Skip to main content
Log in

Recent advances in lentiviral vectors for gene therapy

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Lentiviral vectors (LVs), derived from human immunodeficiency virus, are powerful tools for modifying the genes of eukaryotic cells such as hematopoietic stem cells and neural cells. With the extensive and in-depth studies on this gene therapy vehicle over the past two decades, LVs have been widely used in both research and clinical trials. For instance, third-generation and self-inactive LVs have been used to introduce a gene with therapeutic potential into the host genome and achieve targeted delivery into specific tissue. When LVs are employed in leukemia, the transduced T cells recognize and kill the tumor B cells; in β-thalassemia, the transduced CD34+ cells express normal β-globin; in adenosine deaminase-deficient severe combined immunodeficiency, the autologous CD34+ cells express adenosine deaminase and realize immune reconstitution. Overall, LVs can perform significant roles in the treatment of primary immunodeficiency diseases, hemoglobinopathies, B cell leukemia, and neurodegenerative diseases. In this review, we discuss the recent developments and therapeutic applications of LVs. The safe and efficient LVs show great promise as a tool for human gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, D.E., and Heimall, J.R. (2017). A review of chronic granulomatous disease. Adv Ther, 34, 2543–2557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ascherio, A., and Schwarzschild, M.A. (2016). The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol, 15, 1257–1272.

    Article  PubMed  Google Scholar 

  • Babačić, H., Mehta, A., Merkel, O., and Schoser, B. (2019). CRISPR-Cas gene-editing as plausible treatment of neuromuscular and nucleotiderepeat-expansion diseases: A systematic review. PLoS ONE, 14, e0212198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., and Jones, E. (2011). Alzheimer’s disease. Lancet, 377, 1019–1031.

    Article  PubMed  Google Scholar 

  • Barde, I., Laurenti, E., Verp, S., Wiznerowicz, M., Offner, S., Viornery, A., Galy, A., Trumpp, A., and Trono, D. (2011). Lineage- and stagerestricted lentiviral vectors for the gene therapy of chronic granulomatous disease. Gene Ther, 18, 1087–1097.

    Article  CAS  PubMed  Google Scholar 

  • Blancas-Galicia, L., Santos-Chévez, E., Deswarte, C., Mignac, Q., Medina-Vera, I., León-Lara, X., Roynard, M., Scheffler-Mendoza, S.C., Rioja-Valencia, R., Alvirde-Ayala, A., et al. (2020). Genetic, immunological, and clinical features of the first mexican cohort of patients with chronic granulomatous disease. J Clin Immunol, 40, 475–493.

    Article  CAS  PubMed  Google Scholar 

  • Blits, B., and Petry, H. (2017). Perspective on the road toward gene therapy for Parkinson’s disease. Front Neuroanat, 10, 128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Booth, C., Romano, R., Roncarolo, M.G., and Thrasher, A.J. (2019). Gene therapy for primary immunodeficiency. Hum Mol Genet, 28, R15–R23.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, K.L., Moretti, F.A., Carbonaro-Sarracino, D.A., Gaspar, H.B., and Kohn, D.B. (2017). Adenosine deaminase (ADA)-deficient severe combined immune deficiency (SCID): Molecular pathogenesis and clinical manifestations. J Clin Immunol, 37, 626–637.

    Article  CAS  PubMed  Google Scholar 

  • Brendel, C., Rothe, M., Santilli, G., Charrier, S., Stein, S., Kunkel, H., Abriss, D., Müller-Kuller, U., Gaspar, B., Modlich, U., et al. (2018). Non-clinical efficacy and safety studies on G1XCGD, a lentiviral vector for ex vivo gene therapy of X-linked chronic granulomatous disease. Hum Gene Ther Clin Dev, 29, 69–79.

    Article  CAS  PubMed  Google Scholar 

  • Brown, B.D., Gentner, B., Cantore, A., Colleoni, S., Amendola, M., Zingale, A., Baccarini, A., Lazzari, G., Galli, C., and Naldini, L. (2007). Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol, 25, 1457–1467.

