Skip to main content
Log in

Recent developments in regenerative ophthalmology

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Regenerative medicine (RM) is one of the most promising disciplines for advancements in modern medicine, and regenerative ophthalmology (RO) is one of the most active fields of regenerative medicine. This review aims to provide an overview of regenerative ophthalmology, including the range of tools and materials being used, and to describe its application in ophthalmologic subspecialties, with the exception of surgical implantation of artificial tissues or organs (e.g., contact lens, artificial cornea, intraocular lens, artificial retina, and bionic eyes) due to space limitations. In addition, current challenges and limitations of regenerative ophthalmology are discussed and future directions are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, T., Yoshida, M., Yoshioka, Y., Wakusawa, R., Tokita-Ishikawa, Y., Seto, H., Tamai, M., and Nishida, K. (2007). Iris pigment epithelial cell transplantation for degenerative retinal diseases. Prog Retinal Eye Res 26, 302–321.

    Article  CAS  Google Scholar 

  • Abu-Hassan, D.W., Li, X., Ryan, E.I., Acott, T.S., and Kelley, M.J. (2015). Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. Stem Cells 33, 751–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aboutaleb Kadkhodaeian, H., Salati, A., and Lashay, A. (2019). High efficient differentiation of human adipose-derived stem cells into retinal pigment epithelium-like cells in medium containing small molecules inducers with a simple method. Tissue Cell 56, 52–59.

    Article  CAS  PubMed  Google Scholar 

  • Acar, U., Pinarli, F.A., Acar, D.E., Beyazyildiz, E., Sobaci, G., Ozgermen, B.B., Sonmez, A.A., and Delibasi, T. (2015). Effect of allogeneic limbal mesenchymal stem cell therapy in corneal healing: role of administration route. Ophthalmol Res 53, 82–89.

    Article  CAS  Google Scholar 

  • Agrawal, A.K., Das, M., and Jain, S. (2012). In situ gel systems as ‘smart’ carriers for sustained ocular drug delivery. Expert Opin Drug Deliv 9, 383–402.

    Article  CAS  PubMed  Google Scholar 

  • Ahuja, A.K., Dorn, J.D., Caspi, A., McMahon, M.J., Dagnelie, G., Dacruz, L., Stanga, P., Humayun, M.S., and Greenberg, R.J. (2011). Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. British J Ophthalmol 95, 539–543.

    Article  CAS  Google Scholar 

  • Akiyama, G., Sakai, T., Kuno, N., Kimura, E., Okano, K., Kohno, H., and Tsuneoka, H. (2012). Photoreceptor rescue of pigment epithelium-derived factor-impregnated nanoparticles in Royal College of Surgeons rats. Mol Vis 18, 3079.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akyol-Salman, I. (2006). Effects of autologous serum eye drops on corneal wound healing after superficial keratectomy in rabbits. Cornea 25, 1178–1181.

    Article  PubMed  Google Scholar 

  • Algvere, P.V., Gouras, P., and Dafgård Kopp, E. (1999). Long-term outcome of RPE allografts in non-immunosuppressed patients with AMD. Eur J Ophthalmol 9, 217–230.

    Article  CAS  PubMed  Google Scholar 

  • Alió Del Barrio, J.L., and Alió, J.L. (2018). Cellular therapy of the corneal stroma: A new type of corneal surgery for keratoconus and corneal dystrophies. Eye Vis 5, 28.

    Article  Google Scholar 

  • Alio, J.L., Rodriguez, A.E., Abdelghany, A.A., and Oliveira, R.F. (2017). Autologous platelet-rich plasma eye drops for the treatment of post-LASIK chronic ocular surface syndrome. J Ophthalmol 2017, 1–6.

    Article  CAS  Google Scholar 

  • Almaliotis, D., Koliakos, G., Papakonstantinou, E., Komnenou, A., Thomas, A., Petrakis, S., Nakos, I., Gounari, E., and Karampatakis, V. (2015). Mesenchymal stem cells improve healing of the cornea after alkali injury. Graefes Arch Clin Exp Ophthalmol 253, 1121–1135.

