Skip to main content
Log in

α-Synuclein aggregation and transmission in Parkinson’s disease: a link to mitochondria and lysosome

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The presence of intraneuronal Lewy bodies (LBs) and Lewy neurites (LNs) in the substantia nigra (SN) composed of aggregated α-synuclein (α-syn) has been recognized as a hallmark of pathological changes in Parkinson’s disease (PD). Numerous studies have shown that aggregated α-syn is necessary for neurotoxicity. Meanwhile, the mitochondrial and lysosomal dysfunctions are associated with α-syn pathogenicity The hypothesis that α-syn transmission in the human brain contributes to the instigation and progression of PD has provided insights into PD pathology. This review will provide a brief overview of increasing researches that shed light on the relationship of α-syn aggregation with mitochondrial and lysosomal dysfunctions, and highlight recent understanding of α-syn transmission in PD pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abounit, S., Bousset, L., Loria, F., Zhu, S., de Chaumont, F., Pieri, L., Olivo-Marin, J.C., Melki, R., and Zurzolo, C. (2016). Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J 35, 2120–2138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aguzzi, A., and Calella, A.M. (2009). Prions: protein aggregation and infectious diseases. Physiol Rev 89, 1105–1152.

    CAS  PubMed  Google Scholar 

  • Alvarez-Erviti, L., Seow, Y., Schapira, A.H., Gardiner, C., Sargent, I.L., Wood, M.J.A., and Cooper, J.M. (2011). Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis 42, 360–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Fischer, D., Guerreiro, S., Hunot, S., Saurini, F., Marien, M., Sokoloff, P., Hirsch, E.C., Hartmann, A., and Michel, P.P. (2008). Modelling Parkinson-like neurodegeneration via osmotic minipump delivery of MPTP and probenecid. J Neurochem 107, 701–711.

    CAS  PubMed  Google Scholar 

  • Attwell, D., and Laughlin, S.B. (2001). An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21, 1133–1145.

    CAS  PubMed  Google Scholar 

  • Bae, E.J., Yang, N.Y., Song, M., Lee, C.S., Lee, J.S., Jung, B.C., Lee, H.J., Kim, S., Masliah, E., Sardi, S.P., et al. (2014). Glucocerebrosidase depletion enhances cell-to-cell transmission of α-synuclein. Nat Commun 5, 4755.

    CAS  PubMed  Google Scholar 

  • Ballabio, A., and Bonifacino, J.S. (2020). Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol 21, 101–118.

    CAS  PubMed  Google Scholar 

  • Bartels, T., Choi, J.G., and Selkoe, D.J. (2011). α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477, 107–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benard, G., Bellance, N., James, D., Parrone, P., Fernandez, H., Letellier, T., and Rossignol, R. (2007). Mitochondrial bioenergetics and structural network organization. J Cell Sci 120, 838–848.

    CAS  PubMed  Google Scholar 

  • Bendor, J.T., Logan, T.P., and Edwards, R.H. (2013). The function of α-synuclein. Neuron 79, 1044–1066.

    CAS  PubMed  Google Scholar 

  • Blauwendraat, C., Heilbron, K., Vallerga, C.L., Bandres-Ciga, S., von Coelln, R., Pihlstram, L., Simón-Sánchez, J., Schulte, C., Sharma, M., Krohn, L., et al. (2019). Parkinson’s disease age at onset genome-wide association study: Defining heritability, genetic loci, and α-synuclein mechanisms. Mov Disord 34, 866–875.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braak, H., Tredici, K.D., Rüb, U., de Vos, R.A.I., Jansen Steur, E.N.H., and Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24, 197–211.

    PubMed  Google Scholar 

  • Brás, J., Guerreiro, R., and Hardy, J. (2015). SnapShot: Genetics of Parkinson’s disease. Cell 160, 570–570.e1.

    PubMed  Google Scholar 

  • Burbulla, L.F., Song, P., Mazzulli, J.R., Zampese, E., Wong, Y.C., Jeon, S., Santos, D.P., Blanz, J., Obermaier, C.D., Strojny, C., et al. (2017). Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 357, 1255–1261.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burré, J., Vivona, S., Diao, J., Sharma, M., Brunger, A.T., and Südhof, T.C. (2013). Properties of native brain α-synuclein. Nature 498, E4–E6.; discussion E6–7.