    Article  CAS  PubMed  Google Scholar 

  • Cai, Y., and Shi, Q. (2020). Platelet-targeted FVIII gene therapy restores hemostasis and induces immune tolerance for hemophilia A. Front Immunol, 11, 964.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cambon, K., Zimmer, V., Martineau, S., Gaillard, M.C., Jarrige, M., Bugi, A., Miniarikova, J., Rey, M., Hassig, R., Dufour, N., et al. (2017). Preclinical evaluation of a lentiviral vector for Huntingtin silencing. Mol Ther Methods Clin Dev, 5, 259–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonaro, D.A., Zhang, L., Jin, X., Montiel-Equihua, C., Geiger, S., Carmo, M., Cooper, A., Fairbanks, L., Kaufman, M.L., Sebire, N.J., et al. (2014). Preclinical demonstration of lentiviral vector-mediated correction of immunological and metabolic abnormalities in models of adenosine deaminase deficiency. Mol Ther, 22, 607–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavazzana-Calvo, M., Payen, E., Negre, O., Wang, G., Hehir, K., Fusil, F., Down, J., Denaro, M., Brady, T., Westerman, K., et al. (2010). Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature, 467, 318–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cepeda, C., and Tong, X.P. (2018). Huntington’s disease: From basic science to therapeutics. CNS Neurosci Ther, 24, 247–249.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, C., Li, X., Ge, G., Liu, J., Biju, K.C., Laing, S.D., Qian, Y., Ballard, C., He, Z., Masliah, E., et al. (2018a). GDNF-expressing macrophages mitigate loss of dopamine neurons and improve Parkinsonian symptoms in MitoPark mice. Sci Rep, 8, 5460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, P., Yan, Q., Wang, S., Wang, C., and Zhao, P. (2016). Transfer of three transcription factors via a lentiviral vector ameliorates spatial learning and memory impairment in a mouse model of Alzheimer’s disease. Gene, 587, 59–63.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Luo, X., Schroeder, J.A., Chen, J., Baumgartner, C.K., Hu, J., and Shi, Q. (2017). Immune tolerance induced by platelet-targeted factor VIII gene therapy in hemophilia A mice is CD4 T cell mediated. J Thromb Haemost, 15, 1994–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y.H., Keiser, M.S., and Davidson, B.L. (2018b). Viral vectors for gene transfer. Curr Protoc Mouse Biol, 8, e58.

    Article  PubMed  Google Scholar 

  • Chiesa, R., Wang, J., Blok, H.J., Hazelaar, S., Neven, B., Moshous, D., Schulz, A., Hoenig, M., Hauck, F., Al Seraihy, A., et al. (2020). Hematopoietic cell transplantation in chronic granulomatous disease: a study of 712 children and adults. Blood, 136, 1201–1211.

    Article  PubMed  Google Scholar 

  • Chiriaco, M., Farinelli, G., Capo, V., Zonari, E., Scaramuzza, S., Di Matteo, G., Sergi, L.S., Migliavacca, M., Hernandez, R.J., Bombelli, F., et al. (2014). Dual-regulated lentiviral vector for gene therapy of X-linked chronic granulomatosis. Mol Ther, 22, 1472–1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiriaco, M., Salfa, I., Di Matteo, G., Rossi, P., and Finocchi, A. (2016). Chronic granulomatous disease: Clinical, molecular, and therapeutic aspects. Pediatr Allergy Immunol, 27, 242–253.

    Article  PubMed  Google Scholar 

  • Cirillo, E., Giardino, G., Gallo, V., D'Assante, R., Grasso, F., Romano, R., Di Lillo, C., Galasso, G., and Pignata, C. (2015). Severe combined immunodeficiency-an update. Ann NY Acad Sci, 1356, 90–106.

    Article  PubMed  Google Scholar 

  • Cornel, M.C., Howard, H.C., Lim, D., Bonham, V.L., and Wartiovaara, K. (2019). Moving towards a cure in genetics: what is needed to bring somatic gene therapy to the clinic? Eur J Hum Genet, 27, 484–487.

    Article  PubMed  Google Scholar 

  • Crespo-Barreda, A., Encabo-Berzosa, M.M., Gonzélez-Pastor, R., Ortíz-Teba, P., Iglesias, M., Serrano, J.L., and Martin-Duque, P. (2016). Chapter 11-Viral and nonviral vectors for in vivo and ex vivo gene therapies. In: Laurence, J., ed. Translating Regenerative Medicine to the Clinic. Boston: Academic Press. 155–177.

    Chapter  Google Scholar 

  • Cui, L., Jeong, H., Borovecki, F., Parkhurst, C.N., Tanese, N., and Krainc, D. (2006). Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127, 59–69.