    Article  PubMed  Google Scholar 

  • Almeida, H., Lobão, P., Frigerio, C., Fonseca, J., Silva, R., Quaresma, P., Lobo, J.M.S., and Amaral, M.H. (2016). Development of mucoadhesive and thermosensitive eyedrops to improve the ophthalmic bioavailability of ibuprofen. J Drug Deliv Sci Tech 35, 69–80.

    Article  CAS  Google Scholar 

  • Almodin, E.M., Ferrara, P., Camin, F.M.A., and Colallilo, J.M.A. (2018). Femtosecond laser-assisted intrastromal corneal lenticule implantation for treatment of advanced keratoconus in a child’s eye. JCRS Online Case Rep 6, 25–29.

    Article  Google Scholar 

  • Al-Shamekh, S., and Goldberg, J.L. (2014). Retinal repair with induced pluripotent stem cells. Transl Res 163, 377–386.

    Article  PubMed  Google Scholar 

  • Angunawela, R.I., Riau, A.K., Chaurasia, S.S., Tan, D.T., and Mehta, J.S. (2012). Refractive lenticule re-implantation after myopic ReLEx: a feasibility study of stromal restoration after refractive surgery in a rabbit model. Invest Ophthalmol Vis Sci 53, 4975–4985.

    Article  PubMed  Google Scholar 

  • Anitua, E., Sánchez, M., and Orive, G. (2010). Potential of endogenous regenerative technology for in situ regenerative medicine. Adv Drug Deliv Rev 62, 741–752.

    Article  CAS  PubMed  Google Scholar 

  • Anitua, E., Sanchez, M., Merayo-Lloves, J., De la Fuente, M., Muruzabal, F., and Orive, G. (2011). Plasma rich in growth factors (PRGF-Endoret) stimulates proliferation and migration of primary keratocytes and conjunctival fibroblasts and inhibits and reverts TGF-β1-Induced myodifferentiation. Invest Ophthalmol Vis Sci 52, 6066–6073.

    Article  CAS  PubMed  Google Scholar 

  • Anitua, E., Muruzabal, F., Alcalde, I., Merayo-Lloves, J., and Orive, G. (2013). Plasma rich in growth factors (PRGF-Endoret) stimulates corneal wound healing and reduces haze formation after PRK surgery. Exp Eye Res 115, 153–161.

    Article  CAS  PubMed  Google Scholar 

  • Anitua, E., Muruzabal, F., Tayebba, A., Riestra, A., Perez, V.L., Merayo-Lloves, J., and Orive, G. (2015). Autologous serum and plasma rich in growth factors in ophthalmology: preclinical and clinical studies. Acta Ophthalmol 93, e605–e614.

    Article  PubMed  Google Scholar 

  • Annaka, M., Mortensen, K., Vigild, M.E., Matsuura, T., Tsuji, S., Ueda, T., and Tsujinaka, H. (2011). Design of an injectable in situ gelation biomaterials for vitreous substitute. Biomacromolecules 12, 4011–4021.

    Article  CAS  PubMed  Google Scholar 

  • Aramwit, P., Motta, A., and Kundu, S.C. (2017). Tissue engineering: From basic sciences to clinical perspectives. Biomed Res Int 2017, 1–2.

    Article  Google Scholar 

  • Arslan, U., Özmert, E., Demirel, S., Örnek, F., and Şermet, F. (2018). Effects of subtenon-injected autologous platelet-rich plasma on visual functions in eyes with retinitis pigmentosa: Preliminary clinical results. Graefes Arch Clin Exp Ophthalmol 256, 893–908.

    Article  PubMed  Google Scholar 

  • Asena, L., Alkayid, H., and Altınörs, D.D. (2018). Corneal epithelial wound healing and management strategies. In Plastic and Thoracic Surgery, Orthopedics and Ophthalmology, M.A. Shiffman, and M. Low, ed. (Springer), pp. 91–102.

  • Assawachananont, J., Mandai, M., Okamoto, S., Yamada, C., Eiraku, M., Yonemura, S., Sasai, Y., and Takahashi, M. (2014). Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep 2, 662–674.

