Skip to main content
Log in

Photosensitive hydrogels: from structure, mechanisms, design to bioapplications

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Hydrogel is a smart material with a three-dimensional network structure and has been widely used in various fields due to its good biodegradability, biocompatibility, and modification. Photosensitive hydrogel is a smart hydrogel, and its amenability to remote, precise control, and flexible and convenient regulation of stimulating factors make it an ideal candidate for use in fields such as biological materials, drug carriers, and sensors. In this review, we discuss the structure, mechanisms, design principles, and bioapplications of photosensitive hydrogels as developed in recent years. Finally, their potential for development and potential future challenges are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asanuma, H., Liang, X., Yoshida, T., and Komiyama, M. (2001). Photocontrol of DNA duplex formation by using azobenzene-bearing oligonucleotides. Chembiochem 2, 39–44.

    CAS  PubMed  Google Scholar 

  • Bai, T., Sinclair, A., Sun, F., Jain, P., Hung, H.C., Zhang, P., Ella-Menye, J. R., Liu, W., and Jiang, S. (2016). Harnessing isomerization-mediated manipulation of nonspecific cell/matrix interactions to reversibly trigger and suspend stem cell differentiation. Chem Sci 7, 333–338.

    CAS  PubMed  Google Scholar 

  • Bian, Q., Jin, M., Chen, S., Xu, L., Wang, S., and Wang, G. (2017). Visible-light-responsive polymeric multilayers for trapping and release of cargoes via host-guest interactions. Polym Chem 8, 5525–5532.

    CAS  Google Scholar 

  • Cai, Z., Huang, K., Bao, C., Wang, X., Sun, X., Xia, H., Lin, Q., Yang, Y., and Zhu, L. (2019). Precise construction of cell-instructive 3D microenvironments by photopatterning a biodegradable hydrogel. Chem Mater 31, 4710–4719.

    CAS  Google Scholar 

  • Chen, C., Dong, Z.Q., Shen, J.H., Chen, H.W., Zhu, Y.H., and Zhu, Z.G. (2018). 2D photonic crystal hydrogel sensor for tear glucose monitoring. ACS Omega 3, 3211–3217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Leung, F.K.C., Stuart, M.C.A., Kajitani, T., Fukushima, T., van der Giessen, E., and Feringa, B.L. (2017a). Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat Chem 10, 132–138.

    PubMed  Google Scholar 

  • Chen, S., Bian, Q., Wang, P., Zheng, X., Lv, L., Dang, Z., and Wang, G. (2017b). Photo, pH and redox multi-responsive nanogels for drug delivery and fluorescence cell imaging. Polym Chem 8, 6150–6157.

    CAS  Google Scholar 

  • Chen, X., Zhang, X., Guo, Y., Zhu, Y.X., Liu, X., Chen, Z., and Wu, F.G. (2019). Smart supramolecular “Trojan Horse”-inspired nanogels for realizing light-triggered nuclear drug influx in drug-resistant cancer cells. Adv Funct Mater 29, 1807772.

    Google Scholar 

  • Concellón, A., Blasco, E., Martínez-Felipe, A., Martínez, J.C., Šics, I., Ezquerra, T.A., Nogales, A., Piñol, M., and Oriol, L. (2016). Light-responsive self-assembled materials by supramolecular post-functionalization via hydrogen bonding of amphiphilic block copolymers. Macromolecules 49, 7825–7836.

    Google Scholar 

  • Cooper, B.G., Stewart, R.C., Burstein, D., Snyder, B.D., and Grinstaff, M. W. (2016). A tissue-penetrating double network restores the mechanical properties of degenerated articular cartilage. Angew Chem Int Ed 55, 4226–4230.

    CAS  Google Scholar 

  • DeForest, C.A., and Anseth, K.S. (2011). Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat Chem 3, 925–931.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dehghany, M., Zhang, H., Naghdabadi, R., and Hu, Y. (2018). A thermodynamically-consistent large deformation theory coupling photochemical reaction and electrochemistry for light-responsive gels. J Mech Phys Solids 116, 239–266.

    CAS  Google Scholar 

  • Dragan, E.S. (2014). Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243, 572–590.

    CAS  Google Scholar 

  • Florea, L., Diamond, D., and Benito-Lopez, F. (2012). Photo-responsive polymeric structures based on spiropyran. Macromol Mater Eng 297, 1148–1159.

    CAS  Google Scholar 

  • Fournier, L., Aujard, I., Le Saux, T., Maurin, S., Beaupierre, S., Baudin, J. B., and Jullien, L. (2013). Coumarinylmethyl caging groups with redshifted absorption. Chem Eur J 19, 17494–17507.