    Article  CAS  PubMed  Google Scholar 

  • Damiano, M., Diguet, E., Malgorn, C., D’Aurelio, M., Galvan, L., Petit, F., Benhaim, L., Guillermier, M., Houitte, D., Dufour, N., et al. (2013). A role of mitochondrial complex II defects in genetic models of Huntington’s disease expressing N-terminal fragments of mutant huntingtin. Hum Mol Genet, 22, 3869–3882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Ravin, S.S., Wu, X., Moir, S., Anaya-O'Brien, S., Kwatemaa, N., Littel, P., Theobald, N., Choi, U., Su, L., Marquesen, M., et al. (2016). Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med, 8, 335ra57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demirci, S., Uchida, N., and Tisdale, J.F. (2018). Gene therapy for sickle cell disease: An update. Cytotherapy, 20, 899–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, P., Torrest, A., Pollock, K., Dahlenburg, H., Annett, G., Nolta, J.A., and Fink, K.D. (2016). Clinical trial perspective for adult and juvenile Huntington’s disease using genetically-engineered mesenchymal stem cells. Neural Regen Res, 11, 702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding, G., and Chen, H. (2016). Adoptive transfer of T cells transduced with a chimeric antigen receptor to treat relapsed or refractory acute leukemia: efficacy and feasibility of immunotherapy approaches. Sci China Life Sci, 59, 673–677.

    Article  CAS  PubMed  Google Scholar 

  • Dossa, R.G., Cunningham, T., Sommermeyer, D., Medina-Rodriguez, I., Biernacki, M.A., Foster, K., and Bleakley, M. (2018). Development of T-cell immunotherapy for hematopoietic stem cell transplantation recipients at risk of leukemia relapse. Blood, 131, 108–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreyer, J.L. (2011). Lentiviral vector-mediated gene transfer and RNA silencing technology in neuronal dysfunctions. Mol Biotechnol, 47, 169–187.

    Article  CAS  PubMed  Google Scholar 

  • Egashira, Y., Mori, Y., Yanagawa, Y., and Takamori, S. (2018). Development of lentiviral vectors for efficient glutamatergic-selective gene expression in cultured hippocampal neurons. Sci Rep, 8, 15156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Akabawy, N., Rodriguez, M., Ramamurthy, R., Rabah, A., Trevisan, B., Morsi, A., George, S., Shields, J., Meares, D., Farland, A., et al. (2020). Defining the optimal FVIII transgene for placental cell-based gene therapy to treat hemophilia A. Mol Ther Methods Clin Dev, 17, 465–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellison, S.M., Trabalza, A., Tisato, V., Pazarentzos, E., Lee, S., Papadaki, V., Goniotaki, D., Morgan, S., Mirzaei, N., and Mazarakis, N.D. (2013). Dose-dependent neuroprotection of VEGF165 in Huntington’s disease striatum. Mol Ther, 21, 1862–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estevez-Fraga, C., Flower, M.D., and Tabrizi, S.J. (2020). Therapeutic strategies for Huntington’s disease. Curr Opin Neurol, 33, 508–518.

    Article  CAS  PubMed  Google Scholar 

  • Fanales-Belasio, E., Raimondo, M., Suligoi, B., and Buttò, S. (2010). HIV virology and pathogenetic mechanisms of infection: a brief overview. Ann Ist Super Sanita, 46, 5–14.

    CAS  PubMed  Google Scholar 

  • Farinelli, G., Jofra Hernandez, R., Rossi, A., Ranucci, S., Sanvito, F., Migliavacca, M., Brombin, C., Pramov, A., Di Serio, C., Bovolenta, C., et al. (2016). Lentiviral vector gene therapy protects XCGD mice from acute Staphylococcus aureus pneumonia and inflammatory response. Mol Ther, 24, 1873–1880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari, G., Thrasher, A.J., and Aiuti, A. (2021). Gene therapy using haematopoietic stem and progenitor cells. Nat Rev Genet, 22, 216–234.

    Article  CAS  PubMed  Google Scholar 

  • Ferrua, F., and Aiuti, A. (2017). Twenty-five years of gene therapy for ADA-SCID: From bubble babies to an approved drug. Hum Gene Ther, 28, 972–981.

    Article  CAS  PubMed  Google Scholar 

  • Flinn, A.M., and Gennery, A.R. (2018). Adenosine deaminase deficiency: a review. Orphanet J Rare Dis 13, 65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Francis, A.C., Marin, M., Singh, P.K., Achuthan, V., Prellberg, M.J., Palermino-Rowland, K., Lan, S., Tedbury, P.R., Sarafianos, S.G., Engelman, A.N., et al. (2020). HIV-1 replication complexes accumulate in nuclear speckles and integrate into speckle-associated genomic domains. Nat Commun, 11, 3505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao, L.B., Yu, X. F., Chen, Q., and Zhou, D. (2016). Alzheimer’s disease therapeutics: current and future therapies. Minerva Med, 107, 108–113.

    PubMed  Google Scholar 

  • Garcia-Perez, L., Ordas, A., Canté-Barrett, K., Meij, P., Pike-Overzet, K., Lankester, A., and Staal, F.J.T. (2020). Preclinical development of autologous hematopoietic stem cell-based gene therapy for immune deficiencies: a journey from mouse cage to bed side. Pharmaceutics, 12, 549.