    Article  Google Scholar 

  • Avila, M.Y. (2014). Restoration of human lacrimal function following platelet-rich plasma injection. Cornea 33, 18–21.

    Article  PubMed  Google Scholar 

  • Awwad, S., Lockwood, A., Brocchini, S., and Khaw, P.T. (2015). The PK-eye: a novel in vitro ocular flow model for use in preclinical drug development. J Pharm Sci 104, 3330–3342.

    Article  CAS  PubMed  Google Scholar 

  • Baakdhah, T., and van der Kooy, D. (2019). Expansion of retinal stem cells and their progeny using cell microcarriers in a bioreactor. Biotechnol Prog 35, e2800.

    Article  PubMed  CAS  Google Scholar 

  • Bakondi, B., Lv, W., Lu, B., Jones, M.K., Tsai, Y., Kim, K.J., Levy, R., Akhtar, A.A., Breunig, J.J., Svendsen, C.N., et al. (2016). In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 24, 556–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballios, B.G., Cooke, M.J., van der Kooy, D., and Shoichet, M.S. (2010). A hydrogel-based stem cell delivery system to treat retinal degenerative diseases. Biomaterials 31, 2555–2564.

    Article  CAS  PubMed  Google Scholar 

  • Barber, A.J., Antonetti, D.A., Kern, T.S., Reiter, C.E.N., Soans, R.S., Krady, J.K., Levison, S.W., Gardner, T.W., and Bronson, S.K. (2005). The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci 46, 2210–2218.

    Article  PubMed  Google Scholar 

  • Barzelay, A., Weisthal Algor, S., Niztan, A., Katz, S., Benhamou, M., Nakdimon, I., Azmon, N., Gozlan, S., Mezad-Koursh, D., Neudorfer, M., et al. (2018). Adipose-derived mesenchymal stem cells migrate and rescue RPE in the setting of oxidative stress. Stem Cells Int 2018, 1–11.

    Article  CAS  Google Scholar 

  • Benowitz, L.I., He, Z., and Goldberg, J.L. (2017). Reaching the brain: Advances in optic nerve regeneration. Exp Neurol 287, 365–373.

    Article  PubMed  Google Scholar 

  • Bernhard, J.C., and Vunjak-Novakovic, G. (2016). Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther 7, 56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beyazyıldız, E., Pınarlı, F.A., Beyazyıldız, O., Hekimoğlu, E.R., Acar, U., Demir, M.N., Albayrak, A., Kaymaz, F., Sobaci, G., and Delibaşi, T. (2014). Efficacy of topical mesenchymal stem cell therapy in the treatment of experimental dry eye syndrome model. Stem Cells Int 2014, 1–9.

    Article  Google Scholar 

  • Bouhenni, R.A., Dunmire, J., Sewell, A., and Edward, D.P. (2012). Animal models of glaucoma. J Biomed Biotech 2012, 1–11.

    Article  Google Scholar 

  • Branch, M.J., Hashmani, K., Dhillon, P., Jones, D.R.E., Dua, H.S., and Hopkinson, A. (2012). Mesenchymal stem cells in the human corneal limbal stroma. Invest Ophthalmol Vis Sci 53, 5109–5116.

    Article  PubMed  Google Scholar 

  • Burnight, E.R., Gupta, M., Wiley, L.A., Anfinson, K.R., Tran, A., Triboulet, R., Hoffmann, J.M., Klaahsen, D.L., Andorf, J.L., Jiao, C., et al. (2017). Using CRISPR-Cas9 to generate gene-corrected autologous iPSCs for the treatment of inherited retinal degeneration. Mol Ther 25, 1999–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busskamp, V., Duebel, J., Balya, D., Fradot, M., Viney, T.J., Siegert, S., Groner, A.C., Cabuy, E., Forster, V., Seeliger, M., et al. (2010). Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329, 413–417.

    Article  CAS  PubMed  Google Scholar 

  • Can, M.E., Çakmak, H.B., Dereli Can, G., Ünverdi, H., Toklu, Y., and Hücemenoğlu, S. (2016). A novel technique for conjunctivoplasty in a rabbit model: platelet-rich fibrin membrane grafting. J Ophthalmol 2016, 1–11.

