazer, S., and Brack, A.S. (2016). Lost in translation: preserving satellite cell function with global translational control. Cell Stem Cell 18, 5–7.

    Article  CAS  PubMed  Google Scholar 

  • Enard, W. (2016). The molecular basis of human brain evolution. Curr Biol 26, R1109–R1117.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, P.S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., and Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. Nat Med 4, 1313–1317.

    Article  CAS  PubMed  Google Scholar 

  • Evano, B., and Tajbakhsh, S. (2018). Skeletal muscle stem cells in comfort and stress. npj Regen Med 3, 24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans, G.S., and Chandler, J.A. (1987). Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate 11, 339–351.

    Article  CAS  PubMed  Google Scholar 

  • Fares, I., Chagraoui, J., Lehnertz, B., MacRae, T., Mayotte, N., Tomellini, E., Aubert, L., Roux, P.P., and Sauvageau, G. (2017). EPCR expression marks UM171-expanded CD34+ cord blood stem cells. Blood 129, 3344–3351.

    Article  CAS  PubMed  Google Scholar 

  • Farin, H.F., Van Es, J.H., and Clevers, H. (2012). Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology 143, 1518–1529.e7.

    Article  CAS  PubMed  Google Scholar 

  • Fausto, N., Campbell, J.S., and Riehle, K.J. (2006). Liver regeneration. Hepatology 43, S45–S53.

    Article  CAS  PubMed  Google Scholar 

  • Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., and Chambon, P. (1996). Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 93, 10887–10890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, X., Wang, Z., Wang, F., Lu, T., Xu, J., Ma, X., Li, J., He, L., Zhang, W., Li, S., et al. (2019). Dual function of VGLL 4 in muscle regeneration. EMBO J 38, e101051.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiorelli, R., Azim, K., Fischer, B., and Raineteau, O. (2015). Adding a spatial dimension to postnatal ventricular-subventricular zone neurogenesis. Development 142, 2109–2120.

    Article  CAS  PubMed  Google Scholar 

  • Font-Burgada, J., Shalapour, S., Ramaswamy, S., Hsueh, B., Rossell, D., Umemura, A., Taniguchi, K., Nakagawa, H., Valasek, M.A., Ye, L., et al. (2015). Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 162, 766–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fordham, R.P., Yui, S., Hannan, N.R.F., Soendergaard, C., Madgwick, A., Schweiger, P.J., Nielsen, O.H., Vallier, L., Pedersen, R.A., Nakamura, T., et al. (2013). Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 13, 734–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, X., Wang, H., and Hu, P. (2015a). Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci 72, 1663–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, X., Xiao, J., Wei, Y., Li, S., Liu, Y., Yin, J., Sun, K., Sun, H., Wang, H., Zhang, Z., et al. (2015b). Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res 25, 655–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs, E., and Blau, H.M. (2020). Tissue stem cells: architects of their niches. Cell Stem Cell 27, 532–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentealba, L.C., Rompani, S.B., Parraguez, J.I., Obernier, K., Romero, R., Cepko, C.L., and Alvarez-Buylla, A. (2015). Embryonic origin of postnatal neural stem cells. Cell 161, 1644–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukada, S.I., Ma, Y., Ohtani, T., Watanabe, Y., Murakami, S., and Yamaguchi, M. (2013). Isolation, characterization, and molecular regulation of muscle stem cells. Front Physiol 4, 317.

    Article  PubMed  PubMed Central  Google Scholar 

  • Furutachi, S., Miya, H., Watanabe, T., Kawai, H., Yamasaki, N., Harada, Y., Imayoshi, I., Nelson, M., Nakayama, K.I., Hirabayashi, Y., et al. (2015). Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nat Neurosci 18, 657–665.

    Article  CAS  PubMed  Google Scholar 

  • Furuyama, K., Kawaguchi, Y., Akiyama, H., Horiguchi, M., Kodama, S., Kuhara, T., Hosokawa, S., Elbahrawy, A., Soeda, T., Koizumi, M., et al. (2011). Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 43, 34–41.

    Article  CAS  PubMed  Google Scholar 

  • Gadd, V.L., Aleksieva, N., and Forbes, S.J. (2020). Epithelial plasticity during liver injury and regeneration. Cell Stem Cell 27, 557–573.

    Article  CAS  PubMed  Google Scholar 

  • Gage, F.H. (2000). Mammalian neural stem cells. Science 287, 1433–1438.

    Article  CAS  PubMed  Google Scholar 

  • Gallagher, D., Norman, A.A., Woodard, C.L., Yang, G., Gauthier-Fisher, A., Fujitani, M., Vessey, J.P., Cancino, G.I., Sachewsky, N., Woltjen, K., et al. (2013). Transient maternal IL-6 mediates long-lasting changes in neural stem cell pools by deregulating an endogenous self-renewal pathway. Cell Stem Cell 13, 564–576.

    Article  CAS  PubMed  Google Scholar 

  • Gao, D., Vela, I., Sboner, A., Iaquinta, P.J., Karthaus, W.R., Gopalan, A., Dowling, C., Wanjala, J.N., Undvall, E.A., Arora, V.K., et al. (2014). Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, D., Zhan, Y., Di, W., Moore, A.R., Sher, J.J., Guan, Y., Wang, S., Zhang, Z., Murphy, D.A., Sawyers, C.L., et al. (2016). A Tmprss2-CreERT2 knock-in mouse model for cancer genetic studies on prostate and colon. PLoS ONE 11, e0161084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, R., Ustinov, J., Korsgren, O., and Otonkoski, T. (2005). In vitro neogenesis of human islets reflects the plasticity of differentiated human pancreatic cells. Diabetologia 48, 2296–2304.

    Article  CAS  PubMed  Google Scholar 

  • Garraway, I.P., Sun, W., Tran, C.P., Perner, S., Zhang, B., Goldstein, A.S., Hahm, S.A., Haider, M., Head, C.S., Reiter, R.E., et al. (2010). Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. Prostate 70, 491–501.

    Article  PubMed  Google Scholar 

  • Gebara, E., Bonaguidi, M.A., Beckervordersandforth, R., Sultan, S., Udry, F., Gijs, P.J., Lie, D.C., Ming, G.L., Song, H., and Toni, N. (2016). Heterogeneity of radial glia-like cells in the adult hippocampus. Stem Cells 34, 997–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel, A.J., Rieder, M.K., Arnold, H.H., Radice, G.L., and Krauss, R.S. (2017). Niche cadherins control the quiescence-to-activation transition in muscle stem cells. Cell Rep 21, 2236–2250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein, A.S., Huang, J., Guo, C., Garraway, I.P., and Witte, O.N. (2010). Identification of a cell of origin for human prostate cancer. Science 329, 568–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein, A.S., Lawson, D.A., Cheng, D., Sun, W., Garraway, I.P., and Witte, O.N. (2008). Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc Natl Acad Sci USA 105, 20882–20887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould, E., and Cameron, H.A. (1996). Regulation of neuronal birth, migration and death in the rat dentate gyrus. Dev Neurosci 18, 22–35.

    Article  CAS  PubMed  Google Scholar 

  • Gradwohl, G., Dierich, A., LeMeur, M., and Guillemot, F. (2000). Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 97, 1607–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greggio, C., De Franceschi, F., Figueiredo-Larsen, M., Gobaa, S., Ranga, A., Semb, H., Lutolf, M., and Grapin-Botton, A. (2013). Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 140, 4452–4462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregorieff, A., Liu, Y., Inanlou, M.R., Khomchuk, Y., and Wrana, J.L. (2015). Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature 526, 715–718.

    Article  CAS  PubMed  Google Scholar 

  • Greicius, G., Kabiri, Z., Sigmundsson, K., Liang, C., Bunte, R., Singh, M. K., and Virshup, D.M. (2018). PDGFRα+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc Natl Acad Sci USA 115, E3173–E3181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grompe, M. (2014). Liver stem cells, where art thou? Cell Stem Cell 15, 257–258.

    Article  CAS  PubMed  Google Scholar 

  • Grompe, M. (2017). Fah knockout animals as models for therapeutic liver repopulation. Adv Exp Med Biol 959, 215–230.

    Article  CAS  PubMed  Google Scholar 

  • Gros, J., Manceau, M., Thomé, V., and Marcelle, C. (2005). A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435, 954–958.

    Article  CAS  PubMed  Google Scholar 

  • Grün, D., Lyubimova, A., Kester, L., Wiebrands, K., Basak, O., Sasaki, N., Clevers, H., and van Oudenaarden, A. (2015). Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525, 251–255.

    Article  PubMed  Google Scholar 

  • Gu, G., Dubauskaite, J., and Melton, D.A. (2002). Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457.