    Article  PubMed Central  CAS  Google Scholar 

  • Ge, G., Chen, C., Guderyon, M.J., Liu, J., He, Z., Yu, Y., Clark, R.A., and Li, S. (2018). Regulatable lentiviral hematopoietic stem cell gene therapy in a mouse model of Parkinson’s disease. Stem Cells Dev, 27, 995–1005.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Guerrero, A., Cosset, F.L., and Verhoeyen, E. (2020). Lentiviral vector pseudotypes: precious tools to improve gene modification of hematopoietic cells for research and gene therapy. Viruses, 12, 1016.

    Article  PubMed Central  CAS  Google Scholar 

  • Hallek, M., Shanafelt, T.D., and Eichhorst, B. (2018). Chronic lymphocytic leukaemia. Lancet, 391, 1524–1537.

    Article  PubMed  Google Scholar 

  • High, K.A., and Roncarolo, M.G. (2019). Gene therapy. N Engl J Med 381, 455–464.

    Article  CAS  PubMed  Google Scholar 

  • Hioki, H., Kameda, H., Nakamura, H., Okunomiya, T., Ohira, K., Nakamura, K., Kuroda, M., Furuta, T., and Kaneko, T. (2007). Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Ther, 14, 872–882.

    Article  CAS  PubMed  Google Scholar 

  • Hodson, R. (2018). Alzheimer’s disease. Nature, 559, S1.

    Article  PubMed  CAS  Google Scholar 

  • Hu, R., Wei, P., Jin, L., Zheng, T., Chen, W.Y., Liu, X.Y., Shi, X.D., Hao, J. R., Sun, N., and Gao, C. (2017). Overexpression of EphB2 in hippocampus rescues impaired NMDA receptors trafficking and cognitive dysfunction in Alzheimer model. Cell Death Dis, 8, e2717.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikawa, Y., Miccio, A., Magrin, E., Kwiatkowski, J.L., Rivella, S., and Cavazzana, M. (2019). Gene therapy of hemoglobinopathies: progress and future challenges. Hum Mol Genet, 28, R24–R30.

    Article  CAS  PubMed  Google Scholar 

  • Jafarian, A., Shokri, G., Shokrollahi Barough, M., Moin, M., Pourpak, Z., and Soleimani, M. (2019). Recent advances in gene therapy and modeling of chronic granulomatous disease. Iran J Allergy Asthma Immunol, 18, 131–142.

    PubMed  Google Scholar 

  • Jimenez-Sanchez, M., Licitra, F., Underwood, B.R., and Rubinsztein, D.C. (2017). Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med, 7, a024240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jing, W., Chen, J., Cai, Y., Chen, Y., Schroeder, J.A., Johnson, B.D., Cui, W., and Shi, Q. (2019). Induction of activated T follicular helper cells is critical for anti-FVIII inhibitor development in hemophilia A mice. Blood Adv, 3, 3099–3110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser, J. (2021). Gene therapy trials for sickle cell disease halted after two patients develop cancer. Science doi: 10.1126/science.abh1106.

    Google Scholar 

  • Katsouri, L., Parr, C., Bogdanovic, N., Willem, M., and Sastre, M. (2011). PPARγ-coactivator-1α (PGC-1α) reduces amyloid-β generation through a PPARγ-dependent mechanism. J Alzheimers Dis, 25, 151–162.

    Article  CAS  PubMed  Google Scholar 

  • Katsouri, L., Lim, Y.M., Blondrath, K., Eleftheriadou, I., Lombardero, L., Birch, A.M., Mirzaei, N., Irvine, E.E., Mazarakis, N.D., and Sastre, M. (2016). PPAR?-coactivator-1α gene transfer reduces neuronal loss and amyloid-β generation by reducing β-secretase in an Alzheimer’s disease model. Proc Natl Acad Sci USA, 113, 12292–12297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, V.N., Mitrophanous, K., Kingsman, S.M., and Kingsman, A.J. (1998). Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J Virol, 72, 811–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohn, D.B., Booth, C., Kang, E.M., Pai, S.Y., Shaw, K.L., Santilli, G., Armant, M., Buckland, K.F., Choi, U., De Ravin, S.S., et al. (2020). Lentiviral gene therapy for X-linked chronic granulomatous disease. Nat Med, 26, 200–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolli, N., Lu, M., Maiti, P., Rossignol, J., and Dunbar, G.L. (2017). CRISPR-Cas9 mediated gene-silencing of the mutant Huntingtin gene in an in vitro model of Huntington’s disease. Int J Mol Sci, 18, 754.