    CAS  PubMed  Google Scholar 

  • Gao, L., Dai, W., Chen, J., Xie, Z., and Yue, X. (2017). Enhanced electro-responsive behaviors of agar/xanthan gum interpenetrating compound hydrogel. Soft Mater 15, 163–172.

    CAS  Google Scholar 

  • Ge, G., Zhang, Y., Shao, J., Wang, W., Si, W., Huang, W., and Dong, X. (2018). Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv Funct Mater 28, 1802576.

    Google Scholar 

  • GhavamiNejad, A., SamariKhalaj, M., Aguilar, L.E., Park, C.H., and Kim, C.S. (2016). pH/NIR light-controlled multidrug release via a mussel-inspired nanocomposite hydrogel for chemo-photothermal cancer therapy. Sci Rep 6, 33594.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han, Y.L., Yang, Y., Liu, S., Wu, J., Chen, Y., Lu, T.J., and Xu, F. (2013). Directed self-assembly of microscale hydrogels by electrostatic interaction. Biofabrication 5, 035004.

    PubMed  Google Scholar 

  • He, X., Zhang, D., Wu, J., Wang, Y., Chen, F., Fan, P., Zhong, M., Xiao, S., and Yang, J. (2019). One-pot and one-step fabrication of salt-responsive bilayer hydrogels with 2D and 3D shape transformations. ACS Appl Mater Interfaces 11, 25417–25426.

    CAS  PubMed  Google Scholar 

  • Jansze, S.M., Cecot, G., and Severin, K. (2018). Reversible disassembly of metallasupramolecular structures mediated by a metastable-state photoacid. Chem Sci 9, 4253–4257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, W., Liu, G., Wang, F., Zhu, Z., and Feng, C. (2016). Galactose-decorated light-responsive hydrogelator precursors for selectively killing cancer cells. Chem Commun 52, 12574–12577.

    CAS  Google Scholar 

  • Jin, H., Dai, X.H., Wu, C., Pan, J.M., Wang, X.H., Yan, Y.S., Liu, D.M., and Sun, L. (2015). Rational design of shear-thinning supramolecular hydrogels with porphyrin for controlled chemotherapeutics release and photodynamic therapy. Eur Polym J 66, 149–159.

    CAS  Google Scholar 

  • Kabb, C.P., O’Bryan, C.S., Deng, C.C., Angelini, T.E., and Sumerlin, B.S. (2018). Photoreversible covalent hydrogels for soft-matter additive manufacturing. ACS Appl Mater Interfaces 10, 16793–16801.

    CAS  PubMed  Google Scholar 

  • Kandatsu, D., Cervantes-Salguero, K., Kawamata, I., Hamada, S., Nomura, S.I.M., Fujimoto, K., and Murata, S. (2016). Reversible gel-sol transition of a photo-responsive DNA gel. Chembiochem 17, 1118–1121.

    CAS  PubMed  Google Scholar 

  • Kang, H., Liu, H., Zhang, X., Yan, J., Zhu, Z., Peng, L., Yang, H., Kim, Y., and Tan, W. (2011). Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. Langmuir 27, 399–408.

    CAS  PubMed  Google Scholar 

  • Kashyap, N., Kumar, N., and Kumar, M.N.V.R. (2005). Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carr Syst 22, 107–150.

    CAS  Google Scholar 

  • Kim, J.H., Seo, M., Kim, Y.J., and Kim, S.Y. (2009). Rapid and reversible gel-sol transition of self-assembled gels induced by photoisomerization of dendritic azobenzenes. Langmuir 25, 1761–1766.

    CAS  PubMed  Google Scholar 

  • Lee, W.F., and Chen, Y.J. (2001). Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels. J Appl Polym Sci 82, 2487–2496.

    CAS  Google Scholar 

  • Li, F., Tang, J., Geng, J., Luo, D., and Yang, D. (2019a). Polymeric DNA hydrogel: Design, synthesis and applications. Prog Polym Sci 98, 101163.

    CAS  Google Scholar 

  • Li, L., Scheiger, J.M., and Levkin, P.A. (2019b). Design and applications of photoresponsive hydrogels. Adv Mater 31, 1807333.

    Google Scholar 

  • Li, X., and Su, X. (2018). Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 6, 4714–4730.

    CAS  PubMed  Google Scholar 

  • Li, X., Gao, Y., Kuang, Y., and Xu, B. (2010). Enzymatic formation of a photoresponsive supramolecular hydrogel. Chem Commun 46, 5364–5366.