    Article  CAS  PubMed  Google Scholar 

  • Günther, S., Kim, J., Kostin, S., Lepper, C., Fan, C.M., and Braun, T. (2013). Myf5-positive satellite cells contribute to Pax7-dependent longterm maintenance of adult muscle stem cells. Cell Stem Cell 13, 590–601.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, W., Li, L., He, J., Liu, Z., Han, M., Li, F., Xia, X., Zhang, X., Zhu, Y., Wei, Y., et al. (2020). Single-cell transcriptomics identifies a distinct uminal progenitor cell type in distal prostate invagination tips. Nat Genet 52, 908–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guz, Y., Montminy, M.R., Stein, R., Leonard, J., and Teitelman, G.J.D. (1995). Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development 121, 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Hanoun, M., Arnal-Estapé, A., Maryanovich, M., Zahalka, A.H., Bergren, S.K., Chua, C.W., Leftin, A., Brodin, P.N., Shen, M.M., Guha, C., et al. (2019). Nestin+NG2+ cells form a reserve stem cell population in the mouse prostate. Stem Cell Rep 12, 1201–1211.

    Article  CAS  Google Scholar 

  • Hardikar, A.A. (2016). Pancreatic Islet Biology, 1 edn (Switzerland: Springer International Publishing).

    Book  Google Scholar 

  • Hart, P.D., and Buck, D.J. (2019). The effect of resistance training on health-related quality of life in older adults: Systematic review and meta-analysis. Health Promot Perspect 9, 1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartley, R.S., Bandman, E., and Yablonka-Reuveni, Z. (1992). Skeletal muscle satellite cells appear during late chicken embryogenesis. Dev Biol 153, 206–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, J., Lu, H., Zou, Q., and Luo, L. (2014). Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology 146, 789–800.e8.

    Article  CAS  PubMed  Google Scholar 

  • He, L., Pu, W., Liu, X., Zhang, Z., Han, M., Li, Y., Huang, X., Han, X., Li, Y., Liu, K., et al. (2021). Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science 371.

  • Helmbacher, F., and Stricker, S. (2020). Tissue cross talks governing limb muscle development and regeneration. Semin Cell Dev Biol 104, 14–30.

    Article  PubMed  Google Scholar 

  • Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herring, C.A., Banerjee, A., McKinley, E.T., Simmons, A.J., Ping, J., Roland, J.T., Franklin, J.L., Liu, Q., Gerdes, M.J., Coffey, R.J., et al. (2018). Unsupervised trajectory analysis of single-cell RNA-seq and imaging data reveals alternative tuft cell origins in the gut. Cell Syst 6, 37–51.e9.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch, D., Hu, Y., Ried, T., Moll, R., and Gaiser, T. (2014). Transcriptome profiling of LGR5 positive colorectal cancer cells. Genomics Data 2, 212–215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho, A.T.V., Palla, A.R., Blake, M.R., Yucel, N.D., Wang, Y.X., Magnusson, K.E.G., Holbrook, C.A., Kraft, P.E., Delp, S.L., and Blau, H.M. (2017). Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength. Proc Natl Acad Sci USA 114, 6675–6684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochgerner, H., Zeisel, A., Lönnerberg, P., and Linnarsson, S. (2018). Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat Neurosci 21, 290–299.

    Article  CAS  PubMed  Google Scholar 

  • Hodge, R.D., Bakken, T.E., Miller, J.A., Smith, K.A., Barkan, E.R., Graybuck, L.T., Close, J.L., Long, B., Johansen, N., Penn, O., et al. (2019). Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holguera, I., and Desplan, C. (2018). Neuronal specification in space and time. Science 362, 176–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, P., Geles, K.G., Paik, J.H., DePinho, R.A., and Tjian, R. (2008). Codependent activators direct myoblast-specific MyoD transcription. Dev Cell 15, 534–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, X.L., Chen, G., Zhang, S., Zheng, J., Wu, J., Bai, Q.R., Wang, Y., Li, J., Wang, H., Feng, H., et al. (2017). Persistent expression of VCAM1 in radial glial cells is required for the embryonic origin of postnatal neural stem cells. Neuron 95, 309–325.e6.

    Article  CAS  PubMed  Google Scholar 

  • Huch, M., Bonfanti, P., Boj, S.F., Sato, T., Loomans, C.J.M., van de Wetering, M., Sojoodi, M., Li, V.S.W., Schuijers, J., Gracanin, A., et al. (2013a). Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 32, 2708–2721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huch, M., Dorrell, C., Boj, S.F., van Es, J.H., Li, V.S.W., van de Wetering, M., Sato, T., Hamer, K., Sasaki, N., Finegold, M.J., et al. (2013b). In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson, D.L., Guy, A.T., Fry, P., O′Hare, M.J., Watt, F.M., and Masters, J. R.W. (2001). Epithelial cell differentiation pathways in the human prostate: Identification of intermediate phenotypes by keratin expression. J Histochem Cytochem 49, 271–278.

    Article  CAS  PubMed  Google Scholar 

  • Humphrey, P.A. (2012). Histological variants of prostatic carcinoma and their significance. Histopathology 60, 59–74.

    Article  PubMed  Google Scholar 

  • Inada, A., Nienaber, C., Katsuta, H., Fujitani, Y., Levine, J., Morita, R., Sharma, A., and Bonner-Weir, S. (2008). Carbonic anhydrase IIpositive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA 105, 19915–19919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacs, J.T., Lundmo, P.I., Berges, R., Martikainen, P., Kyprianou, N., and English, H.F. (1992). Androgen regulation of programmed death of normal and malignant prostatic cells. J Androl 13, 457–464.

    CAS  PubMed  Google Scholar 

  • Iwasaki, H., Arai, F., Kubota, Y., Dahl, M., and Suda, T. (2010). Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver. Blood 116, 544–553.

    Article  CAS  PubMed  Google Scholar 

  • Jadhav, U., Saxena, M., O′Neill, N.K., Saadatpour, A., Yuan, G.C., Herbert, Z., Murata, K., and Shivdasani, R.A. (2017). Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+ intestinal stem cells. Cell Stem Cell 21, 65–77.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, C., Wen, Y., Kuroda, K., Hannon, K., Rudnicki, M.A., and Kuang, S. (2014). Notch signaling deficiency underlies age-dependent depletion of satellite cells in muscular dystrophy. Dis Model Mech, doi: https://doi.org/10.1242/dmm.015917.

  • Jiang, F.X., and Morahan, G. (2014). Pancreatic stem cells remain unresolved. Stem Cells Dev 23, 2803–2812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao, J., Hindoyan, A., Wang, S., Tran, L.M., Goldstein, A.S., Lawson, D., Chen, D., Li, Y., Guo, C., Zhang, B., et al. (2012). Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells. PLoS ONE 7, e42564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, L., Feng, T., Shih, H.P., Zerda, R., Luo, A., Hsu, J., Mahdavi, A., Sander, M., Tirrell, D.A., Riggs, A.D., et al. (2013). Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel. Proc Natl Acad Sci USA 110, 3907–3912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinno, S. (2011). Topographic differences in adult neurogenesis in the mouse hippocampus: a stereology-based study using endogenous markers. Hippocampus 21, 467–480.

    Article  PubMed  Google Scholar 

  • Joe, A.W.B., Yi, L., Natarajan, A., Le Grand, F., So, L., Wang, J., Rudnicki, M.A., and Rossi, F.M.V. (2010). Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12, 153–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson, C.B., Momma, S., Clarke, D.L., Risling, M., Lendahl, U., and Frisén, J. (1999). Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Jones, N.C., Tyner, K.J., Nibarger, L., Stanley, H.M., Cornelison, D.D.W., Fedorov, Y.V., and Olwin, B.B. (2005). The p38α/β MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 169, 105–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jørgensen, M.C., Ahnfelt-Rønne, J., Hald, J., Madsen, O.D., Serup, P., and Hecksher-Sørensen, J. (2007). An illustrated review of early pancreas development in the mouse. Endocrine Rev 28, 685–705.

    Article  Google Scholar 

  • Kahn, E.B., and Simpson Jr., S.B. (1974). Satellite cells in mature, uninjured skeletal muscle of the lizard tail. Dev Biol 37, 219–223.

    Article  CAS  PubMed  Google Scholar 

  • Karpus, O.N., Westendorp, B.F., Vermeulen, J.L.M., Meisner, S., Koster, J., Muncan, V., Wildenberg, M.E., and van den Brink, G.R. (2019). Colonic CD90+ crypt fibroblasts secrete semaphorins to support epithelial growth. Cell Rep 26, 3698–3708.e5.

    Article  CAS  PubMed  Google Scholar 

  • Karthaus, W.R., Hofree, M., Choi, D., Linton, E.L., Turkekul, M., Bejnood, A., Carver, B., Gopalan, A., Abida, W., Laudone, V., et al. (2020). Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science 368, 497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthaus, W.R., Iaquinta, P.J., Drost, J., Gracanin, A., van Boxtel, R., Wongvipat, J., Dowling, C.M., Gao, D., Begthel, H., Sachs, N., et al. (2014). Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassar-Duchossoy, L., Giacone, E., Gayraud-Morel, B., Jory, A., Gomès, D., and Tajbakhsh, S. (2005). Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 19, 1426–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaung, H.L. (1994). Growth dynamics of pancreatic islet cell populations during fetal and neonatal development of the rat. Dev Dyn 200, 163–175.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi, Y., Cooper, B., Gannon, M., Ray, M., MacDonald, R.J., and Wright, C.V.E. (2002). The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32, 128–134.