    Article  PubMed Central  CAS  Google Scholar 

  • Kong, W., Rivera-Serrano, E.E., Neidleman, J.A., and Zhu, J. (2019). HIV-1 replication benefits from the RNA epitranscriptomic code. J Mol Biol, 431, 5032–5038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levasseur, D.N., Ryan, T.M., Reilly, M.P., McCune, S.L., Asakura, T., and Townes, T.M. (2004). A recombinant human hemoglobin with antisickling properties greater than fetal hemoglobin. J Biol Chem, 279, 27518–27524.

    Article  CAS  PubMed  Google Scholar 

  • Lv, J., Jiang, S., Yang, Z., Hu, W., Wang, Z., Li, T., and Yang, Y. (2018). PGC-1α sparks the fire of neuroprotection against neurodegenerative disorders. Ageing Res Rev, 44, 8–21.

    Article  CAS  PubMed  Google Scholar 

  • Ma, C.C., Wang, Z.L., Xu, T., He, Z.Y., and Wei, Y.Q. (2020). The approved gene therapy drugs worldwide: from 1998 to 2019. Biotech Adv, 40, 107502.

    Article  CAS  Google Scholar 

  • Magrin, E., Miccio, A., and Cavazzana, M. (2019). Lentiviral and genomeediting strategies for the treatment of β-hemoglobinopathies. Blood, 134, 1203–1213.

    Article  PubMed  Google Scholar 

  • Mamcarz, E., Zhou, S., Lockey, T., Abdelsamed, H., Cross, S.J., Kang, G., Ma, Z., Condori, J., Dowdy, J., Triplett, B., et al. (2019). Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1. N Engl J Med, 380, 1525–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannucci, P.M. (2020). Hemophilia therapy: the future has begun. Haematologica, 105, 545–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marktel, S., Scaramuzza, S., Cicalese, M.P., Giglio, F., Galimberti, S., Lidonnici, M.R., Calbi, V., Assanelli, A., Bernardo, M.E., Rossi, C., et al. (2019). Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent β-thalassemia. Nat Med, 25, 234–241.

    Article  CAS  PubMed  Google Scholar 

  • Martin, E., Betuing, S., Pagès, C., Cambon, K., Auregan, G., Deglon, N., Roze, E., and Caboche, J. (2011). Mitogen- and stress-activated protein kinase 1-induced neuroprotection in Huntington’s disease: role on chromatin remodeling at the PGC-1-alpha promoter. Hum Mol Genet, 20, 2422–2434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maude, S.L., Frey, N., Shaw, P.A., Aplenc, R., Barrett, D.M., Bunin, N.J., Chew, A., Gonzalez, V.E., Zheng, Z., Lacey, S.F., et al. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med, 371, 1507–1517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merienne, N., Vachey, G., de Longprez, L., Meunier, C., Zimmer, V., Perriard, G., Canales, M., Mathias, A., Herrgott, L., Beltraminelli, T., et al. (2017). The self-inactivating KamiCas9 system for the editing of CNS disease genes. Cell Rep, 20, 2980–2991.

    Article  CAS  PubMed  Google Scholar 

  • Miccio, A., Cesari, R., Lotti, F., Rossi, C., Sanvito, F., Ponzoni, M., Routledge, S.J.E., Chow, C.M., Antoniou, M.N., and Ferrari, G. (2008). In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction of β-thalassemia. Proc Natl Acad Sci USA, 105, 10547–10552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milone, M.C., Fish, J.D., Carpenito, C., Carroll, R.G., Binder, G.K., Teachey, D., Samanta, M., Lakhal, M., Gloss, B., Danet-Desnoyers, G., et al. (2009). Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther, 17, 1453–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milone, M.C., and O’Doherty, U. (2018). Clinical use of lentiviral vectors. Leukemia, 32, 1529–1541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan, R.A., Unti, M.J., Aleshe, B., Brown, D., Osborne, K.S., Koziol, C., Ayoub, P.G., Smith, O.B., O'Brien, R., Tam, C., et al. (2020). Improved titer and gene transfer by lentiviral vectors using novel, small β-globin locus control region elements. Mol Ther, 28, 328–340.

    Article  CAS  PubMed  Google Scholar 

  • Mortellaro, A., Hernandez, R.J., Guerrini, M.M., Carlucci, F., Tabucchi, A., Ponzoni, M., Sanvito, F., Doglioni, C., Di Serio, C., Biasco, L., et al. (2006). Ex vivo gene therapy with lentiviral vectors rescues adenosine deaminase (ADA)-deficient mice and corrects their immune and metabolic defects. Blood, 108, 2979–2988.