    CAS  Google Scholar 

  • Liu, Q., Zhang, P., Qing, A., Lan, Y., Shi, J., and Lu, M. (2006). Synthesis of rapid responsive gels comprising hydrophilic backbone and poly(N-isopropylacrylamide) graft chains by RAFT polymerization and end-linking processes. Polymer 47, 6963–6969.

    CAS  Google Scholar 

  • Lunzer, M., Shi, L., Andriotis, O.G., Gruber, P., Markovic, M., Thurner, P. J., Ossipov, D., Liska, R., and Ovsianikov, A. (2018). A modular approach to sensitized two-photon patterning of photodegradable hydrogels. Angew Chem Int Ed 57, 15122–15127.

    CAS  Google Scholar 

  • Ma, D., Zhou, N., Zhang, T., Hu, K., Ma, X.E., and Gu, N. (2017). Photoresponsive smart hydrogel microsphere via host-guest interaction for 3D cell culture. Colloids Surf A-Physicochem Eng Asp 522, 97–104.

    CAS  Google Scholar 

  • Mandl, G.A., Rojas-Gutierrez, P.A., and Capobianco, J.A. (2018). A NIR-responsive azobenzene-based supramolecular hydrogel using upconverting nanoparticles. Chem Commun 54, 5847–5850.

    CAS  Google Scholar 

  • Mano, J.F. (2008). Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 10, 515–527.

    CAS  Google Scholar 

  • Mehwish, N., Dou, X., Zhao, Y., and Feng, C.L. (2019). Supramolecular fluorescent hydrogelators as bio-imaging probes. Mater Horiz 6, 14–44.

    CAS  Google Scholar 

  • Meng, Z., Zhou, X., Xu, J., Han, X., Dong, Z., Wang, H., Zhang, Y., She, J., Xu, L., Wang, C., et al. (2019). Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations. Adv Mater 31, 1900927.

    Google Scholar 

  • Park, C., Lee, K., and Kim, C. (2009). Photoresponsive cyclodextrin-covered nanocontainers and their sol-gel transition induced by molecular recognition. Angew Chem Int Ed 48, 1275–1278.

    CAS  Google Scholar 

  • Patnaik, S., Sharma, A.K., Garg, B.S., Gandhi, R.P., and Gupta, K.C. (2007). Photoregulation of drug release in azo-dextran nanogels. Int J Pharm 342, 184–193.

    CAS  PubMed  Google Scholar 

  • Peppas, N. A., Hilt, J. Z., Khademhosseini, A., and Langer, R. (2006). Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18, 1345–1360.

    CAS  Google Scholar 

  • Qin, X., Yu, C., Wei, J., Li, L., Zhang, C., Wu, Q., Liu, J., Yao, S.Q., and Huang, W. (2019). Rational design of nanocarriers for intracellular protein delivery. Adv Mater 31, 1902791.

    CAS  Google Scholar 

  • Qiu, M., Wang, D., Liang, W., Liu, L., Zhang, Y., Chen, X., Sang, D.K., Xing, C., Li, Z., Dong, B., et al. (2018). Novel concept of the smart NIR-light-controlled drug release ofblack phosphorus nanostructure for cancer therapy. Proc Natl Acad Sci USA 115, 501–506.

    CAS  PubMed  Google Scholar 

  • Rosales, A.M., Vega, S.L., DelRio, F.W., Burdick, J.A., and Anseth, K.S. (2017). Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angew Chem Int Ed 56, 12132–12136.

    CAS  Google Scholar 

  • Ruan, C., Liu, C., Hu, H., Guo, X.L., Jiang, B.P., Liang, H., and Shen, X.C. (2019). NIR-II light-modulated thermosensitive hydrogel for light-triggered cisplatin release and repeatable chemo-photothermal therapy. Chem Sci 10, 4699–4706.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruskowitz, E.R., and DeForest, C.A. (2018). Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat Rev Mater 3, 17087.

    CAS  Google Scholar 

  • Saboktakin, M.R., Tabatabaie, R.M., Ostovarazar, P., Maharramov, A., and Ramazanov, M.A. (2012). Synthesis and characterization of modified starch hydrogels for photodynamic treatment of cancer. Int J Biol Macromol 51, 544–549.

    CAS  PubMed  Google Scholar 

  • Sershen, S.R., Westcott, S.L., Halas, N.J., and West, J.L. (2000). Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 51, 293–298.

    CAS  PubMed  Google Scholar 

  • Shi, L., Ding, P., Wang, Y., Zhang, Y., Ossipov, D., and Hilborn, J. (2019). Self-healing polymeric hydrogel formed by metal-ligand coordination assembly: design, fabrication, and biomedical applications. Macromol Rapid Commun 40, 1800837.