    PubMed  PubMed Central  Google Scholar 

  • Cabral-Costa, J.V., and Kowaltowski, A.J. (2020). Neurological disorders and mitochondria. Mol Aspects Med 71, 100826.

    CAS  PubMed  Google Scholar 

  • Cang, C., Aranda, K., Seo, Y., Gasnier, B., and Ren, D. (2015). TMEM175 is an organelle K+ channel regulating lysosomal function. Cell 162, 1101–1112.

    CAS  PubMed  Google Scholar 

  • Caughey, B., Baron, G.S., Chesebro, B., and Jeffrey, M. (2009). Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu Rev Biochem 78, 177–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, D., Nalls, M.A., Hallgrímsdóttir, I.B., Hunkapiller, J., van der Brug, M., Cai, F., Kerchner, G.A., Ayalon, G., Bingol, B., Sheng, M., et al. (2017). A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet 49, 1511–1516.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chavarría, C., and Souza, J.M. (2013). Oxidation and nitration of α-synuclein and their implications in neurodegenerative diseases. Arch Biochem Biophys 533, 25–32.

    PubMed  Google Scholar 

  • Choi, Y.R., Cha, S.H., Kang, S.J., Kim, J.B., Jou, I., and Park, S.M. (2018). Prion-like propagation of α-synuclein is regulated by the FcγRIIB-SHP-1/2 Signaling pathway in neurons. Cell Rep 22, 136–148.

    CAS  PubMed  Google Scholar 

  • Corti, O., Lesage, S., and Brice, A. (2011). What genetics tells us about the causes and mechanisms of Parkinson’s Disease. Physiol Rev 91, 1161–1218.

    CAS  PubMed  Google Scholar 

  • Cremades, N., Cohen, S.I.A., Deas, E., Abramov, A.Y., Chen, A.Y., Orte, A., Sandal, M., Clarke, R.W., Dunne, P., Aprile, F.A., et al. (2012). Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 149, 1048–1059.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T., and Sulzer, D. (2004). Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295.

    CAS  PubMed  Google Scholar 

  • Danzer, K.M., Kranich, L.R., Ruf, W.P., Cagsal-Getkin, O., Winslow, A.R., Zhu, L., Vanderburg, C.R., and McLean, P.J. (2012). Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7, 42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson, T.M., and Dawson, V.L. (2017). Mitochondrial mechanisms of neuronal cell death: potential therapeutics. Annu Rev Pharmacol Toxicol 57, 437–454.

    CAS  PubMed  Google Scholar 

  • de Lau, L.M., and Breteler, M.M. (2006). Epidemiology of Parkinson’s disease. Lancet Neurol 5, 525–535.

    PubMed  Google Scholar 

  • Deng, H., Wang, P., and Jankovic, J. (2018). The genetics of Parkinson disease. Ageing Res Rev 42, 72–85.

    CAS  PubMed  Google Scholar 

  • Desplats, P., Lee, H.J., Bae, E.J., Patrick, C., Rockenstein, E., Crews, L., Spencer, B., Masliah, E., and Lee, S.J. (2009). Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc Natl Acad Sci USA 106, 13010–13015.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Maio, R., Barrett, P.J., Hoffman, E.K., Barrett, C.W., Zharikov, A., Borah, A., Hu, X., McCoy, J., Chu, C.T., Burton, E.A., et al. (2016). α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci Transl Med 8, 342ra78.

    PubMed  PubMed Central  Google Scholar 

  • di Ronza, A., Bajaj, L., Sharma, J., Sanagasetti, D., Lotfi, P., Adamski, C.J., Collette, J., Palmieri, M., Amawi, A., Popp, L., et al. (2018). CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis. Nat Cell Biol 20, 1370–1377.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Domínguez-Prieto, M., Velasco, A., Tabernero, A., and Medina, J.M. (2018). Endocytosis and transcytosis of amyloid-β peptides by astrocytes: a possible mechanism for amyloid-β clearance in Alzheimer’s disease. J Alzheimers Dis 65, 1109–1124.

    PubMed  Google Scholar 

  • Dong, D., Xie, J., and Wang, J. (2019a). Neuroprotective effects of brain-gut peptides: A potential therapy for Parkinson’s disease. Neurosci Bull 35, 1085–1096.