    Article  CAS  PubMed  Google Scholar 

  • Mourby, M., and Morrison, M. (2020). Gene therapy regulation: could inbody editing fall through the net? Eur J Hum Genet, 28, 979–981.

    Article  PubMed  PubMed Central  Google Scholar 

  • Negre, O., Bartholomae, C., Beuzard, Y., Cavazzana, M., Christiansen, L., Courne, C., Deichmann, A., Denaro, M., de Dreuzy, E., Finer, M., et al. (2015). Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of β-thalassemia and sickle cell disease. Curr Gene Ther, 15, 64–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negre, O., Eggimann, A.V., Beuzard, Y., Ribeil, J.A., Bourget, P., Borwornpinyo, S., Hongeng, S., Hacein-Bey, S., Cavazzana, M., Leboulch, P., et al. (2016). Gene therapy of the β-hemoglobinopathies by lentiviral transfer of the βA(T87Q)-Globin gene. Hum Gene Ther, 27, 148–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmori, T. (2020). Advances in gene therapy for hemophilia: basis, current status, and future perspectives. Int J Hematol, 111, 31–41.

    Article  PubMed  Google Scholar 

  • Olbrich, H., Slabik, C., and Stripecke, R. (2017). Reconstructing the immune system with lentiviral vectors. Virus Genes, 53, 723–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olgasi, C., Talmon, M., Merlin, S., Cucci, A., Richaud-Patin, Y., Ranaldo, G., Colangelo, D., Di Scipio, F., Berta, G.N., Borsotti, C., et al. (2018). Patient-specific iPSC-derived endothelial cells provide long-term phenotypic correction of hemophilia A. Stem Cell Rep, 11, 1391–1406.

    Article  CAS  Google Scholar 

  • Origa, R. (2017). β-Thalassemia. Genet Med, 19, 609–619.

    Article  CAS  PubMed  Google Scholar 

  • Palfi, S., Gurruchaga, J.M., Ralph, G.S., Lepetit, H., Lavisse, S., Buttery, P. C., Watts, C., Miskin, J., Kelleher, M., Deeley, S., et al. (2014). Longterm safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet, 383, 1138–1146.

    Article  CAS  PubMed  Google Scholar 

  • Palfi, S., Gurruchaga, J.M., Lepetit, H., Howard, K., Ralph, G.S., Mason, S., Gouello, G., Domenech, P., Buttery, P.C., Hantraye, P., et al. (2018). Long-term follow-up of a phase I/II study of ProSavin, a lentiviral vector gene therapy for Parkinson’s disease. Hum Gene Ther Clin Dev, 29, 148–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, F., Ohashi, K., and Kay, M.A. (2003). The effect of age on hepatic gene transfer with self-inactivating lentiviral vectors in vivo. Mol Ther, 8, 314–323.

    Article  CAS  PubMed  Google Scholar 

  • Peters, R., and Harris, T. (2018). Advances and innovations in haemophilia treatment. Nat Rev Drug Discov, 17, 493–508.

    Article  CAS  PubMed  Google Scholar 

  • Piel, F.B., Steinberg, M.H., and Rees, D.C. (2017). Sickle cell disease. N Engl J Med, 376, 1561–1573.

    Article  CAS  PubMed  Google Scholar 

  • Poletti, V., Urbinati, F., Charrier, S., Corre, G., Hollis, R.P., Campo Fernandez, B., Martin, S., Rothe, M., Schambach, A., Kohn, D.B., et al. (2018). Pre-clinical development of a lentiviral vector expressing the anti-sickling βAS3 globin for gene therapy for sickle cell disease. Mol Ther Methods Clin Dev, 11, 167–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollock, K., Dahlenburg, H., Nelson, H., Fink, K.D., Cary, W., Hendrix, K., Annett, G., Torrest, A., Deng, P., Gutierrez, J., et al. (2016). Human mesenchymal stem cells genetically engineered to overexpress brainderived neurotrophic factor improve outcomes in Huntington’s disease mouse models. Mol Ther, 24, 965–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter, D.L., Levine, B.L., Kalos, M., Bagg, A., and June, C.H. (2011). Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med, 365, 725–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, W., Haroutunian, V., Katsel, P., Cardozo, C.P., Ho, L., Buxbaum, J.D., and Pasinetti, G.M. (2009). PGC-1α expression decreases in the Alzheimer disease brain as a function of dementia. Arch Neurol, 66, 352–361.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raikwar, S.P., Thangavel, R., Dubova, I., Selvakumar, G.P., Ahmed, M.E., Kempuraj, D., Zaheer, S.A., Iyer, S.S., and Zaheer, A. (2019). Targeted gene editing of glia maturation factor in microglia: a novel Alzheimer’s disease therapeutic target. Mol Neurobiol, 56, 378–393.