    Article  CAS  PubMed  Google Scholar 

  • Kempermann, G., Kuhn, H.G., and Gage, F.H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.E., Fei, L., Yin, W.C., Coquenlorge, S., Rao-Bhatia, A., Zhang, X., Shi, S.S.W., Lee, J.H., Hahn, N.A., Rizvi, W., et al. (2020). Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun 11, 334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoth, R., Singec, I., Ditter, M., Pantazis, G., Capetian, P., Meyer, R.P., Horvat, V., Volk, B., and Kempermann, G. (2010). Murine Features of Neurogenesis in the Human Hippocampus across the Lifespan from 0 to 100 Years. Plos One 5</r>.

  • Kondoh, K., Sunadome, K., and Nishida, E. (2007). Notch signaling suppresses p38 MAPK activity via induction of MKP-1 in myogenesis. J Biol Chem 282, 3058–3065.

    Article  CAS  PubMed  Google Scholar 

  • Kopp, J.L., Dubois, C.L., Schaffer, A.E., Hao, E., Shih, H.P., Seymour, P. A., Ma, J., and Sander, M. (2011). Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 138, 653–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriegstein, A., and Alvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32, 149–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kukekov, V.G., Laywell, E.D., Suslov, O., Davies, K., Scheffler, B., Thomas, L.B., O’Brien, T.F., Kusakabe, M., and Steindler, D.A. (1999). Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol 156, 333–344.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, O.J., Zhang, L., and Xin, L. (2016). Stem cell antigen-1 identifies a distinct androgen-independent murine prostatic luminal cell lineage with bipotent potential. Stem Cells 34, 191–202.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, O.J., Choi, J.M., Zhang, L., Jia, D., Li, Z., Zhang, Y., Jung, S.Y., Creighton, C.J., and Xin, L. (2020). The Sca-1+ and Sca-1 mouse prostatic luminal cell lineages are independently sustained. Stem Cells, doi: https://doi.org/10.1002/stem.3253.

  • La Manno, G., Gyllborg, D., Codeluppi, S., Nishimura, K., Salto, C., Zeisel, A., Borm, L.E., Stott, S.R.W., Toledo, E.M., Villaescusa, J.C., et al. (2016). Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566–580.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lake, B.B., Ai, R., Kaeser, G.E., Salathia, N.S., Yung, Y.C., Liu, R., Wildberg, A., Gao, D., Fung, H.L., Chen, S., et al. (2016). Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammert, E., Cleaver, O., and Melton, D. (2001). Induction of pancreatic differentiation by signals from blood vessels. Science 294, 564–567.

    Article  CAS  PubMed  Google Scholar 

  • Lawson, D.A., and Witte, O.N. (2007). Stem cells in prostate cancer initiation and progression. J Clin Invest 117, 2044–2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson, D.A., Xin, L., Lukacs, R.U., Cheng, D., and Witte, O.N. (2007). Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci USA 104, 181–186.

    Article  CAS  PubMed  Google Scholar 

  • Lawson, D.A., Zong, Y., Memarzadeh, S., Xin, L., Huang, J., and Witte, O. N. (2010). Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci USA 107, 2610–2615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazaro, C.A., Rhim, J.A., Yamada, Y., and Fausto, N. (1998). Generation of hepatocytes from oval cell precursors in culture. Cancer Res 58, 5514–5522.

    CAS  PubMed  Google Scholar 

  • Leong, K.G., Wang, B.E., Johnson, L., and Gao, W.Q. (2008). Generation of a prostate from a single adult stem cell. Nature 456, 804–808.

    Article  CAS  PubMed  Google Scholar 

  • Li, F., Yuan, Q., Di, W., Xia, X., Liu, Z., Mao, N., Li, L., Li, C., He, J., Li, Y., et al. (2020a). ERG orchestrates chromatin interactions to drive prostate cell fate reprogramming. J Clin Invest 130, 5924–5941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, G., Fang, L., Fernández, G., and Pleasure, S.J. (2013). The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron 78, 658–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Chen, Q., Li, C., Zhong, R., Zhao, Y., Zhang, Q., Tong, W., Zhu, D., and Zhang, Y. (2019a). Muscle-secreted granulocyte colony-stimulating factor functions as metabolic niche factor ameliorating loss of muscle stem cells in aged mice. EMBO J 38.

  • Li, J.J., and Shen, M.M. (2019). Prostate stem cells and cancer stem cells. Cold Spring Harb Perspect Med 9, a030395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, N., Nakauka-Ddamba, A., Tobias, J., Jensen, S.T., and Lengner, C.J. (2016). Mouse label-retaining cells are molecularly and functionally distinct from reserve intestinal stem cells. Gastroenterology 151, 298–310.e7.

    Article  CAS  PubMed  Google Scholar 

  • Li, N., Yousefi, M., Nakauka-Ddamba, A., Jain, R., Tobias, J., Epstein, J. A., Jensen, S.T., and Lengner, C.J. (2014). Single-cell analysis of proxy reporter allele-marked epithelial cells establishes intestinal stem cell hierarchy. Stem Cell Rep 3, 876–891.

    Article  CAS  Google Scholar 

  • Li, W., Li, L., and Hui, L. (2020b). Cell plasticity in liver regeneration. Trends Cell Biol 30, 329–338.

    Article  PubMed  Google Scholar 

  • Li, W., Yang, L., He, Q., Hu, C., Zhu, L., Ma, X., Ma, X., Bao, S., Li, L., Chen, Y., et al. (2019b). A homeostatic Arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injuryassociated YAP signaling. Cell Stem Cell 25, 54–68.e5.

    Article  CAS  PubMed  Google Scholar 

  • Lin, S., Nascimento, E.M., Gajera, C.R., Chen, L., Neuhöfer, P., Garbuzov, A., Wang, S., and Artandi, S.E. (2018). Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature 556, 244–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lioubinski, O., Müller, M., Wegner, M., and Sander, M. (2003). Expression of Sox transcription factors in the developing mouse pancreas. Dev Dyn 227, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Littlewood, T.D., Hancock, D.C., Danielian, P.S., Parker, M.G., and Evan, G.I. (1995). A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 23, 1686–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, M., Di, J., Liu, Y., Su, Z., Jiang, B., Wang, Z., and Su, X. (2018). Comparison of EpCAMhigh CD44+ cancer stem cells with EpCAMhigh CD44 tumor cells in colon cancer by single-cell sequencing. CancerBiol Ther 19, 939–947.

    CAS  Google Scholar 

  • Liu, S.J., Nowakowski, T.J., Pollen, A.A., Lui, J.H., Horlbeck, M.A., Attenello, F.J., He, D., Weissman, J.S., Kriegstein, A.R., Diaz, A.A., et al. (2016a). Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol 17, 67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Chen, X., Rycaj, K., Chao, H.P., Deng, Q., Jeter, C., Liu, C., Honorio, S., Li, H., Davis, T., et al. (2015). Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget 6, 23959–23986.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Grogan, T.R., Hieronymus, H., Hashimoto, T., Mottahedeh, J., Cheng, D., Zhang, L., Huang, K., Stoyanova, T., Park, J.W., et al. (2016b). Low CD38 identifies progenitor-like inflammation-associated luminal cells that can initiate human prostate cancer and predict poor outcome. Cell Rep 17, 2596–2606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., and Chen, Y.G. (2020). Intestinal epithelial plasticity and regeneration via cell dedifferentiation. Cell Regen 9, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Suckale, J., Masjkur, J., Magro, M.G., Steffen, A., Anastassiadis, K., and Solimena, M. (2010). Tamoxifen-independent recombination in the RIP-CreER mouse. PLoS ONE 5, e13533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorens-Bobadilla, E., Zhao, S., Baser, A., Saiz-Castro, G., Zwadlo, K., and Martin-Villalba, A. (2015). Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17, 329–340.

    Article  CAS  PubMed  Google Scholar 

  • Lois, C., and Alvarez-Buylla, A. (1993). Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90, 2074–2077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, J., Xia, Q., and Zhou, Q. (2017). How to make insulin-producing pancreatic β cells for diabetes treatment. Sci China Life Sci 60, 239–248.

    Article  CAS  PubMed  Google Scholar 

  • Lui, J.H., Hansen, D.V., and Kriegstein, A.R. (2011). Development and evolution of the human neocortex. Cell 146, 18–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, Y., Coskun, V., Liang, A., Yu, J., Cheng, L., Ge, W., Shi, Z., Zhang, K., Li, C., Cui, Y., et al. (2015). Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell 161, 1175–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynn, F.C., Smith, S.B., Wilson, M.E., Yang, K.Y., Nekrep, N., and German, M.S. (2007). Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc Natl Acad Sci USA 104, 10500–10505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lysy, P.A., Weir, G.C., and Bonner-Weir, S. (2013). Making β cells from adult cells within the pancreas. Curr Diab Rep 13, 695–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabbott, N.A., Donaldson, D.S., Ohno, H., Williams, I.R., and Mahajan, A. (2013). Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 6, 666–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado, L., Esteves de Lima, J., Fabre, O., Proux, C., Legendre, R., Szegedi, A., Varet, H., Ingerslev, L.R., Barrès, R., Relaix, F., et al. (2017). In situ fixation redefines quiescence and early activation of skeletal muscle stem cells. Cell Rep 21, 1982–1993.