    PubMed  PubMed Central  Google Scholar 

  • Dong, Y., Stewart, T., Zhang, Y., Shi, M., Tan, C., Li, X., Yuan, L., Mehrotra, A., Zhang, J., and Yang, X. (2019b). Anti-diabetic vanadyl complexes reduced Alzheimer’s disease pathology independent of amyloid plaque deposition. Sci China Life Sci 62, 126–139.

    CAS  PubMed  Google Scholar 

  • Ejlerskov, P., Rasmussen, I., Nielsen, T.T., Bergström, A.L., Tohyama, Y., Jensen, P.H., and Vilhardt, F. (2013). Tubulin polymerization-promoting protein (TPPP/p25β) promotes unconventional secretion of α-synuclein through exophagy by impairing autophagosome-lysosome fusion. J Biol Chem 288, 17313–17335.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emmanouilidou, E., Melachroinou, K., Roumeliotis, T., Garbis, S.D., Ntzouni, M., Margaritis, L.H., Stefanis, L., and Vekrellis, K. (2010). Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30, 6838–6851.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh, A., Tyson, T., George, S., Hildebrandt, E.N., Steiner, J.A., Madaj, Z., Schulz, E., Machiela, E., McDonald, W.G., Escobar Galvis, M.L., et al. (2016). Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinsons disease. Sci Transl Med 8, 368ra174.

    PubMed  Google Scholar 

  • Giaime, E., Tong, Y., Wagner, L.K., Yuan, Y., Huang, G., and Shen, J. (2017). Age-dependent dopaminergic neurodegeneration and impairment of the autophagy-lysosomal pathway in LRRK-deficient mice. Neuron 96, 796–807.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giasson, B.I., Duda, J.E., Murray, I.V., Chen, Q., Souza, J.M., Hurtig, H.I., Ischiropoulos, H., Trojanowski, J.Q., and Lee, V.M. (2000). Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290, 985–989.

    CAS  PubMed  Google Scholar 

  • Goedert, M. (2015). NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349, 1255555.

    PubMed  Google Scholar 

  • Goldberg, J.A., Guzman, J.N., Estep, C.M., Ilijic, E., Kondapalli, J., Sanchez-Padilla, J., and Surmeier, D.J. (2012). Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson’s disease. Nat Neurosci 15, 1414–1421.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grünewald, A., Kumar, K.R., and Sue, C.M. (2019). New insights into the complex role of mitochondria in Parkinson’s disease. Prog Neurobiol 177, 73–93.

    PubMed  Google Scholar 

  • Gu, C., Zhang, Y., Hu, Q., Wu, J., Ren, H., Liu, C.F., and Wang, G. (2017). P7C3 inhibits GSK3β activation to protect dopaminergic neurons against neurotoxin-induced cell death in vitro and in vivo. Cell Death Dis 8, e2858.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, C., Sun, L., Chen, X., and Zhang, D. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8, 2003–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman, J.N., Sanchez-Padilla, J., Wokosin, D., Kondapalli, J., Ilijic, E., Schumacker, P.T., and Surmeier, D.J. (2010). Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468, 696–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson, M.X., Cornblath, E.J., Darwich, A., Zhang, B., Brown, H., Gathagan, R.J., Sandler, R.M., Bassett, D.S., Trojanowski, J.Q., and Lee, V.M.Y. (2019a). Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nat Neurosci 22, 1248–1257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson, M.X., Trojanowski, J.Q., and Lee, V.M.Y. (2019b). α-Synuclein pathology in Parkinson’s disease and related α-synucleinopathies. Neurosci Lett 709, 134316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes, B.B., DeVos, S.L., Kfoury, N., Li, M., Jacks, R., Yanamandra, K., Ouidja, M.O., Brodsky, F.M., Marasa, J., Bagchi, D.P., et al. (2013). Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci USA 110, E3138–E3147.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Q., and Wang, G. (2016). Mitochondrial dysfunction in Parkinson’s disease. Transl Neurodegener 5, 14.

    PubMed  PubMed Central  Google Scholar 

  • Huang, B., Wu, S., Wang, Z., Ge, L., Rizak, J.D., Wu, J., Li, J., Xu, L., Lv, L., Yin, Y, et al. (2018). Phosphorylated α-synuclein accumulations and Lewy body-like pathology distributed in Parkinson’s disease-related brain areas of aged rhesus monkeys treated with MPTP. Neuroscience 379, 302–315.

