Skip to main content
Log in

Single-base resolution mapping of 2′-O-methylation sites by an exoribonuclease-enriched chemical method

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

2′-O-methylation (Nm) is one of the most abundant RNA epigenetic modifications and plays a vital role in the post-transcriptional regulation of gene expression. Current Nm mapping approaches are normally limited to highly abundant RNAs and have significant technical hurdles in mRNAs or relatively rare non-coding RNAs (ncRNAs). Here, we developed a new method for enriching Nm sites by using RNA exoribonuclease and periodate oxidation reactivity to eliminate 2′-hydroxylated (2′-OH) nucleosides, coupled with sequencing (Nm-REP-seq). We revealed several novel classes of Nm-containing ncRNAs as well as mRNAs in humans, mice, and drosophila. We found that some novel Nm sites are present at fixed positions in different tRNAs and are potential substrates of fibrillarin (FBL) methyltransferase mediated by snoRNAs. Importantly, we discovered, for the first time, that Nm located at the 3′-end of various types of ncRNAs and fragments derived from them. Our approach precisely redefines the genome-wide distribution of Nm and provides new technologies for functional studies of Nm-mediated gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birkedal, U., Christensen-Dalsgaard, M., Krogh, N., Sabarinathan, R., Gorodkin, J., and Nielsen, H. (2015). Profiling of ribose methylations in RNA by high-throughput sequencing. Angew Chem Int Ed 54, 451–455.

    CAS  Google Scholar 

  • Boccaletto, P., Machnicka, M.A., Purta, E., Piatkowski, P., Baginski, B., Wirecki, T.K., de Crécy-Lagard, V., Ross, R., Limbach, P.A., Kotter, A., et al. (2018). MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46, D303–D307.

    Article  CAS  PubMed  Google Scholar 

  • Bouchard-Bourelle, P., Desjardins-Henri, C., Mathurin-St-Pierre, D., Deschamps-Francoeur, G., Fafard-Couture, É., Garant, J.M., Elela, S. A., and Scott, M.S. (2020). snoDB: an interactive database of human snoRNA sequences, abundance and interactions. Nucleic Acids Res 48, D220–D225.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Qi, F., Gao, F., Cao, H., Xu, D., Salehi-Ashtiani, K., and Kapranov, P. (2021). Hovlinc is a recently evolved class of ribozyme found in human lncRNA. Nat Chem Biol 17, 601–607.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J., Indrisiunaite, G., DeMirci, H., Ieong, K.W., Wang, J., Petrov, A., Prabhakar, A., Rechavi, G., Dominissini, D., He, C., et al. (2018). 2′-O-methylation in mRNA disrupts tRNA decoding during translation elongation. Nat Struct Mol Biol 25, 208–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chomczynski, P., and Sacchi, N. (2006). The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1, 581–585.

    Article  CAS  PubMed  Google Scholar 

  • Dai, Q., Moshitch-Moshkovitz, S., Han, D., Kol, N., Amariglio, N., Rechavi, G., Dominissini, D., and He, C. (2017). Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat Methods 14, 695–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrova, D.G., Teysset, L., and Carré, C. (2019). RNA 2′-O-methylation (Nm) modification in human diseases. Genes 10, 117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein, P., Reddy, R., Henning, D., and Busch, H. (1980). The nucleotide sequence of nuclear U6 (4.7 S) RNA. J Biol Chem 255, 8901–8906.