    Article  CAS  PubMed  Google Scholar 

  • Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A.R., Kamitaki, N., Martersteck, E.M., et al. (2015). Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnusson, J.P., Zamboni, M., Santopolo, G., Mold, J.E., Barrientos-Somarribas, M., Talavera-Lopez, C., Andersson, B., and Frisén, J. (2020). Activation of a neural stem cell transcriptional program in parenchymal astrocytes. eLife 9, e59733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malato, Y., Naqvi, S., Schürmann, N., Ng, R., Wang, B., Zape, J., Kay, M. A., Grimm, D., and Willenbring, H. (2011). Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest 121, 4850–4860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manco, R., Clerbaux, L.A., Verhulst, S., Bou Nader, M., Sempoux, C., Ambroise, J., Bearzatto, B., Gala, J.L., Horsmans, Y., van Grunsven, L., et al. (2019). Reactive cholangiocytes differentiate into proliferative hepatocytes with efficient DNA repair in mice with chronic liver injury. J Hepatol 70, 1180–1191.

    Article  CAS  PubMed  Google Scholar 

  • Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Mendanha Falcão, A., Xiao, L., Li, H., Häring, M., Hochgerner, H., Romanov, R.A., et al. (2016). Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martynoga, B., Mateo, J.L., Zhou, B., Andersen, J., Achimastou, A., Urbán, N., van den Berg, D., Georgopoulou, D., Hadjur, S., Wittbrodt, J., et al. (2013). Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence. Genes Dev 27, 1769–1786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto, T., Wakefield, L., Tarlow, B.D., and Grompe, M. (2020). In vivo lineage tracing of polyploid hepatocytes reveals extensive proliferation during liver regeneration. Cell Stem Cell 26, 34–47.e3.

    Article  CAS  Google Scholar 

  • Mauro, A. (1961). Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9, 493–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy, N., Kraiczy, J., and Shivdasani, R.A. (2020a). Cellular and molecular architecture of the intestinal stem cell niche. Nat Cell Biol 22, 1033–1041.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, N., Manieri, E., Storm, E.E., Saadatpour, A., Luoma, A.M., Kapoor, V.N., Madha, S., Gaynor, L.T., Cox, C., Keerthivasan, S., et al. (2020b). Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell 26, 391–402.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald, B.D., Jabri, B., and Bendelac, A. (2018). Diverse developmental pathways of intestinal intraepithelial lymphocytes. Nat Rev Immunol 18, 514–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcevoy, R.C., and Madson, K.L. (1980). Pancreatic insulin-, glucagon-, and somatostatin-positive islet cell populations during the perinatal development of the rat. 1. Morphometric quantitation. Bio Neonate 38, 248–254.

    Article  CAS  Google Scholar 

  • McEvoy, R.C. (1981). Changes in the volumes of the A-, B-, and D-cell populations in the pancreatic islets during the postnatal development of the rat. Diabetes 30, 813–817.

    Article  CAS  PubMed  Google Scholar 

  • Menn, B., Garcia-Verdugo, J.M., Yaschine, C., Gonzalez-Perez, O., Rowitch, D., and Alvarez-Buylla, A. (2006). Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26, 7907–7918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera, P. (2004). Developmental biology of the pancreas. Cell Bio Biophys 40, 127–142.

    Article  Google Scholar 

  • Merkle, F.T., Fuentealba, L.C., Sanders, T.A., Magno, L., Kessaris, N., and Alvarez-Buylla, A. (2014). Adult neural stem cells in distinct microdomains generate previously unknown interneuron types. Nat Neurosci 17, 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe, C., Kljavin, N.M., Ybarra, R., and de Sauvage, F.J. (2014). Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 14, 149–159.

    Article  CAS  PubMed  Google Scholar 

  • Metzger, D., Clifford, J., Chiba, H., and Chambon, P. (1995). Conditional site-specific recombination in mammalian cells using a liganddependent chimeric Cre recombinase. Proc Natl Acad Sci USA 92, 6991–6995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalopoulos, G.K. (2007). Liver regeneration. J Cell Physiol 213, 286–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migliorini, A., Nostro, M.C., and Sneddon, J.B. (2021). Human pluripotent stem cell-derived insulin-producing cells: A regenerative medicine perspective. Cell Metab 33, 721–731.

    Article  CAS  PubMed  Google Scholar 

  • Minami, K., Okuno, M., Miyawaki, K., Okumachi, A., Ishizaki, K., Oyama, K., Kawaguchi, M., Ishizuka, N., Iwanaga, T., and Seino, S. (2005). Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci USA 102, 15116–15121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra, P.S., and Nostro, M.C. (2020). Islet-resident endocrine progenitors: a new hope for beta cell PROCReation?. Cell Stem Cell 26, 471–473.

    Article  CAS  PubMed  Google Scholar 

  • Miyajima, A., Tanaka, M., and Itoh, T. (2014). Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14, 561–574.

    Article  CAS  PubMed  Google Scholar 

  • Miyatsuka, T., Kosaka, Y., Kim, H., and German, M.S. (2011). Neurogenin3 inhibits proliferation in endocrine progenitors by inducing Cdkn1a. Proc Natl Acad Sci USA 108, 185–190.

    Article  PubMed  Google Scholar 

  • Mizrak, D., Levitin, H.M., Delgado, A.C., Crotet, V., Yuan, J., Chaker, Z., Silva-Vargas, V., Sims, P.A., and Doetsch, F. (2019). Single-cell analysis of regional differences in adult V-SVZ neural stem cell lineages. Cell Rep 26, 394–406.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montarras, D., Morgan, J., Collins, C., Relaix, F..., Zaffran, S., Cumano, A., Partridge, T., and Buckingham, M. (2005). Direct isolation of satellite cells for skeletal muscle regeneration. Science 309, 2064–2067.

    Article  CAS  PubMed  Google Scholar 

  • Morshead, C.M., Reynolds, B.A., Craig, C.G., McBurney, M.W., Staines, W.A., Morassutti, D., Weiss, S., and van der Kooy, D. (1994). Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, S., Brulet, R., Zhang, L., and Hsieh, J. (2016). REST regulation of gene networks in adult neural stem cells. Nat Commun 7, 13360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata, K., Jadhav, U., Madha, S., van Es, J., Dean, J., Cavazza, A., Wucherpfennig, K., Michor, F., Clevers, H., and Shivdasani, R.A. (2020). Ascl2-dependent cell dedifferentiation drives regeneration of ablated intestinal stem cells. Cell Stem Cell 26, 377–390.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, K.G., and Bloom, S.R. (2006). Gut hormones and the regulation of energy homeostasis. Nature 444, 854–859.

    Article  CAS  PubMed  Google Scholar 

  • Nagy, P., Bisgaard, H.C., and Thorgeirsson, S.S. (1994). Expression of hepatic transcription factors during liver development and oval cell differentiation.. J Cell Biol 126, 223–233.

    Article  CAS  PubMed  Google Scholar 

  • Nait-Oumesmar, B., Decker, L., Lachapelle, F., Avellana-Adalid, V., Bachelin, C., and Baron-Van Evercooren, A. (1999). Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur J Neurosci 11, 4357–4366.

    Article  CAS  PubMed  Google Scholar 

  • Nakafuku, M., Nagao, M., Grande, A., and Cancelliere, A. (2008). Revisiting neural stem cell identity. Proc Natl Acad Sci USA 105, 829–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicola, Z., Fabel, K., and Kempermann, G. (2015). Development of the adult neurogenic niche in the hippocampus of mice. Front Neuroanat 9.

  • Noguchi, H., Castillo, J.G., Nakashima, K., and Pleasure, S.J. (2019). Suppressor of fused controls perinatal expansion and quiescence of future dentate adult neural stem cells. eLife 8, e42918.

    Article  PubMed  PubMed Central  Google Scholar 

  • Obata, J., Yano, M., Mimura, H., Goto, T., Nakayama, R., Mibu, Y., Oka, C., and Kawaichi, M. (2001). p48 subunit of mouse PTF1 binds to RBPJκ/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos. Genes Cells 6, 345–360.

    Article  CAS  PubMed  Google Scholar 

  • Offield, M.F., Jetton, T.L., Labosky, P.A., Ray, M., and Wright, C.V. (1996). PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995.

    Article  CAS  PubMed  Google Scholar 

  • Okabe, M., Tsukahara, Y., Tanaka, M., Suzuki, K., Saito, S., Kamiya, Y., Tsujimura, T., Nakamura, K., and Miyajima, A. (2009). Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development 136, 1951–1960.