    Article  CAS  PubMed  Google Scholar 

  • Rasko, J.E.J., Battini, J.L., Gottschalk, R.J., Mazo, I., and Dusty Miller, A. (1999). The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. Proc Natl Acad Sci USA, 96, 2129–2134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeil, J.A., Hacein-Bey-Abina, S., Payen, E., Magnani, A., Semeraro, M., Magrin, E., Caccavelli, L., Neven, B., Bourget, P., El Nemer, W., et al. (2017). Gene therapy in a patient with sickle cell disease. N Engl J Med, 376, 848–855.

    Article  CAS  PubMed  Google Scholar 

  • Rolfes, S., Munro, D.A.D., Lyras, E.M., Matute, E., Ouk, K., Harms, C., Bøttcher, C., and Priller, J. (2020). Lentiviral delivery of human erythropoietin attenuates hippocampal atrophy and improves cognition in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis, 144, 105024.

    Article  PubMed  CAS  Google Scholar 

  • Rose, M., Gao, K., Cortez-Toledo, E., Agu, E., Hyllen, A.A., Conroy, K., Pan, G., Nolta, J.A., Wang, A., and Zhou, P. (2020). Endothelial cells derived from patients’ induced pluripotent stem cells for sustained factor VIII delivery and the treatment of hemophilia A. Stem Cells Transl Med, 9, 686–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samii, A., Nutt, J.G., and Ransom, B.R. (2004). Parkinson’s disease. Lancet, 363, 1783–1793.

    Article  CAS  PubMed  Google Scholar 

  • Santilli, G., Almarza, E., Brendel, C., Choi, U., Beilin, C., Blundell, M.P., Haria, S., Parsley, K.L., Kinnon, C., Malech, H.L., et al. (2011). Biochemical correction of X-CGD by a novel chimeric promoter regulating high levels of transgene expression in myeloid cells. Mol Ther, 19, 122–132.

    Article  CAS  PubMed  Google Scholar 

  • Sasmita, A.O. (2019). Current viral-mediated gene transfer research for treatment of Alzheimer’s disease. Biotech Genet Eng Rev 35, 26-45. Saw, P.E., and Song, E.W. (2020). siRNA therapeutics: a clinical reality. Sci China Life Sci, 63, 485–500.

    Google Scholar 

  • Shah, F.T., Sayani, F., Trompeter, S., Drasar, E., and Piga, A. (2019). Challenges of blood transfusions in β-thalassemia. Blood Rev, 37, 100588.

    Article  PubMed  Google Scholar 

  • Shaw, K.L., Garabedian, E., Mishra, S., Barman, P., Davila, A., Carbonaro, D., Shupien, S., Silvin, C., Geiger, S., Nowicki, B., et al. (2017). Clinical efficacy of gene-modified stem cells in adenosine deaminasedeficient immunodeficiency. J Clin Invest, 127, 1689–1699.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi, Q., Wilcox, D.A., Fahs, S.A., Fang, J., Johnson, B.D., Du, L.M., Desai, D., and Montgomery, R.R. (2007). Lentivirus-mediated platelet-derived factor VIII gene therapy in murine haemophilia A. J Thromb Haemost, 5, 352–361.

    Article  CAS  PubMed  Google Scholar 

  • Staber, J.M., Pollpeter, M.J., Anderson, C.G., Burrascano, M., Cooney, A. L., Sinn, P.L., Rutkowski, D.T., Raschke, W.C., and McCray, P.B. (2017). Long-term correction of hemophilia A mice following lentiviral mediated delivery of an optimized canine factor VIII gene. Gene Ther, 24, 742–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storkebaum, E., Lambrechts, D., Dewerchin, M., Moreno-Murciano, M.P., Appelmans, S., Oh, H., Van Damme, P., Rutten, B., Man, W.Y., De Mol, M., et al. (2005). Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci, 8, 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Tabrizi, S.J., Ghosh, R., and Leavitt, B.R. (2019). Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron, 101, 801–819.

    Article  CAS  PubMed  Google Scholar 

  • Tarazona-Santos, E., Machado, M., Magalhães, W.C.S., Chen, R., Lyon, F., Burdett, L., Crenshaw, A., Fabbri, C., Pereira, L., Pinto, L., et al. (2013). Evolutionary dynamics of the human NADPH oxidase genes CYBB, CYBA, NCF2, and NCF4: functional implications. Mol Biol Evol, 30, 2157–2167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, A.A., Walters, M.C., Kwiatkowski, J., Rasko, J.E.J., Ribeil, J. A., Hongeng, S., Magrin, E., Schiller, G.J., Payen, E., Semeraro, M., et al. (2018). Gene therapy in patients with transfusion-dependent β- thalassemia. N Engl J Med, 378, 1479–1493.