    CAS  PubMed  Google Scholar 

  • Jackson-Lewis, V., Blesa, J., and Przedborski, S. (2012). Animal models of Parkinson’s disease. Parkinsonism Relat Disord 18, S183–S185.

    PubMed  Google Scholar 

  • Jang, A., Lee, H.J., Suk, J.E., Jung, J.W., Kim, K.P., and Lee, S.J. (2010). Non-classical exocytosis of α-synuclein is sensitive to folding states and promoted under stress conditions. J Neurochem 113, 1263–1274.

    CAS  PubMed  Google Scholar 

  • Johri, A., and Beal, M.F. (2012). Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 342, 619–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jucker, M., and Walker, L.C. (2013). Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jucker, M., and Walker, L.C. (2018). Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat Neurosci 21, 1341–1349.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kam, T.I., Mao, X., Park, H., Chou, S.C., Karuppagounder, S.S., Umanah, G.E., Yun, S.P., Brahmachari, S., Panicker, N., Chen, R., et al. (2018). Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease. Science 362, eaat8407.

    PubMed  PubMed Central  Google Scholar 

  • Kim, S., Kwon, S.H., Kam, T.I., Panicker, N., Karuppagounder, S.S., Lee, S., Lee, J.H., Kim, W.R., Kook, M., Foss, C.A., et al. (2019). Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103, 627–641.e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S., Yun, S.P., Lee, S., Umanah, G.E., Bandaru, V.V.R., Yin, X., Rhee, P., Karuppagounder, S.S., Kwon, S.H., Lee, H., et al. (2018). GBA1 deficiency negatively affects physiological α-synuclein tetramers and related multimers. Proc Natl Acad Sci USA 115, 798–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • King, O.D., Gitler, A.D., and Shorter, J. (2012). The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462, 61–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kordower, J.H., Chu, Y., Hauser, R.A., Freeman, T.B., and Olanow, C.W. (2008). Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14, 504–506.

    CAS  PubMed  Google Scholar 

  • Krohn, L., Öztürk, T.N., Vanderperre, B., Ouled Amar Bencheikh, B., Ruskey, J.A., Laurent, S.B., Spiegelman, D., Postuma, R.B., Arnulf, I., Hu, M.T.M., et al. (2020). Genetic, structural, and functional evidence link TMEM175 to synucleinopathies. Ann Neurol 87, 139–153.

    CAS  PubMed  Google Scholar 

  • Lee, H.J., Patel, S., and Lee, S.J. (2005). Intravesicular localization and exocytosis of α-synuclein and its aggregates. J Neurosci 25, 6016–6024.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, H.J., Suk, J.E., Bae, E.J., Lee, J.H., Paik, S.R., and Lee, S.J. (2008). Assembly-dependent endocytosis and clearance of extracellular α-synuclein. Int J Biochem Cell Biol 40, 1835–1849.

    CAS  PubMed  Google Scholar 

  • Lee, V.M.Y., and Trojanowski, J.Q. (2006). Mechanisms of Parkinson’s disease linked to pathological α-synuclein: new targets for drug discovery. Neuron 52, 33–38.

    CAS  PubMed  Google Scholar 

  • Li, J.Y., Englund, E., Holton, J.L., Soulet, D., Hagell, P., Lees, A.J., Lashley, T., Quinn, N.P., Rehncrona, S., Björklund, A., et al. (2008). Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14, 501–503.

    CAS  PubMed  Google Scholar 

  • Li, X., Yang, W., Li, X., Chen, M., Liu, C., Li, J., and Yu, S. (2020). Alpha-synuclein oligomerization and dopaminergic degeneration occur synchronously in the brain and colon of MPTP-intoxicated parkinsonian monkeys. Neurosci Lett 716, 134640.

    CAS  PubMed  Google Scholar 

  • Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795.

    CAS  PubMed  Google Scholar 

  • Loria, F., Vargas, J.Y., Bousset, L., Syan, S., Salles, A., Melki, R., and Zurzolo, C. (2017). α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading. Acta Neuropathol 134, 789–808.

    CAS  PubMed  Google Scholar 

  • Ludtmann, M.H.R., Angelova, P.R., Horrocks, M.H., Choi, M.L., Rodrigues, M., Baev, A.Y., Berezhnov, A.V., Yao, Z., Little, D., Banushi, B., et al. (2018). α-Synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Commun 9, 2293.