    Article  CAS  PubMed  Google Scholar 

  • Oprescu, S.N., Yue, F., Qiu, J., Brito, L.F., and Kuang, S. (2020). Temporal dynamics and heterogeneity of cell populations during skeletal muscle regeneration. iScience 23, 100993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega, F., and Costa, M.R. (2016). Live imaging of adult neural stem cells in rodents. Front Neurosci 10, 78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortega, F., Gascón, S., Masserdotti, G., Deshpande, A., Simon, C., Fischer, J., Dimou, L., Chichung Lie, D., Schroeder, T., and Berninger, B. (2013). Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat Cell Biol 15, 602–613.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Álvarez, G., Daclin, M., Shihavuddin, A., Lansade, P., Fortoul, A., Faucourt, M., Clavreul, S., Lalioti, M.E., Taraviras, S., Hippenmeyer, S., et al. (2019). Adult neural stem cells and multiciliated ependymal cells share a common lineage regulated by the geminin family members. Neuron 102, 159–172.e7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ousset, M., Van Keymeulen, A., Bouvencourt, G., Sharma, N., Achouri, Y., Simons, B.D., and Blanpain, C. (2012). Multipotent and unipotent progenitors contribute to prostate postnatal development. Nat Cell Biol 14, 1131–1138.

    Article  CAS  PubMed  Google Scholar 

  • Paku, S., Nagy, P., Kopper, L., and Thorgeirsson, S.S. (2004). 2-Acetylaminofluorene dose-dependent differentiation of rat oval cells into hepatocytes: confocal and electron microscopic studies. Hepatology 39, 1353–1361.

    Article  CAS  PubMed  Google Scholar 

  • Pan, F.C., Bankaitis, E.D., Boyer, D., Xu, X., Van de Casteele, M., Magnuson, M.A., Heimberg, H., and Wright, C.V.E. (2013). Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 140, 751–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, F.C., and Wright, C. (2011). Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 240, 530–565.

    Article  CAS  PubMed  Google Scholar 

  • Paton, J.A., and Nottebohm, F.N. (1984). Neurons generated in the adult brain are recruited into functional circuits. Science 225, 1046–1048.

    Article  CAS  PubMed  Google Scholar 

  • Paul, A., Chaker, Z., and Doetsch, F. (2017). Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science 356, 1383–1386.

    Article  CAS  PubMed  Google Scholar 

  • Peng, X.L., So, K.K., He, L., Zhao, Y., Zhou, J., Li, Y., Yao, M., Xu, B., Zhang, S., Yao, H., et al. (2017). MyoD- and FoxO3-mediated hotspot interaction orchestrates super-enhancer activity during myogenic differentiation. Nucleic Acids Res 45, 8785–8805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pentinmikko, N., Iqbal, S., Mana, M., Andersson, S., Cognetta Iii, A.B., Suciu, R.M., Roper, J., Luopajärvi, K., Markelin, E., Gopalakrishnan, S., et al. (2019). Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium. Nature 571, 398–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson, L.W., and Artis, D. (2014). Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14, 141–153.

    Article  CAS  PubMed  Google Scholar 

  • Piatti, V.C., Davies-Sala, M.G., Espósito, M.S., Mongiat, L.A., Trinchero, M.F., and Schinder, A.F. (2011). The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J Neurosci 31, 7715–7728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pictet, R.L., Clark, W.R., Williams, R.H., and Rutter, W.J. (1972). An ultrastructural analysis of the developing embryonic pancreas. Dev Biol 29, 436–467.

    Article  CAS  PubMed  Google Scholar 

  • Pignon, J.C., Grisanzio, C., Geng, Y., Song, J., Shivdasani, R.A., and Signoretti, S. (2013). p63-expressing cells are the stem cells of developing prostate, bladder, and colorectal epithelia. Proc Natl Acad Sci USA 110, 8105–8110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollen, A.A., Nowakowski, T.J., Chen, J., Retallack, H., Sandoval-Espinosa, C., Nicholas, C.R., Shuga, J., Liu, S.J., Oldham, M.C., Diaz, A., et al. (2015). Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popiela, H. (1976). Muscle satellite cells in urodele amphibians: Facilitated identification of satellite cells using ruthenium red staining. J Exp Zool 198, 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Potten, C.S., Owen, G., and Booth, D. (2002). Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 115, 2381–2388.

    Article  CAS  PubMed  Google Scholar 

  • Poulin, J.F., Tasic, B., Hjerling-Leffler, J., Trimarchi, J.M., and Awatramani, R. (2016). Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci 19, 1131–1141.

    Article  PubMed  Google Scholar 

  • Qi, Z., and Chen, Y.G. (2015). Regulation of intestinal stem cell fate specification. Sci China Life Sci 58, 570–578.

    Article  PubMed  Google Scholar 

  • Ramiya, V.K., Maraist, M., Arfors, K.E., Schatz, D.A., Peck, A.B., and Cornelius, J.G. (2000). Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 6, 278–282.

    Article  CAS  PubMed  Google Scholar 

  • Rao, S.S.P., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven, A., Lu, W.Y., Man, T.Y., Ferreira-Gonzalez, S., O′Duibhir, E., Dwyer, B.J., Thomson, J.P., Meehan, R.R., Bogorad, R., Koteliansky, V., et al. (2017). Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547, 350–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redmond, S.A., Figueres-Oñate, M., Obernier, K., Nascimento, M.A., Parraguez, J.I., López-Mascaraque, L., Fuentealba, L.C., and Alvarez-Buylla, A. (2019). Development of ependymal and postnatal neural stem cells and their origin from a common embryonic progenitor. Cell Rep 27, 429–441.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Relaix, F., Rocancourt, D., Mansouri, A., and Buckingham, M. (2005). A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435, 948–953.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, B.A., and Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  • Richards, L.J., Kilpatrick, T.J., and Bartlett, P.F. (1992). De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci USA 89, 8591–8595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson, G.D., Robson, C.N., Lang, S.H., Neal, D.E., Maitland, N.J., and Collins, A.T. (2004). CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117, 3539–3545.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, D.C.L., and Dilworth, F.J. (2018). Epigenetic Regulation of Adult Myogenesis. Curr Top Dev Biol 126, 235–284.

    Article  PubMed  Google Scholar 

  • Roche, K.C., Gracz, A.D., Liu, X.F., Newton, V., Akiyama, H., and Magness, S.T. (2015). SOX9 maintains reserve stem cells and preserves radioresistance in mouse small intestine. Gastroenterology 149, 1553–1563.e10.

    Article  CAS  PubMed  Google Scholar 

  • Rodgers, J.T., King, K.Y., Brett, J.O., Cromie, M.J., Charville, G.W., Maguire, K.K., Brunson, C., Mastey, N., Liu, L., Tsai, C.R., et al. (2014). mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert. Nature 510, 393–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roulis, M., and Flavell, R.A. (2016). Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation 92, 116–131.

    Article  CAS  PubMed  Google Scholar 

  • Rovira, M., Scott, S.G., Liss, A.S., Jensen, J., Thayer, S.P., and Leach, S.D. (2010). Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci USA 107, 75–80.

    Article  CAS  PubMed  Google Scholar 

  • Rukstalis, J.M., and Habener, J.F. (2007). Snail2, a mediator of epithelialmesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas. Gene Express Patt 7, 471–479.

    Article  CAS  Google Scholar 

  • Russell, J.O., Lu, W.Y., Okabe, H., Abrams, M., Oertel, M., Poddar, M., Singh, S., Forbes, S.J., and Monga, S.P. (2019). Hepatocyte-specific β-catenin deletion during severe liver injury provokes cholangiocytes to differentiate into hepatocytes. Hepatology 69, 742–759.

    Article  CAS  PubMed  Google Scholar 

  • Rutter, W.J., Kemp, J.D., Bradshaw, W.S., Clark, W.R., Ronzio, R.A., and Sanders, T.G. (1968). Regulation of specific protein synthesis in cytodifferentiation. J Cell Physiol 72, 1–18.

    Article  CAS  Google Scholar 

  • Ryall, J.G., Dell′Orso, S., Derfoul, A., Juan, A., Zare, H., Feng, X., Clermont, D., Koulnis, M., Gutierrez-Cruz, G., Fulco, M., et al. (2015). The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16, 171–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sackett, S.D., Li, Z., Hurtt, R., Gao, Y., Wells, R.G., Brondell, K., Kaestner, K.H., and Greenbaum, L.E. (2009). Foxl1 is a marker of bipotential hepatic progenitor cells in mice. Hepatology 49, 920–929.

    Article  CAS  PubMed  Google Scholar 

  • Sailaja, B.S., He, X.C., and Li, L. (2016). The regulatory niche of intestinal stem cells. J Physiol 594, 4827–4836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salpeter, S.J., Klein, A.M., Huangfu, D., Grimsby, J., and Dor, Y. (2010). Glucose and aging control the quiescence period that follows pancreatic beta cell replication. Development 137, 3205–3213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampath, S.C., Sampath, S.C., Ho, A.T.V., Corbel, S.Y., Millstone, J.D., Lamb, J., Walker, J., Kinzel, B., Schmedt, C., and Blau, H.M. (2018). Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M. Nat Commun 9, 1531.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sancho, R., Cremona, C.A., and Behrens, A. (2015). Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO Rep 16, 571–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger, G.J., and Lee, K. (2008). Hormones of the gut–brain axis as targets for the treatment of upper gastrointestinal disorders. Nat Rev Drug Discov 7, 241–254.