    Google Scholar 

  • Stumpel, J.E., Ziólkowski, B., Florea, L., Diamond, D., Broer, D.J., and Schenning, A.P.H.J. (2014). Photoswitchable ratchet surface topographies based on self-protonating spiropyran-NIPAAM hydrogels. ACS Appl Mater Interfaces 6, 7268–7274.

    CAS  PubMed  Google Scholar 

  • Tamesue, S., Takashima, Y., Yamaguchi, H., Shinkai, S., and Harada, A. (2010). Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew Chem Int Ed 49, 7461–7464.

    CAS  Google Scholar 

  • Ter Schiphorst, J., Melpignano, G.G., Amirabadi, H.E., Houben, M.H.J.M., Bakker, S., den Toonder, J.M.J., and Schenning, A.P.H.J. (2018). Photoresponsive passive micromixers based on spiropyran size-tunable hydrogels. Macromol Rapid Commun 39, 1700086.

    Google Scholar 

  • Tomatsu, I., Peng, K., and Kros, A. (2011). Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev 63, 1257–1266.

    CAS  PubMed  Google Scholar 

  • Trenor, S.R., Shultz, A.R., Love, B.J., and Long, T.E. (2004). Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Chem Rev 104, 3059–3078.

    CAS  PubMed  Google Scholar 

  • Wang, H., Zhu, C.N., Zeng, H., Ji, X., Xie, T., Yan, X., Wu, Z.L., and Huang, F. (2019). Reversible ion-conducting switch in a novel singleion supramolecular hydrogel enabled by photoresponsive host-guest molecular recognition. Adv Mater 31, 1807328.

    Google Scholar 

  • Wang, J., Chen, G., Zhao, Z., Sun, L., Zou, M., Ren, J.A., and Zhao, Y. (2018). Responsive graphene oxide hydrogel microcarriers for controllable cell capture and release. Sci China Mater 61, 1314–1324.

    CAS  Google Scholar 

  • Wu, D., Xie, X., Kadi, A.A., and Zhang, Y. (2018a). Photosensitive peptide hydrogels as smart materials for applications. Chin Chem Lett 29, 1098–1104.

    CAS  Google Scholar 

  • Wu, X., Huang, W., Wu, W.H., Xue, B., Xiang, D., Li, Y., Qin, M., Sun, F., Wang, W., Zhang, W.B., et al. (2018b). Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res 11, 5556–5565.

    CAS  Google Scholar 

  • Wu, Y., Wu, S., Tian, X., Wang, X., Wu, W., Zou, G., and Zhang, Q. (2011). Photoinduced reversible gel-sol transitions of dicholesterol-linked azobenzene derivatives through breaking and reforming of van der Waals interactions. Soft Matter 7, 716–721.

    CAS  Google Scholar 

  • Xia, L.W., Xie, R., Ju, X.J., Wang, W., Chen, Q., and Chu, L.Y. (2013). Nano-structured smart hydrogels with rapid response and high elasticity. Nat Commun 4, 2226.

    PubMed  PubMed Central  Google Scholar 

  • Xiao, X., Hu, J., Wang, X., Huang, L., Chen, Y., Wang, W., Li, J., and Zhang, Y. (2016). A dual-functional supramolecular hydrogel based on a spiropyran-galactose conjugate for target-mediated and light-controlled delivery of microRNA into cells. Chem Commun 52, 12517–12520.

    CAS  Google Scholar 

  • Xing, R., Liu, K., Jiao, T., Zhang, N., Ma, K., Zhang, R., Zou, Q., Ma, G., and Yan, X. (2016). An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater 28, 3669–3676.

    CAS  PubMed  Google Scholar 

  • Xiong, X., Wu, C., Zhou, C., Zhu, G., Chen, Z., and Tan, W. (2013). Responsive DNA-based hydrogels and their applications. Macromol Rapid Commun 34, 1271–1283.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, Z., Zheng, C., Jin, F., Wei, R., Zhao, Y., Gao, X., Xia, Y., Dong, X., Zheng, M., and Duan, X. (2018). Magnetic-field-driven ultra-small 3D hydrogel microstructures: preparation of gel photoresist and two-photon polymerization microfabrication. Sens Actuat B-Chem 274, 541–550.

    CAS  Google Scholar 

  • Xu, X., Huang, Z., Huang, Z., Zhang, X., He, S., Sun, X., Shen, Y., Yan, M., and Zhao, C. (2017). Injectable, NIR/pH-responsive nanocomposite hydrogel as long-acting implant for chemophotothermal synergistic cancer therapy. ACS Appl Mater Interfaces 9, 20361–20375.