    PubMed  PubMed Central  Google Scholar 

  • Luk, K.C., Kehm, V., Carroll, J., Zhang, B., O’Brien, P., Trojanowski, J.Q., and Lee, V.M.Y. (2012). Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luk, K.C., Song, C., O’Brien, P., Stieber, A., Branch, J.R., Brunden, K.R., Trojanowski, J.Q., and Lee, V.M.Y. (2009). Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA 106, 20051–20056.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luth, E.S., Stavrovskaya, I.G., Bartels, T., Kristal, B.S., and Selkoe, D.J. (2014). Soluble, prefibrillar α-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction. J Biol Chem 289, 21490–21507.

    PubMed  PubMed Central  Google Scholar 

  • Mao, X., Ou, M.T., Karuppagounder, S.S., Kam, T.I., Yin, X., Xiong, Y., Ge, P., Umanah, G.E., Brahmachari, S., Shin, J.H., et al. (2016). Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353, aah3374.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marques, A.R.A., and Saftig, P. (2019). Lysosomal storage disorders—Challenges, concepts and avenues for therapy: beyond rare diseases. J Cell Sci 132, jcs221739.

    PubMed  Google Scholar 

  • Martin, L.J., Pan, Y., Price, A.C., Sterling, W., Copeland, N.G., Jenkins, N. A., Price, D.L., and Lee, M.K. (2006). Parkinson’s disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26, 41–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Vicente, M., Talloczy, Z., Kaushik, S., Massey, A.C., Mazzulli, J., Mosharov, E.V., Hodara, R., Fredenburg, R., Wu, D.C., Follenzi, A., et al. (2008). Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118, 777–788.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzulli, J.R., Xu, Y.H., Sun, Y., Knight, A.L., McLean, P.J., Caldwell, G. A., Sidransky, E., Grabowski, G.A., and Krainc, D. (2011). Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzulli, J.R., Zunke, F., Isacson, O., Studer, L., and Krainc, D. (2016). α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc Natl Acad Sci USA 113, 1931–1936.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mistry, P.K., Liu, J., Sun, L., Chuang, W.L., Yuen, T., Yang, R., Lu, P., Zhang, K., Li, J., Keutzer, J., et al. (2014). Glucocerebrosidase 2 gene deletion rescues type 1 Gaucher disease. Proc Natl Acad Sci USA 111, 4934–4939.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mor, D.E., Tsika, E., Mazzulli, J.R., Gould, N.S., Kim, H., Daniels, M.J., Doshi, S., Gupta, P., Grossman, J.L., Tan, V.X., et al. (2017). Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nat Neurosci 20, 1560–1568.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Manchado, A.B., Villadiego, J., Romo-Madero, S., Suárez-Luna, N., Bermejo-Navas, A., Rodríguez-Gómez, J.A., Garrido-Gil, P., Labandeira-García, J.L., Echevarría, M., López-Barneo, J., et al. (2016). Chronic and progressive Parkinson’s disease MPTP model in adult and aged mice. J Neurochem 136, 373–387.

    PubMed  Google Scholar 

  • Murphy, K.E., Gysbers, A.M., Abbott, S.K., Tayebi, N., Kim, W.S., Sidransky, E., Cooper, A., Garner, B., and Halliday, G.M. (2014). Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson’s disease. Brain 137, 834–848.

    PubMed  PubMed Central  Google Scholar 

  • Nicklas, W.J., Vyas, I., and Heikkila, R.E. (1985). Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36, 2503–2508.

    CAS  PubMed  Google Scholar 

  • Nisticò, R., Mehdawy, B., Piccirilli, S., and Mercuri, N. (2011). Paraquat- and rotenone-induced models of Parkinson’s Disease. Int J Immunopathol Pharmacol 24, 313–322.

    PubMed  Google Scholar 

  • Nuytemans, K., Theuns, J., Cruts, M., and Van Broeckhoven, C. (2010). Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31, 763–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, S.H., Kim, H.N., Park, H.J., Shin, J.Y., Bae, E.J., Sunwoo, M.K., Lee, S.J., and Lee, P.H. (2016). Mesenchymal stem cells inhibit transmission of α-synuclein by modulating clathrin-mediated endocytosis in a parkinsonian model. Cell Rep 14, 835–849.

    CAS  PubMed  Google Scholar 

  • Ordonez, D.G., Lee, M.K., and Feany, M.B. (2018). α-Synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron 97, 108–124.e6.