    Article  CAS  PubMed  Google Scholar 

  • Sangiorgi, E., and Capecchi, M.R. (2008). Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40, 915–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato, T., van Es, J.H., Snippert, H.J., Stange, D.E., Vries, R.G., van den Born, M., Barker, N., Shroyer, N.F., van de Wetering, M., and Clevers, H. (2011). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418.

    Article  CAS  PubMed  Google Scholar 

  • Scavuzzo, M.A., Hill, M.C., Chmielowiec, J., Yang, D., Teaw, J., Sheng, K., Kong, Y., Bettini, M., Zong, C., Martin, J.F., et al. (2018). Endocrine lineage biases arise in temporally distinct endocrine progenitors during pancreatic morphogenesis. Nat Commun 9, 3356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitt, M., Schewe, M., Sacchetti, A., Feijtel, D., van de Geer, W.S., Teeuwssen, M., Sleddens, H.F., Joosten, R., van Royen, M.E., van de Werken, H.J.G., et al. (2018). Paneth cells respond to inflammation and contribute to tissue regeneration by acquiring stem-like features through SCF/c-Kit signaling. Cell Rep 24, 2312–2328.e7.

    Article  CAS  PubMed  Google Scholar 

  • Schulze, K., Imbeaud, S., Letouzé, E., Alexandrov, L.B., Calderaro, J., Rebouissou, S., Couchy, G., Meiller, C., Shinde, J., Soysouvanh, F., et al. (2015). Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 47, 505–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwitzgebel, V.M., Scheel, D.W., Conners, J.R., Kalamaras, J., Lee, J.E., Anderson, D.J., Sussel, L., Johnson, J.D., and German, M.S. (2000). Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127, 3533–3542.

    Article  CAS  PubMed  Google Scholar 

  • Scoville, D.H., Sato, T., He, X.C., and Li, L. (2008). Current view: intestinal stem cells and signaling. Gastroenterology 134, 849–864.

    Article  CAS  PubMed  Google Scholar 

  • Seaberg, R.M., Smukler, S.R., Kieffer, T.J., Enikolopov, G., Asghar, Z., Wheeler, M.B., Korbutt, G., and van der Kooy, D. (2004). Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 22, 1115–1124.

    Article  CAS  PubMed  Google Scholar 

  • Seymour, P.A., Freude, K.K., Tran, M.N., Mayes, E.E., Jensen, J., Kist, R., Scherer, G., and Sander, M. (2007). SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci U S A 104, 1865–1870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, M.M., and Abate-Shen, C. (2010). Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24, 1967–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, J., Berg, D.A., Zhu, Y., Shin, J.Y., Song, J., Bonaguidi, M.A., Enikolopov, G., Nauen, D.W., Christian, K.M., Ming, G., et al. (2015a). Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, J., Ming, G., and Song, H. (2014). Decoding neural transcriptomes and epigenomes via high-throughput sequencing. Nat Neurosci 17, 1463–1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, S., Upadhyay, N., Greenbaum, L.E., and Kaestner, K.H. (2015b). Ablation of Foxl1-Cre-labeled hepatic progenitor cells and their descendants impairs recovery of mice from liver injury. Gastroenterology 148, 192–202.e3.

    Article  CAS  PubMed  Google Scholar 

  • Shoshkes-Carmel, M., Wang, Y.J., Wangensteen, K.J., Tóth, B., Kondo, A., Massasa, E.E., Itzkovitz, S., and Kaestner, K.H. (2018). Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 557, 242–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel, R.L., Miller, K.D., and Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J Clin 70, 7–30.

    Article  PubMed  Google Scholar 

  • Smukler, S.R., Arntfield, M.E., Razavi, R., Bikopoulos, G., Karpowicz, P., Seaberg, R., Dai, F., Lee, S., Ahrens, R., Fraser, P.E., et al. (2011). The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 8, 281–293.

    Article  CAS  PubMed  Google Scholar 

  • Sohn, J., Orosco, L., Guo, F., Chung, S.H., Bannerman, P., Mills Ko, E., Zarbalis, K., Deng, W., and Pleasure, D. (2015). The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice. J Neurosci 35, 3756–3763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soleimani, V.D., Punch, V.G., Kawabe, Y., Jones, A.E., Palidwor, G.A., Porter, C.J., Cross, J.W., Carvajal, J.J., Kockx, C.E.M., van IJcken, W.F. J., et al. (2012). Transcriptional dominance of Pax7 in adult myogenesis is due to high-affinity recognition of homeodomain motifs. Dev Cell 22, 1208–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa, A.M.M., Meyer, K.A., Santpere, G., Gulden, F.O., and Sestan, N. (2017). Evolution of the human nervous system function, structure, and development. Cell 170, 226–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart, T., and Satija, R. (2019). Integrative single-cell analysis. Nat Rev Genet 20, 257–272.

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama, T., Benitez, C.M., Ghodasara, A., Liu, L., McLean, G.W., Lee, J., Blauwkamp, T.A., Nusse, R., Wright, C.V.E., Gu, G., et al. (2013). Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc Natl Acad Sci USA 110, 12691–12696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svensson, V., Natarajan, K.N., Ly, L.H., Miragaia, R.J., Labalette, C., Macaulay, I.C., Cvejic, A., and Teichmann, S.A. (2017). Power analysis of single-cell RNA-sequencing experiments. Nat Methods 14, 381–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi, K., Wu, L.W., Grivennikov, S.I., de Jong, P.R., Lian, I., Yu, F.X., Wang, K., Ho, S.B., Boland, B.S., Chang, J.T., et al. (2015). A gp130–Src–YAP module links inflammation to epithelial regeneration. Nature 519, 57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanimizu, N., Nishikawa, M., Saito, H., Tsujimura, T., and Miyajima, A. (2003). Isolation of hepatoblasts based on the expression of Dlk/Pref-1. J Cell Sci 116, 1775–1786.

    Article  CAS  PubMed  Google Scholar 

  • Tanimizu, N., Nishikawa, Y., Ichinohe, N., Akiyama, H., and Mitaka, T. (2014). Sry HMG box protein 9-positive (Sox9+) epithelial cell adhesion molecule-negative (EpCAM) biphenotypic cells derived from hepatocytes are involved in mouse liver regeneration. J Biol Chem 289, 7589–7598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarlow, B.D., Pelz, C., Naugler, W.E., Wakefield, L., Wilson, E.M., Finegold, M.J., and Grompe, M. (2014). Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15, 605–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasic, B., Menon, V., Nguyen, T.N., Kim, T.K., Jarsky, T., Yao, Z., Levi, B., Gray, L.T., Sorensen, S.A., Dolbeare, T., et al. (2016). Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19, 335–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasic, B., Yao, Z., Graybuck, L.T., Smith, K.A., Nguyen, T.N., Bertagnolli, D., Goldy, J., Garren, E., Economo, M.N., Viswanathan, S., et al. (2018). Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, R.A., Toivanen, R., Frydenberg, M., Pedersen, J., Harewood, L., Australian Prostate Cancer Bioresou, L., Collins, A.T., Maitland, N.J., and Risbridger, G.P. (2012). Human epithelial basal cells are cells of origin of prostate cancer, independent of CD133 status. STEM CellS 30, 1087–1096.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, R.A., Wang, H., Wilkinson, S.E., Richards, M.G., Britt, K.L., Vaillant, F., Lindeman, G.J., Visvader, J.E., Cunha, G.R., St John, J., et al. (2009). Lineage enforcement by inductive mesenchyme on adult epithelial stem cells across developmental germ layers. Stem Cells N/A.

  • Teta, M., Rankin, M.M., Long, S.Y., Stein, G.M., and Kushner, J.A. (2007). Growth and regeneration of adult β cells does not involve specialized progenitors. Dev Cell 12, 817–826.

    Article  CAS  PubMed  Google Scholar 

  • Tetteh, P.W., Basak, O., Farin, H.F., Wiebrands, K., Kretzschmar, K., Begthel, H., van den Born, M., Korving, J., de Sauvage, F., van Es, J.H., et al. (2016). Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 18, 203–213.

    Article  CAS  PubMed  Google Scholar 

  • Tetteh, P.W., Farin, H.F., and Clevers, H. (2015). Plasticity within stem cell hierarchies in mammalian epithelia. Trends Cell Biol 25, 100–108.

    Article  CAS  PubMed  Google Scholar 

  • Theret, M., Gsaier, L., Schaffer, B., Juban, G., Ben Larbi, S., Weiss-Gayet, M., Bultot, L., Collodet, C., Foretz, M., Desplanches, D., et al. (2017). AMPK α1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis. EMBO J 36, 1946–1962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tika, E., Ousset, M., Dannau, A., and Blanpain, C. (2019). Spatiotemporal regulation of multipotency during prostate development. Development, doi: https://doi.org/10.1242/dev.180224.