    CAS  PubMed  Google Scholar 

  • Xu, Y., Ghag, O., Reimann, M., Sitterle, P., Chatterjee, P., Nofen, E., Yu, H., Jiang, H., and Dai, L.L. (2018). Development of visible-light responsive and mechanically enhanced “smart” UCST interpenetrating network hydrogels. Soft Matter 14, 151–160.

    CAS  Google Scholar 

  • Yang, L., Tang, H., and Sun, H. (2018). Progress in photo-responsive polypeptide derived nano-assemblies. Micromachines 9, 296.

    PubMed Central  Google Scholar 

  • Yang, Q., Wang, P., Zhao, C., Wang, W., Yang, J., and Liu, Q. (2017a). Light-switchable self-healing hydrogel based on host-guest macro-crosslinking. Macromol Rapid Commun 38, 1600741.

    Google Scholar 

  • Yang, S. (2015). Photosensitive hydrogels. In: Encyclopedia of Micro-fluidics and Nanofluidics. Boston: Springer. 1643–1647.

    Google Scholar 

  • Yang, X., Liu, G., Peng, L., Guo, J., Tao, L., Yuan, J., Chang, C., Wei, Y., and Zhang, L. (2017b). Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Adv Funct Mater 27, 1703174.

    Google Scholar 

  • Yang, X., Zhang, G., and Zhang, D. (2012). Stimuli responsive gels based on low molecular weight gelators. J Mater Chem 22, 38–50.

    CAS  Google Scholar 

  • Zhang, J., Zhu, Y., Song, J., Xu, T., Yang, J., Du, Y., and Zhang, L. (2019). Rapid and long-term glycemic regulation with a balanced charged immune-evasive hydrogel in T1DM mice. Adv Funct Mater 29, 1900140.

    Google Scholar 

  • Zhang, K., Feng, Q., Xu, J., Xu, X., Tian, F., Yeung, K.W.K., and Bian, L. (2017a). Self-assembled injectable nanocomposite hydrogels stabilized by bisphosphonate-magnesium (Mg2+) coordination regulates the differentiation of encapsulated stem cells via dual crosslinking. Adv Funct Mater 27, 1701642.

    Google Scholar 

  • Zhang, X., Xia, L.Y., Chen, X., Chen, Z., and Wu, F.G. (2017b). Hydrogel-based phototherapy for fighting cancer and bacterial infection. Sci China Mater 60, 487–503.

    CAS  Google Scholar 

  • Zhang, Y.S., and Khademhosseini, A. (2017). Advances in engineering hydrogels. Science 356, eaaf3627.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, X., Wu, H., Guo, B., Dong, R., Qiu, Y., and Ma, P.X. (2017). Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122, 34–47.

    CAS  PubMed  Google Scholar 

  • Zheng, X., Bian, Q., Ye, C., and Wang, G. (2019). Visible light-, pH-, and cyclodextrin-responsive azobenzene functionalized polymeric nanoparticles. Dyes Pigments 162, 599–605.

    CAS  Google Scholar 

  • Zheng, Y., Micic, M., Mello, S.V., Mabrouki, M., Andreopoulos, F.M., Konka, V., Pham, S.M., and Leblanc, R.M. (2002). PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 35, 5228–5234.

    CAS  Google Scholar 

  • Zhou, H., Xue, C., Weis, P., Suzuki, Y., Huang, S., Koynov, K., Auernhammer, G.K., Berger, R., Butt, H.J., and Wu, S. (2017). Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat Chem 9, 145–151.

    CAS  PubMed  Google Scholar 

  • Zou, X., Xiao, X., Zhang, S., Zhong, J., Hou, Y., and Liao, L. (2018). A photo-switchable and thermal-enhanced fluorescent hydrogel prepared from N-isopropylacrylamide with water-soluble spiropyran derivative. J Biomater Sci Polym Ed 29, 1579–1594.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (61601218 and 81672508), Jiangsu Provincial Foundation for Distinguished Young Scholars (BK20170041), Natural Science Foundation of Shaanxi Province (2019JM-016), China-Sweden Joint Mobility Project (51811530018), and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiong Wu or Lin Li.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, W., Wu, Q., Han, X. et al. Photosensitive hydrogels: from structure, mechanisms, design to bioapplications. Sci. China Life Sci. 63, 1813–1828 (2020). https://doi.org/10.1007/s11427-019-1710-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1710-8

Keywords

Navigation