    Article  CAS  PubMed  Google Scholar 

  • Frye, M., Harada, B.T., Behm, M., and He, C. (2018). RNA modifications modulate gene expression during development. Science 361, 1346–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert, W.V., Bell, T.A., and Schaening, C. (2016). Messenger RNA modifications: form, distribution, and function. Science 352, 1408–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillen, A.E., Yamamoto, T.M., Kline, E., Hesselberth, J.R., and Kabos, P. (2016). Improvements to the HITS-CLIP protocol eliminate widespread mispriming artifacts. BMC Genomics 17, 338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giraldez, M.D., Spengler, R.M., Etheridge, A., Godoy, P.M., Barczak, A.J., Srinivasan, S., De Hoff, P.L., Tanriverdi, K., Courtright, A., Lu, S., et al. (2018). Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nat Biotechnol 36, 746–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, H., Lian, B., Yuan, Y., Kong, C., Li, Y., Liu, C., and Qi, Y. (2022). A 5′ tRNA-Ala-derived small RNA regulates anti-fungal defense in plants. Sci China Life Sci 65, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Harada, F., Kato, N., and Nishimura, S. (1980). The nucleotide sequence of nuclear 4.8S RNA of mouse cells. Biochem Biophysl Res Commun 95, 1332–1340.

    Article  CAS  Google Scholar 

  • Harcourt, E.M., Kietrys, A.M., and Kool, E.T. (2017). Chemical and structural effects of base modifications in messenger RNA. Nature 541, 339–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höfler, S., and Carlomagno, T. (2020). Structural and functional roles of 2′-O-ribose methylations and their enzymatic machinery across multiple classes of RNAs. Curr Opin Struct Biol 65, 42–50.

    Article  PubMed  Google Scholar 

  • Horwich, M.D., Li, C., Matranga, C., Vagin, V., Farley, G., Wang, P., and Zamore, P.D. (2007). The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 17, 1265–1272.

    Article  CAS  PubMed  Google Scholar 

  • Hourigan, S.T., Solly, E.L., Nankivell, V.A., Ridiandries, A., Weimann, B. M., Henriquez, R., Tepper, E.R., Zhang, J.Q.J., Tsatralis, T., Clayton, Z. E., et al. (2018). The regulation of miRNAs by reconstituted high-density lipoproteins in diabetes-impaired angiogenesis. Sci Rep 8, 13596.

    Article  PubMed  PubMed Central  Google Scholar 

  • Incarnato, D., Anselmi, F., Morandi, E., Neri, F., Maldotti, M., Rapelli, S., Parlato, C., Basile, G., and Oliviero, S. (2017). High-throughput singlebase resolution mapping of RNA 2′-O-methylated residues. Nucleic Acids Res 45, 1433–1441.

    Article  CAS  PubMed  Google Scholar 

  • Jackowiak, P., Hojka-Osinska, A., Philips, A., Zmienko, A., Budzko, L., Maillard, P., Budkowska, A., and Figlerowicz, M. (2017). Small RNA fragments derived from multiple RNA classes—the missing element of multi-omics characteristics of the hepatitis C virus cell culture model. BMC Genomics 18, 502.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaffrey, S.R. (2014). An expanding universe of mRNA modifications. Nat Struct Mol Biol 21, 945–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiel, C., Berber, P., Karlstetter, M., Aslanidis, A., Strunz, T., Langmann, T., Grassmann, F., and Weber, B.H.F. (2020). A circulating MicroRNA profile in a laser-induced mouse model ofchoroidal neovascularization. Int J Mol Sci 21, 2689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirino, Y., and Mourelatos, Z. (2007). Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nat Struct Mol Biol 14, 347–348.

    Article  CAS  PubMed  Google Scholar 

  • Kishore, S., Gruber, A.R., Jedlinski, D.J., Syed, A.P., Jorjani, H., and Zavolan, M. (2013). Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing. Genome Biol 14, R45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiss-László, Z., Henry, Y., Bachellerie, J.P., Caizergues-Ferrer, M., and Kiss, T. (1996). Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85, 1077–1088.