  • Toda, T., and Gage, F.H. (2018). Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res 373, 693–709.

    Article  PubMed  Google Scholar 

  • Tomic, G., Morrissey, E., Kozar, S., Ben-Moshe, S., Hoyle, A., Azzarelli, R., Kemp, R., Chilamakuri, C.S.R., Itzkovitz, S., Philpott, A., et al. (2018). Phospho-regulation of ATOH1 is required for plasticity of secretory progenitors and tissue regeneration. Cell Stem Cell 23, 436–443.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32, 381–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremaroli, V., and Bäckhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, H.H., Li, H., Fuentealba, L.C., Molofsky, A.V., Taveira-Marques, R., Zhuang, H., Tenney, A., Murnen, A.T., Fancy, S.P.J., Merkle, F., et al. (2012). Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbán, N., Blomfield, I.M., and Guillemot, F. (2019). Quiescence of adult mammalian neural stem cells: a highly regulated rest. Neuron 104, 834–848.

    Article  PubMed  Google Scholar 

  • Urbán, N., van den Berg, D.L.C., Forget, A., Andersen, J., Demmers, J.A. A., Hunt, C., Ayrault, O., and Guillemot, F. (2016). Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science 353, 292–295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van de Casteele, M., Leuckx, G., Baeyens, L., Cai, Y., Yuchi, Y., Coppens, V., De Groef, S., Eriksson, M., Svensson, C., Ahlgren, U., et al. (2013). Neurogenin 3+ cells contribute to β-cell neogenesis and proliferation in injured adult mouse pancreas. Cell Death Dis 4, e523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Es, J.H., Sato, T., van de Wetering, M., Lyubimova, A., Yee Nee, A.N., Gregorieff, A., Sasaki, N., Zeinstra, L., van den Born, M., Korving, J., et al. (2012). Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 14, 1099–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Essen, D.C., Donahue, C.J., and Glasser, M.F. (2018). Development and evolution of cerebral and cerebellar cortex. Brain Behav Evol 91, 158–169.

    Article  PubMed  Google Scholar 

  • van Leenders, G., Dijkman, H., Hulsbergen-van de Kaa, C., Ruiter, D., and Schalken, J. (2000). Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy. Lab Invest 80, 1251–1258.

    Article  CAS  PubMed  Google Scholar 

  • van Velthoven, C.T.J., de Morree, A., Egner, I.M., Brett, J.O., and Rando, T.A. (2017). Transcriptional profiling of quiescent muscle stem cells in vivo. Cell Rep 21, 1994–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Griend, D.J., Karthaus, W.L., Dalrymple, S., Meeker, A., DeMarzo, A.M., and Isaacs, J.T. (2008). The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res 68, 9703–9711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vashchenko, N., and Abrahamsson, P.A. (2005). Neuroendocrine differentiation in prostate cancer: implications for new treatment modalities. Eur Urol 47, 147–155.

    Article  CAS  PubMed  Google Scholar 

  • Verhagen, A.P.M., Aalders, T.W., Ramaekers, F.C.S., Debruyne, F.M.J., and Schalken, J.A. (1988). Differential expression of keratins in the basal and luminal compartments of rat prostatic epithelium during degeneration and regeneration. Prostate 13, 25–38.

    Article  CAS  PubMed  Google Scholar 

  • Verma, M., Asakura, Y., Murakonda, B.S.R., Pengo, T., Latroche, C., Chazaud, B., McLoon, L.K., and Asakura, A. (2018). Muscle satellite cell cross-talk with a vascular niche maintains quiescence via VEGF and Notch signaling. Cell Stem Cell 23, 530–543.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Maltzahn, J., Jones, A.E., Parks, R.J., and Rudnicki, M.A. (2013). Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci USA 110, 16474–16479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, D.E., and Klein, A.M. (2020). Lineage tracing meets single-cell omics: opportunities and challenges. Nat Rev Genet 21, 410–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B., Zhao, L., Fish, M., Logan, C.Y., and Nusse, R. (2015a). Selfrenewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature 524, 180–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B., Wang, X., Long, J.E., Eastham-Anderson, J., Firestein, R., and Junttila, M.R. (2015b). Castration-resistant Lgr5+ cells are long-lived stem cells required for prostatic regeneration. Stem Cell Rep 4, 768–779.

    Article  CAS  Google Scholar 

  • Wang, D., Cai, C., Dong, X., Yu, Q.C., Zhang, X.O., Yang, L., and Zeng, Y. A. (2015c). Identification of multipotent mammary stem cells by protein C receptor expression. Nature 517, 81–84.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Wang, J., Bai, L., Pan, H., Feng, H., Clevers, H., and Zeng, Y.A. (2020a). Long-term expansion of pancreatic islet organoids from resident Procr+ progenitors. Cell 180, 1198–1211.e19.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Wang, D., Chu, K., Li, W., and Zeng, Y.A. (2019). Procrexpressing progenitor cells are responsible for murine ovulatory rupture repair of ovarian surface epithelium. Nat Commun 10, 4966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, K., Yaghi, O.K., Spallanzani, R.G., Chen, X., Zemmour, D., Lai, N., Chiu, I.M., Benoist, C., and Mathis, D. (2020b). Neuronal, stromal, and T-regulatory cell crosstalk in murine skeletal muscle. Proc Natl Acad Sci USA 117, 5402–5408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, R.N., Bouwens, L., and Klöppel, G. (1994). Beta-cell proliferation in normal and streptozotocin-treated newborn rats: site, dynamics and capacity. Diabetologia 37, 1088–1096.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., and Chen, Y.G. (2018). BMP signaling in homeostasis, transformation and inflammatory response of intestinal epithelium. Sci China Life Sci 61, 800–807.

    Article  PubMed  Google Scholar 

  • Wang, X., Kruithof-de Julio, M., Economides, K.D., Walker, D., Yu, H., Halili, M.V., Hu, Y.P., Price, S.M., Abate-Shen, C., and Shen, M.M. (2009). A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461, 495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Xu, H., Cheng, C., Ji, Z., Zhao, H., Sheng, Y., Li, X., Wang, J., Shu, Y., He, Y., et al. (2020c). Identification of a Zeb1 expressing basal stem cell subpopulation in the prostate. Nat Commun 11, 706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Song, W., Wang, J., Wang, T., Xiong, X., Qi, Z., Fu, W., Yang, X., and Chen, Y.G. (2020d). Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J Exp Med 217.

  • Wang, Z.A., Mitrofanova, A., Bergren, S.K., Abate-Shen, C., Cardiff, R.D., Califano, A., and Shen, M.M. (2013). Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity. Nat Cell Biol 15, 274–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wardle, F.C. (2019). Master control: transcriptional regulation of mammalian Myod. J Muscle Res Cell Motil 40, 211–226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei, X., Zhang, L., Zhou, Z., Kwon, O.J., Zhang, Y., Nguyen, H., Dumpit, R., True, L., Nelson, P., Dong, B., et al. (2019). Spatially Restricted Stromal Wnt Signaling Restrains Prostate Epithelial Progenitor Growth through Direct and Indirect Mechanisms. Cell Stem Cell 24, 753–768.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, Y., Wang, Y.G., Jia, Y., Li, L., Yoon, J., Zhang, S., Wang, Z., Zhang, Y., Zhu, M., Sharma, T., et al. (2021). Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science 371.

  • Weintraub, H., Tapscott, S.J., Davis, R.L., Thayer, M.J., Adam, M.A., Lassar, A.B., and Dusty Miller, A. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci USA 86, 5434–5438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Went, P.T.H., Lugli, A., Meier, S., Bundi, M., Mirlacher, M., Sauter, G., and Dirnhofer, S. (2004). Frequent EpCam protein expression in human carcinomas. Hum Pathol 35, 122–128.

    Article  CAS  PubMed  Google Scholar 

  • Wessells, N.K., and Cohen, J.H. (1967). Early pancreas organogenesis: morphogenesis, tissue interactions, and mass effects. Dev Biol 15, 237–270.

    Article  CAS  PubMed  Google Scholar 

  • Westphalen, C.B., Asfaha, S., Hayakawa, Y., Takemoto, Y., Lukin, D.J., Nuber, A.H., Brandtner, A., Setlik, W., Remotti, H., Muley, A., et al. (2014). Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J Clin Invest 124, 1283–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, R.B., Biérinx, A.S., Gnocchi, V.F., and Zammit, P.S. (2010). Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol 10, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wozniak, A.C., Kong, J., Bock, E., Pilipowicz, O., and Anderson, J.E. (2005). Signaling satellite-cell activation in skeletal muscle: markers, models, stretch, and potential alternate pathways. Muscle Nerve 31, 283–300.