    Article  CAS  PubMed  Google Scholar 

  • Tornabene, P., and Trapani, I. (2020). Can adeno-associated viral vectors deliver effectively large genes? Hum Gene Ther, 31, 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Urbinati, F., Campo Fernandez, B., Masiuk, K.E., Poletti, V., Hollis, R.P., Koziol, C., Kaufman, M.L., Brown, D., Mavilio, F., and Kohn, D.B. (2018). Gene therapy for sickle cell disease: A lentiviral vector comparison study. Hum Gene Ther, 29, 1153–1166.

    Article  CAS  PubMed  Google Scholar 

  • Vachey, G., and Déglon, N. (2018). CRISPR/Cas9-mediated genome editing for Huntington’s disease. In: Precious, S., Rosser, A., and Dunnett, S., eds. Huntington’s Disease. Methods in Molecular Biology. New York: Humana Press. 463–481.

    Chapter  Google Scholar 

  • Van Kampen, J.M., and Kay, D.G. (2017). Progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of Alzheimer’s disease. PLoS ONE, 12, e0182896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner, R., Graf, M., Bieler, K., Wolf, H., Grunwald, T., Foley, P., and Uberla, K. (2000). Rev-independent expression of synthetic gag-pol genes of human immunodeficiency virus type 1 and simian immunodeficiency virus: implications for the safety of lentiviral vectors. Hum Gene Ther, 11, 2403–2413.

    Article  CAS  PubMed  Google Scholar 

  • Wang, G., Liu, X., Gaertig, M.A., Li, S., and Li, X.J. (2016a). Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Proc Natl Acad Sci USA, 113, 3359–3364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, R., Sun, H., Ren, H., and Wang, G. (2020). α-Synuclein aggregation and transmission in Parkinson’s disease: a link to mitochondria and lysosome. Sci China Life Sci, 63, 1850–1859.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Qin, D.Y., Zhang, B.L., Wei, W., Wang, Y.S., and Wei, Y.Q. (2016b). Establishing guidelines for CAR-T cells: challenges and considerations. Sci China Life Sci, 59, 333–339.

    Article  CAS  PubMed  Google Scholar 

  • Wilcox, D.A., Olsen, J.C., Ishizawa, L., Griffith, M., and White Gilbert C., I.I. (1999). Integrin alpha IIb promoter-targeted expression of gene products in megakaryocytes derived from retrovirus-transduced human hematopoietic cells. Proc Natl Acad Sci USA, 96, 9654–9659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams, T.N., and Thein, S.L. (2018). Sickle cell anemia and its phenotypes. Annu Rev Genomics Hum Genet, 19, 113–147.

    Article  CAS  PubMed  Google Scholar 

  • Ying, Z., Huang, X.F., Xiang, X., Liu, Y., Kang, X., Song, Y., Guo, X., Liu, H., Ding, N., Zhang, T., et al. (2019). A safe and potent anti-CD19 CAR T cell therapy. Nat Med, 25, 947–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, C.Y., Yang, T.T., Zhou, H.J., Zhao, Y., Kuang, X., Duan, W., and Du, J.R. (2019). Lentiviral vector-mediated overexpression of Klotho in the brain improves Alzheimer’s disease-like pathology and cognitive deficits in mice. Neurobiol Aging, 78, 18–28.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J.Y., Deng, Y.N., Zhang, M., Su, H., and Qu, Q.M. (2016). SIRT3 acts as a neuroprotective agent in rotenone-induced parkinson cell model. Neurochem Res, 41, 1761–1773.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Z., Xiao, X., Saw, P.E., Wu, W., Huang, H., Chen, J., and Nie, Y. (2020). Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment. Sci China Life Sci 63, 180–205.

    Article  CAS  PubMed  Google Scholar 

  • Zufferey, R., Donello, J.E., Trono, D., and Hope, T.J. (1999). Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73, 2886–2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2020YFC2008302), the Sichuan Science and Technology program (2019YFG0266), and the 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYJC18028, 2021HXFH064). All the figures in this review were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyao He.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ma, C., Rodríguez Labrada, R. et al. Recent advances in lentiviral vectors for gene therapy. Sci. China Life Sci. 64, 1842–1857 (2021). https://doi.org/10.1007/s11427-021-1952-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-1952-5

Navigation