    Article  PubMed  Google Scholar 

  • Krogh, N., Asmar, F., Côme, C., Munch-Petersen, H.F., Grønbæk, K., and Nielsen, H. (2020). Profiling of ribose methylations in ribosomal RNA from diffuse large B-cell lymphoma patients for evaluation of ribosomes as drug targets. NAR Cancer 2, zcaa035.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lalonde, M.S., Zuo, Y., Zhang, J., Gong, X., Wu, S., Malhotra, A., and Li, Z. (2007). Exoribonuclease R in Mycoplasma genitalium can carry out both RNA processing and degradative functions and is sensitive to RNA ribose methylation. RNA 13, 1957–1968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K.W., and Bogenhagen, D.F. (2014). Assignment of 2′-O-methyltransferases to modification sites on the mammalian mitochondrial large subunit 16 S ribosomal RNA (rRNA). J Biol Chem 289, 24936–24942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, M., Kim, B., and Kim, V.N. (2014). Emerging roles of RNA modification: m6A and U-Tail. Cell 158, 980–987.

    Article  CAS  PubMed  Google Scholar 

  • Lestrade, L., and Weber, M.J. (2006). snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res 34, D158–D162.

    Article  CAS  PubMed  Google Scholar 

  • Li, B., Zheng, L., Ye, J., Zhang, C., Zhou, J., Huang, Q., Guo, Y., Wang, L., Yu, P., Liu, S., et al. (2022). CREB1 contributes colorectal cancer cell plasticity by regulating lncRNA CCAT1 and NF-κB pathways. Sci China Life Sci 65, 1481–1497.

    Article  CAS  PubMed  Google Scholar 

  • Li, J.H., Liu, S., Zhou, H., Qu, L.H., and Yang, J.H. (2014). starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucl Acids Res 42, D92–D97.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Yang, Z., Yu, B., Liu, J., and Chen, X. (2005). Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15, 1501–1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Zhu, W.Y., Yang, W.Q., Li, C.T., and Liu, R.J. (2021). The occurrence order and cross-talk of different tRNA modifications. Sci China Life Sci 64, 1423–1436.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Liang, Q.X., Lin, J.R., Peng, J., Yang, J.H., Yi, C., Yu, Y., Zhang, Q. C., and Zhou, K.R. (2020). Epitranscriptomic technologies and analyses. Sci China Life Sci 63, 501–515.

    Article  PubMed  Google Scholar 

  • Li, Y., Luo, J., Zhou, H., Liao, J.Y., Ma, L.M., Chen, Y.Q., and Qu, L.H. (2008). Stress-induced tRNA-derived RNAs: a novel class of small RNAs in the primitive eukaryote Giardia lamblia. Nucleic Acids Res 36, 6048–6055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., and Zhou, H. (2009). tRNAs as regulators in gene expression. Sci China Ser C-Life Sci 52, 245–252.

    Article  CAS  Google Scholar 

  • Liang, H., Jiao, Z., Rong, W., Qu, S., Liao, Z., Sun, X., Wei, Y., Zhao, Q., Wang, J., Liu, Y., et al. (2020). 3′-Terminal 2′-O-methylation of lung cancer miR-21–5p enhances its stability and association with Argonaute 2. Nucleic Acids Res 48, 7027–7040.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, S., Li, B., Liang, Q., Liu, A., Qu, L., and Yang, J. (2020). Classification and function of RNA-protein interactions. WIREs RNA 11, e1601.

    Article  CAS  PubMed  Google Scholar 

  • Machnicka, M.A., Milanowska, K., Osman Oglou, O., Purta, E., Kurkowska, M., Olchowik, A., Januszewski, W., Kalinowski, S., Dunin-Horkawicz, S., Rother, K.M., et al. (2013). MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res 41, D262–D267.

    Article  CAS  PubMed  Google Scholar 

  • Maden, B.E.H. (2001). Mapping 2′-O-methyl groups in ribosomal RNA. Methods 25, 374–382.

    Article  CAS  PubMed  Google Scholar 

  • Maden, B.E.H., Corbett, M.E., Heeney, P.A., Pugh, K., and Ajuh, P.M. (1995). Classical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA. Biochimie 77, 22–29.