    Article  CAS  PubMed  Google Scholar 

  • Wu, M.V., Sahay, A., Duman, R.S., and Hen, R. (2015). Functional differentiation of adult-born neurons along the septotemporal axis of the dentate gyrus. Cold Spring Harb Perspect Biol 7, a018978.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wuidart, A., Ousset, M., Rulands, S., Simons, B.D., Van Keymeulen, A., and Blanpain, C. (2016). Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev 30, 1261–1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin, L., Ide, H., Kim, Y., Dubey, P., and Witte, O.N. (2003). In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc Natl Acad Sci USA 100, 11896–11903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin, L., Lawson, D.A., and Witte, O.N. (2005). The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 102, 6942–6947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin, L., Lukacs, R.U., Lawson, D.A., Cheng, D., and Witte, O.N. (2007). Self-renewal and multilineage differentiation in vitro from murine prostate stem cells. Stem Cells 25, 2760–2769.

    Article  CAS  PubMed  Google Scholar 

  • Xing, Y.L., Röth, P.T., Stratton, J.A.S., Chuang, B.H.A., Danne, J., Ellis, S. L., Ng, S.W., Kilpatrick, T.J., and Merson, T.D. (2014). Adult neural precursor cells from the subventricular zone contribute significantly to oligodendrocyte regeneration and remyelination. J Neurosci 34, 14128–14146.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, X., D′Hoker, J., Stangé, G., Bonné, S., De Leu, N., Xiao, X., Van de Casteele, M., Mellitzer, G., Ling, Z., Pipeleers, D., et al. (2008). β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, M., Ogawa, R., Watanabe, Y., Uezumi, A., Miyagoe-Suzuki, Y., Tsujikawa, K., Yamamoto, H., Takeda, S.’., and Fukada, S. (2012). Calcitonin receptor and Odz4 are differently expressed in Pax7-positive cells during skeletal muscle regeneration. J Mol Hist 43, 581–587.

    Article  CAS  Google Scholar 

  • Yan, K.S., Gevaert, O., Zheng, G.X.Y., Anchang, B., Probert, C.S., Larkin, K.A., Davies, P.S., Cheng, Z.F., Kaddis, J.S., Han, A., et al. (2017). Intestinal enteroendocrine lineage cells possess homeostatic and injuryinducible stem cell activity. Cell Stem Cell 21, 78–90.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, G., Cancino, G.I., Zahr, S.K., Guskjolen, A., Voronova, A., Gallagher, D., Frankland, P.W., Kaplan, D.R., and Miller, F.D. (2016). A Glo1-methylglyoxal pathway that is perturbed in maternal diabetes regulates embryonic and adult neural stem cell pools in murine offspring. Cell Rep 17, 1022–1036.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W., and Hu, P. (2018a). Hierarchical signaling transduction of the immune and muscle cell crosstalk in muscle regeneration. Cell Immunol 326, 2–7.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W., and Hu, P. (2018b). Skeletal muscle regeneration is modulated by inflammation. J Orthop Transl 13, 25–32.

    Google Scholar 

  • Yao, J., Fetter, R.D., Hu, P., Betzig, E., and Tjian, R. (2011). Subnuclear segregation of genes and core promoter factors in myogenesis. Genes Dev 25, 569–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatoh, S., Dodge, R., Akashi, T., Omer, A., Sharma, A., Weir, G.C., and Bonner-Weir, S. (2007). Differentiation of affinity-purified human pancreatic duct cells to beta-cells. Diabetes 56, 1802–1809.

    Article  CAS  PubMed  Google Scholar 

  • Yin, X., Farin, H.F., van Es, J.H., Clevers, H., Langer, R., and Karp, J.M. (2014). Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods 11, 106–112.

    Article  CAS  PubMed  Google Scholar 

  • Yoo, Y.A., Roh, M., Naseem, A.F., Lysy, B., Desouki, M.M., Unno, K., and Abdulkadir, S.A. (2016). Bmi1 marks distinct castration-resistant luminal progenitor cells competent for prostate regeneration and tumour initiation. Nat Commun 7, 12943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Q.C., Song, W., Wang, D., and Zeng, Y.A. (2016). Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res 26, 1079–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, S., Tong, K., Zhao, Y., Balasubramanian, I., Yap, G.S., Ferraris, R.P., Bonder, E.M., Verzi, M.P., and Gao, N. (2018). Paneth cell multipotency induced by notch activation following injury. Cell Stem Cell 23, 46–59.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yucel, N., Wang, Y.X., Mai, T., Porpiglia, E., Lund, P.J., Markov, G., Garcia, B.A., Bendall, S.C., Angelo, M., and Blau, H.M. (2019). Glucose metabolism drives histone acetylation landscape transitions that dictate muscle stem cell function. Cell Rep 27, 3939–3955.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yui, S., Azzolin, L., Maimets, M., Pedersen, M.T., Fordham, R.P., Hansen, S.L., Larsen, H.L., Guiu, J., Alves, M.R.P., Rundsten, C.F., et al. (2018). YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22, 35–49.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajicek, G., Oren, R., and Weinreb Jr., M. (1985). The streaming liver. Liver 5, 293–300.

    Article  CAS  PubMed  Google Scholar 

  • Zammit, P.S., and Beauchamp, J.R. (2001). The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation 68, 193–204.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, Z., Miao, N., and Sun, T. (2018). Revealing cellular and molecular complexity of the central nervous system using single cell sequencing. Stem Cell Res Ther 9, 234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeuner, A., Todaro, M., Stassi, G., and De Maria, R. (2014). Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell 15, 692–705.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D., Jeter, C., Gong, S., Tracz, A., Lu, Y., Shen, J., and Tang, D.G. (2018). Histone 2B-GFP label-retaining prostate luminal cells possess progenitor cell properties and are intrinsically resistant to castration. Stem Cell Rep 10, 228–242.

    Article  CAS  Google Scholar 

  • Zhang, K., Sha, J., and Harter, M.L. (2010). Activation of Cdc6 by MyoD is associated with the expansion of quiescent myogenic satellite cells. J Cell Biol 188, 39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, H., Huang, X., Liu, Z., Pu, W., Lv, Z., He, L., Li, Y., Zhou, Q., Lui, K.O., and Zhou, B. (2021). Pre-existing beta cells but not progenitors contribute to new beta cells in the adult pancreas. Nat Metab 3, 352–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., et al. (2017). Massively parallel digital transcriptional profiling of single cells. Nat Commun 8, 14049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, S., Ding, W., Sun, L., Lu, Y., Dong, H., Fan, X., Liu, Z., Chen, R., Zhang, S., Ma, Q., et al. (2020). Decoding the development of the human hippocampus. Nature 577, 531–536.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, S., Zhang, S., Fan, X., Wu, Q., Yan, L., Dong, J., Zhang, H., Li, L., Sun, L., Pan, N., et al. (2018). A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555, 524–528.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, F., Li, X., Wang, W., Zhu, P., Zhou, J., He, W., Ding, M., Xiong, F., Zheng, X., Li, Z., et al. (2016). Tracing haematopoietic stem cell formation at single-cell resolution. Nature 533, 487–492.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, S.’., Zhang, W., Cai, G., Ding, Y., Wei, C., Li, S., Yang, Y., Qin, J., Liu, D., Zhang, H., et al. (2020a). Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Res 30, 1063–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z., Ma, X., and Zhu, S. (2020b). Recent advances and potential applications of human pluripotent stem cell-derived pancreatic β cells. Acta Biochim Biophys Sin 52, 708–715.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, G., Hu, J., and Xi, R. (2021). The cellular niche for intestinal stem cells: a team effort. Cell Regen 10, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zorn, A.M., and Wells, J.M. (2009). Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25, 221–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31988101 and 31730056 to YGC; 32125013 and 81772723 to DG; 32170804 to PH; 31930030 to LH; 91732301, 31671072,31771140, 81891001, 91432111, 81527901, 31400977, 31625013 to XW; 31625020, 31830056, 31861163006 to YAZ), the Ministry of Science and Technology of China (2017YFA0103601 to YGC; 2020YFA0509000, 2017YFA0505500 to DG; 2017YFA0102700 to PH; 2019YFA0802001, 2019YFA0801503 to LH; 2017YFA0102601, 2019YFA0110100 to XW; 2020YFA0509002, 2019YFA0802002 to YAZ), the Strategic Priority Research Program of the Chinese Academy of Science (XDA16020400 to PH; XDA16020200 to YAZ), the Shanghai Science and Technology Commission (21XD1424200, 21ZR1470100 to DG), the Basic Frontier Science Research Program of Chinese Academy of Sciences (ZDBS-LY-SM015 to DG), Space Medical Experiment Project of China Manned Space Program (HYZHXM01017 to PH), and the Grants of Beijing Brain Initiative of Beijing Municipal Science & Technology Commission (Z181100001518004 to XW).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye-Guang Chen, Dong Gao, Ping Hu, Lijian Hui, Xiaoqun Wang or Yi Arial Zeng.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., He, Q., Tao, Y. et al. Recent advances in tissue stem cells. Sci. China Life Sci. 64, 1998–2029 (2021). https://doi.org/10.1007/s11427-021-2007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2007-8

Keywords

Navigation