    CAS  PubMed  Google Scholar 

  • Panaro, M.A., Aloisi, A., Nicolardi, G., Lofrumento, D.D., De Nuccio, F., La Pesa, V., Cianciulli, A., Rinaldi, R., Calvello, R., Fontani, V., et al. (2018). Radio electric asymmetric conveyer technology modulates neuroinflammation in a mouse model of neurodegeneration. Neurosci Bull 34, 270–282.

    CAS  PubMed  Google Scholar 

  • Panicker, N., Sarkar, S., Harischandra, D.S., Neal, M., Kam, T.I., Jin, H., Saminathan, H., Langley, M., Charli, A., Samidurai, M., et al. (2019). Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia. J Exp Med 216, 1411–1430.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parenti, G., Andria, G., and Ballabio, A. (2015). Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med 66, 471–486.

    CAS  PubMed  Google Scholar 

  • Peelaerts, W., Bousset, L., Baekelandt, V., and Melki, R. (2018). α-Synuclein strains and seeding in Parkinson’s disease, incidental Lewy body disease, dementia with Lewy bodies and multiple system atrophy: similarities and differences. Cell Tissue Res 373, 195–212.

    CAS  PubMed  Google Scholar 

  • Peelaerts, W., Bousset, L., Van der Perren, A., Moskalyuk, A., Pulizzi, R., Giugliano, M., Van den Haute, C., Melki, R., and Baekelandt, V. (2015). α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340–344.

    CAS  PubMed  Google Scholar 

  • Perera, R.M., and Zoncu, R. (2016). The lysosome as a regulatory hub. Annu Rev Cell Dev Biol 32, 223–253.

    CAS  PubMed  Google Scholar 

  • Perier, C., and Vila, M. (2012). Mitochondrial biology and Parkinson’s disease. Cold Spring Harb Perspect Med 2, a009332.

    PubMed  PubMed Central  Google Scholar 

  • Pihlstrom, L., Wiethoff, S., and Houlden, H. (2017). Genetics of neurodegenerative diseases: an overview. Handb Clin Neurol 145, 309–323.

    PubMed  Google Scholar 

  • Platt, F.M. (2018). Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov 17, 133–150.

    CAS  PubMed  Google Scholar 

  • Platt, F.M., d’Azzo, A., Davidson, B.L., Neufeld, E.F., and Tifft, C.J. (2018). Lysosomal storage diseases. Nat Rev Dis Primers 4, 27.

    PubMed  Google Scholar 

  • Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., et al. (1997). Mutation in the α-synuclein gene identified in families with Parkinson’s Disease. Science 276, 2045–2047.

    CAS  PubMed  Google Scholar 

  • Ramsay, R.R., Salach, J.I., Dadgar, J., and Singer, T.P. (1986). Inhibition of mitochondrial NADH dehydrogenase by pyridine derivatives and its possible relation to experimental and idiopathic parkinsonism. Biochem Biophys Res Commun 135, 269–275.

    CAS  PubMed  Google Scholar 

  • Reeve, A.K., Ludtmann, M.H.R., Angelova, P.R., Simcox, E.M., Horrocks, M.H., Klenerman, D., Gandhi, S., Turnbull, D.M., and Abramov, A.Y. (2015). Aggregated α-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons. Cell Death Dis 6, e1820.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, P.H., Lauckner, J.E., Kachirskaia, I., Heuser, J.E., Melki, R., and Kopito, R.R. (2009). Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11, 219–225.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, Q., Ma, M., Yang, J., Nonaka, R., Yamaguchi, A., Ishikawa, K.I., Kobayashi, K., Murayama, S., Hwang, S.H., Saiki, S., et al. (2018). Soluble epoxide hydrolase plays a key role in the pathogenesis of Parkinson’s disease. Proc Natl Acad Sci USA 115, E5815–E5823.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rey, N.L., Steiner, J.A., Maroof, N., Luk, K.C., Madaj, Z., Trojanowski, J. Q., Lee, V.M.Y., and Brundin, P. (2016). Widespread transneuronal propagation of α-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease. J Exp Med 213, 1759–1778.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saftig, P., and Klumperman, J. (2009). Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10, 623–635.

    CAS  PubMed  Google Scholar 

  • Schöndorf, D.C., Aureli, M., McAllister, F.E., Hindley, C.J., Mayer, F., Schmid, B., Sardi, S.P., Valsecchi, M., Hoffmann, S., Schwarz, L.K., et al. (2014). iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun 5, 4028.