    Article  CAS  PubMed  Google Scholar 

  • Magoč, T., and Salzberg, S.L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcel, V., Ghayad, S.E., Belin, S., Therizols, G., Morel, A.P., Solano-Gonzàlez, E., Vendrell, J.A., Hacot, S., Mertani, H.C., Albaret, M.A., et al. (2013). p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 24, 318–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchand, V., Pichot, F., Thüring, K., Ayadi, L., Freund, I., Dalpke, A., Helm, M., and Motorin, Y. (2017). Next-generation sequencing-based RiboMethSeq protocol for analysis of tRNA 2′-O-methylation. Biomolecules 7, 13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17, 10.

    Google Scholar 

  • McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, B.R., Wei, T., Fields, C.J., Sheng, P., and Xie, M. (2018). Near-infrared fluorescent northern blot. RNA 24, 1871–1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motorin, Y., and Marchand, V. (2018). Detection and analysis of RNA ribose 2′-O-methylations: challenges and solutions. Genes 9, 642.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munafó, D.B., and Robb, G.B. (2010). Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA 16, 2537–2552.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nachmani, D., Bothmer, A.H., Grisendi, S., Mele, A., Bothmer, D., Lee, J. D., Monteleone, E., Cheng, K., Zhang, Y., Bester, A.C., et al. (2019). Germline NPM1 mutations lead to altered rRNA 2′-O-methylation and cause dyskeratosis congenita. Nat Genet 51, 1518–1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohara, T., Sakaguchi, Y., Suzuki, T., Ueda, H., Miyauchi, K., and Suzuki, T. (2007). The 3′ termini of mouse Piwi-interacting RNAs are 2′-O-methylated. Nat Struct Mol Biol 14, 349–350.

    Article  CAS  PubMed  Google Scholar 

  • Reichow, S.L., Hamma, T., Ferré-D′Amaré, A.R., and Varani, G. (2007). The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35, 1452–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringeard, M., Marchand, V., Decroly, E., Motorin, Y., and Bennasser, Y. (2019). FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature 565, 500–504.

    Article  CAS  PubMed  Google Scholar 

  • Rorbach, J., Boesch, P., Gammage, P.A., Nicholls, T.J.J., Pearce, S.F., Patel, D., Hauser, A., Perocchi, F., and Minczuk, M. (2014). MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome. Mol Biol Cell 25, 2542–2555.

    Article  PubMed  PubMed Central  Google Scholar 

  • Safra, M., Nir, R., Farouq, D., Vainberg Slutskin, I., and Schwartz, S. (2017a). TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Genome Res 27, 393–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safra, M., Sas-Chen, A., Nir, R., Winkler, R., Nachshon, A., Bar-Yaacov, D., Erlacher, M., Rossmanith, W., Stern-Ginossar, N., and Schwartz, S. (2017b). The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551, 251–255.

    Article  CAS  PubMed  Google Scholar 

  • Sorefan, K., Pais, H., Hall, A.E., Kozomara, A., Griffiths-Jones, S., Moulton, V., and Dalmay, T. (2012). Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence 3, 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, G., Wu, X., Wang, J., Li, H., Li, X., Gao, H., Rossi, J., and Yen, Y. (2011). A bias-reducing strategy in profiling small RNAs using Solexa. RNA 17, 2256–2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, T., Miyauchi, K., Sakaguchi, Y., and Suzuki, T. (2014). Biochemical and mass spectrometric analysis of 3′-end methylation of piRNAs. In: PIWI-Interacting RNAs. Methods in Molecular Biology, volume 1093. Totowa: Humana Press. 59–72.