    PubMed  Google Scholar 

  • Shahmoradian, S.H., Lewis, A.J., Genoud, C., Hench, J., Moors, T.E., Navarro, P.P., Castaño-Díez, D., Schweighauser, G., Graff-Meyer, A., Goldie, K.N., et al. (2019). Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat Neurosci 22, 1099–1109.

    CAS  PubMed  Google Scholar 

  • Shaltouki, A., Hsieh, C.H., Kim, M.J., and Wang, X. (2018). Alpha-synuclein delays mitophagy and targeting Miro rescues neuron loss in Parkinson’s models. Acta Neuropathol 136, 607–620.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimoji, M., Zhang, L., Mandir, A.S., Dawson, V.L., and Dawson, T.M. (2005). Absence of inclusion body formation in the MPTP mouse model of Parkinson’s disease. Mol Brain Res 134, 103–108.

    CAS  PubMed  Google Scholar 

  • Sidransky, E. (2005). Gaucher disease and parkinsonism. Mol Genets Metab 84, 302–304.

    CAS  Google Scholar 

  • Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., et al. (2003). α-Synuclein locus triplication causes Parkinson’s disease. Science 302, 841.

    CAS  PubMed  Google Scholar 

  • Smith, B.R., Santos, M.B., Marshall, M.S., Cantuti-Castelvetri, L., Lopez-Rosas, A., Li, G., van Breemen, R., Claycomb, K.I., Gallea, J.I., Celej, M.S., et al. (2014). Neuronal inclusions of α-synuclein contribute to the pathogenesis of Krabbe disease. J Pathol 232, 509–521.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song, N., and Xie, J. (2018). Iron, dopamine, and α-synuclein interactions in at-risk dopaminergic neurons in Parkinson’s disease. Neurosci Bull 34, 382–384.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soto, C., and Pritzkow, S. (2018). Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci 21, 1332–1340.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starkov, A.A. (2008). The role of mitochondria in reactive oxygen species metabolism and signaling. Ann New York Acad Sci 1147, 37–52.

    CAS  Google Scholar 

  • Stuendl, A., Kunadt, M., Kruse, N., Bartels, C., Moebius, W., Danzer, K. M., Mollenhauer, B., and Schneider, A. (2016). Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain 139, 481–494.

    PubMed  Google Scholar 

  • Surmeier, D.J., Obeso, J.A., and Halliday, G.M. (2017). Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18, 101–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taguchi, Y.V., Liu, J., Ruan, J., Pacheco, J., Zhang, X., Abbasi, J., Keutzer, J., Mistry, P.K., and Chandra, S.S. (2017). Glucosylsphingosine promotes α-synuclein pathology in mutant GBA-associated Parkinson’s disease. J Neurosci 37, 9617–9631.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanik, S.A., Schultheiss, C.E., Volpicelli-Daley, L.A., Brunden, K.R., and Lee, V.M.Y. (2013). Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J Biol Chem 288, 15194–15210.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tapias, V., Hu, X., Luk, K.C., Sanders, L.H., Lee, V.M., and Greenamyre, J. T. (2017). Synthetic alpha-synuclein fibrils cause mitochondrial impairment and selective dopamine neurodegeneration in part via iNOS-mediated nitric oxide production. Cell Mol Life Sci 74, 2851–2874.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theillet, F.X., Binolfi, A., Bekei, B., Martorana, A., Rose, H.M., Stuiver, M., Verzini, S., Lorenz, D., van Rossum, M., Goldfarb, D., et al. (2016). Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530, 45–50.

    CAS  PubMed  Google Scholar 

  • Tieu, K. (2011). A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb Perspect Med 1, a009316.

    PubMed  PubMed Central  Google Scholar 

  • Tong, Y., Giaime, E., Yamaguchi, H., Ichimura, T., Liu, Y., Si, H., Cai, H., Bonventre, J.V., and Shen, J. (2012). Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway. Mol Neurodegener 7, 2.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay, M.E., Cookson, M.R., and Civiero, L. (2019). Glial phagocytic clearance in Parkinson’s disease. Mol Neurodegener 14, 16.

    PubMed  PubMed Central  Google Scholar 

  • Ulusoy, A., Rusconi, R., Pérez-Revuelta, B.I., Musgrove, R.E., Helwig, M., Winzen-Reichert, B., and Di Monte, D.A. (2013). Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO Mol Med 5, 1119–1127.

    PubMed  Google Scholar 

  • Vargas, J.Y., Grudina, C., and Zurzolo, C. (2019). The prion-like spreading of α-synuclein: From in vitro to in vivo models of Parkinson’s disease. Ageing Res Rev 50, 89–101.

    CAS  PubMed  Google Scholar 

  • Volpicelli-Daley, L.A., Luk, K.C., Patel, T.P., Tanik, S.A., Riddle, D.M., Stieber, A., Meaney, D.F., Trojanowski, J.Q., and Lee, V.M.Y. (2011). Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, L.C., and Jucker, M. (2015). Neurodegenerative diseases: expanding the prion concept. Annu Rev Neurosci 38, 87–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallings, R., Connor-Robson, N., and Wade-Martins, R. (2019). LRRK2 interacts with the vacuolar-type H+-ATPase pump a1 subunit to regulate lysosomal function. Hum Mol Genet 28, 2696–2710.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Das, U., Scott, D.A., Tang, Y., McLean, P.J., and Roy, S. (2014). α-Synuclein multimers cluster synaptic vesicles and attenuate recycling. Curr Biol 24, 2319–2326.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Qian, L., Chen, S.H., Chu, C.H., Wilson, B., Oyarzabal, E., Ali, S., Robinson, B., Rao, D., and Hong, J.S. (2015). Post-treatment with an ultra-low dose of NADPH oxidase inhibitor diphenyleneiodonium attenuates disease progression in multiple Parkinson’s disease models. Brain 138, 1247–1262.

    PubMed  PubMed Central  Google Scholar 

  • Wang, R., Xu, X., Hao, Z., Zhang, S., Wu, D., Sun, H., Mu, C., Ren, H., and Wang, G. (2019). Poly-PR in C9ORF72-related amyotrophic lateral sclerosis/frontotemporal dementia causes neurotoxicity by clathrin-dependent endocytosis. Neurosci Bull 35, 889–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinreb, P.H., Zhen, W., Poon, A.W., Conway, K.A., and Lansbury, P.T. (1996). NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35, 13709–13715.

    CAS  PubMed  Google Scholar 

  • Yamada, K., Holth, J.K., Liao, F., Stewart, F.R., Mahan, T.E., Jiang, H., Cirrito, J.R., Patel, T.K., Hochgräfe, K., Mandelkow, E.M., et al. (2014). Neuronal activity regulates extracellular tau in vivo. J Exp Med 211, 387–393.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., He, Y., Jiang, X., Jiang, H., and Shen, J. (2019a). Nature brings new avenues to the therapy of central nervous system diseases—An overview of possible treatments derived from natural products. Sci China Life Sci 62, 1332–1367.

    PubMed  Google Scholar 

  • Zhang, S., Wang, R., and Wang, G. (2019b). Impact of dopamine oxidation on dopaminergic neurodegeneration. ACS Chem Neurosci 10, 945–953.

    CAS  PubMed  Google Scholar 

  • Zhou, C., Huang, Y., and Przedborski, S. (2008). Oxidative stress in Parkinson’s disease. Ann New York Acad Sci 1147, 93–104.

    CAS  Google Scholar 

  • Zucca, F.A., Segura-Aguilar, J., Ferrari, E., Muñoz, P., Paris, I., Sulzer, D., Sarna, T., Casella, L., and Zecca, L. (2017). Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155, 96–119.

    CAS  PubMed  Google Scholar 

  • Zunke, F., Moise, A.C., Belur, N.R., Gelyana, E., Stojkovska, I., Dzaferbegovic, H., Toker, N.J., Jeon, S., Fredriksen, K., and Mazzulli, J.R. (2018). Reversible conformational conversion of α-synuclein into toxic assemblies by glucosylceramide. Neuron 97, 92–107.e10.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31871023, 31970966), the National Key Scientific Research and Development Program of China (2016YFC1306000), Suzhou Clinical Research Center of Neurological Disease (Szzx201503), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haigang Ren or Guanghui Wang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Sun, H., Ren, H. et al. α-Synuclein aggregation and transmission in Parkinson’s disease: a link to mitochondria and lysosome. Sci. China Life Sci. 63, 1850–1859 (2020). https://doi.org/10.1007/s11427-020-1756-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1756-9

Navigation