    Chapter  Google Scholar 

  • Taoka, M., Nobe, Y., Yamaki, Y., Sato, K., Ishikawa, H., Izumikawa, K., Yamauchi, Y., Hirota, K., Nakayama, H., Takahashi, N., et al. (2018). Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res 46, 9289–9298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, N., Qu, S., Sun, W., Zeng, Z., Liang, H., Zhang, C.Y., Chen, X., and Zen, K. (2018). Direct quantification of 3′ terminal 2′-O-methylation of small RNAs by RT-qPCR. RNA 24, 1520–1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Li, Z.T., Yan, Y., Lin, P., Tang, W., Hasler, D., Meduri, R., Li, Y., Hua, M.M., Qi, H.T., et al. (2020). LARP7-mediated U6 snRNA modification ensures splicing fidelity and spermatogenesis in mice. Mol Cell 77, 999–1013.e6.

    Article  CAS  PubMed  Google Scholar 

  • Wulff, T.F., Argüello, R.J., Molina Jordàn, M., Roura Frigolé, H., Hauquier, G., Filonava, L., Camacho, N., Gatti, E., Pierre, P., Ribas de Pouplana, L., et al. (2017). Detection of a subset of posttranscriptional transfer RNA modifications in vivo with a restriction fragment length polymorphism-based method. Biochemistry 56, 4029–4038.

    Article  CAS  PubMed  Google Scholar 

  • Xu, W., Deng, B., Lin, P., Liu, C., Li, B., Huang, Q., Zhou, H., Yang, J., and Qu, L. (2020). Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells. Sci China Life Sci 63, 529–542.

    Article  CAS  PubMed  Google Scholar 

  • Xuan, J.J., Sun, W.J., Lin, P.H., Zhou, K.R., Liu, S., Zheng, L.L., Qu, L.H., and Yang, J.H. (2018). RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res 46, D327–D334.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Y., Tang, R., Li, B., Cheng, L., Ye, S., Yang, T., Han, Y.C., Liu, C., Dong, Y., Qu, L.H., et al. (2021). The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy. Mol Ther 29, 2253–2267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J.H., Zhang, X.C., Huang, Z.P., Zhou, H., Huang, M.B., Zhang, S., Chen, Y.Q., and Qu, L.H. (2006). snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome. Nucleic Acids Res 34, 5112–5123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Q., Li, R., Lyu, Q., Hou, L., Liu, Z., Sun, Q., Liu, M., Shi, H., Xu, B., Yin, M., et al. (2019). Single-cell CAS-seq reveals a class of short PIWI-interacting RNAs in human oocytes. Nat Commun 10, 3389.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R.W., Steward, R., and Chen, X. (2005). Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, F., Liu, Y., Rohde, C., Pauli, C., Gerloff, D., Köhn, M., Misiak, D., Bäumer, N., Cui, C., Göllner, S., et al. (2017). AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nat Cell Biol 19, 844–855.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., Pirnie, S.P., and Carmichael, G.G. (2017). High-throughput and site-specific identification of 2′-O-methylation sites using ribose oxidation sequencing (RibOxi-seq). RNA 23, 1303–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang, F., Fuchs, R.T., Sun, Z., Zheng, Y., and Robb, G.B. (2012). Structural bias in T4 RNA ligase-mediated 3′-adapter ligation. Nucleic Acids Res 40, e54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Züst, R., Cervantes-Barragan, L., Habjan, M., Maier, R., Neuman, B.W., Ziebuhr, J., Szretter, K.J., Baker, S.C., Barchet, W., Diamond, M.S., et al. (2011). Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12, 137–143.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2019YFA0802202), the National Natural Science Foundation of China (91940304, 31971228, 31900903, 31970604, 32100467, 32225011), and the Youth Science and Technology Innovation Talent of Guangdong TeZhi Plan (2019TQ05Y181).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianghu Qu, Bin Li or Jianhua Yang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Huang, J., Zheng, W. et al. Single-base resolution mapping of 2′-O-methylation sites by an exoribonuclease-enriched chemical method. Sci. China Life Sci. 66, 800–818 (2023). https://doi.org/10.1007/s11427-022-2210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2210-0

Keywords

Navigation