    Article  CAS  Google Scholar 

  • Cao, Y., Zhang, C., Shen, W., Cheng, Z., Yu, L.L., and Ping, Q. (2007). Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Release 120, 186–194.

    Article  CAS  PubMed  Google Scholar 

  • Carr, A.J.F., Smart, M.J.K., Ramsden, C.M., Powner, M.B., da Cruz, L., and Coffey, P.J. (2013). Development of human embryonic stem cell therapies for age-related macular degeneration. Trends Neurosci 36, 385–395.

    Article  CAS  PubMed  Google Scholar 

  • Carr, A.J., Vugler, A.A., Hikita, S.T., Lawrence, J.M., Gias, C., Chen, L.L., Buchholz, D.E., Ahmado, A., Semo, M., Smart, M.J.K., et al. (2009). Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS ONE 4, e8152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cejka, C., and Cejkova, J. (2015). Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries. Oxidative Med Cellular Longevity 2015, 1–10.

    Article  Google Scholar 

  • Cejka, C., Holan, V., Trosan, P., Zajicova, A., Javorkova, E., and Cejkova, J. (2016). The favorable effect of mesenchymal stem cell treatment on the antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. Oxid Med Cell Longev 2016, 1–12.

    Article  CAS  Google Scholar 

  • Chan, P.S., Xian, J.W., Li, Q., Chan, C.W., Leung, S.S.Y., and To, K.K.W. (2019). Biodegradable thermosensitive PLGA-PEG-PLGA polymer for non-irritating and sustained ophthalmic drug delivery. AAPS J 21, 59.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., Zhang, W., Wang, J.M., Duan, H.T., Kong, J.H., Wang, Y.X., Dong, M., Bi, X., and Song, J. (2016). Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells. Int J Ophthalmol 9, 41–47.

    PubMed  PubMed Central  Google Scholar 

  • Chen, D., Qu, Y., Hua, X., Zhang, L., Liu, Z., Pflugfelder, S.C., and Li, D. Q. (2017). A hyaluronan hydrogel scaffold-based xeno-free culture system for ex vivo expansion of human corneal epithelial stem cells. Eye 31, 962–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Zhong, M., Liang, L., Gu, F., and Peng, H. (2014). Interleukin-17 induces angiogenesis in human choroidal endothelial cells in vitro. Invest Ophthalmol Vis Sci 55, 6968–6975.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, Y.H., Hung, K.H., Tsai, T.H., Lee, C.J., Ku, R.Y., Chiu, A.W.H., Chiou, S.H., and Liu, C.J.L. (2014). Sustained delivery of latanoprost by thermosensitive chitosan-gelatin-based hydrogel for controlling ocular hypertension. Acta Biomater 10, 4360–4366.

    Article  CAS  PubMed  Google Scholar 

  • Chhunchha, B., Singh, P., Stamer, W.D., and Singh, D.P. (2017). Prdx6 retards senescence and restores trabecular meshwork cell health by regulating reactive oxygen species. Cell Death Discov 3, 17060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, Y.K., Huang, W., Kim, G.Y., and Lim, B.S. (2013). Comparison of autologous serum eye drops with different diluents. Curr Eye Res 38, 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Choi, S.W., Shin, J.H., Kim, J.J., Shin, T.H., Seo, Y., Kim, H.S., and Kang, K.S. (2016). Direct cell fate conversion of human somatic stem cells into cone and rod photoreceptor-like cells by inhibition of microRNA-203. Oncotarget 7, 42139–42149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cronk, S.M., Kelly-Goss, M.R., Ray, H.C., Mendel, T.A., Hoehn, K.L., Bruce, A.C., Dey, B.K., Guendel, A.M., Tavakol, D.N., Herman, I.M., et al. (2015). Adipose-derived stem cells from diabetic mice show impaired vascular stabilization in a murine model of diabetic retinopathy. Stem Cells Transl Med 4, 459–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai, Y., Guo, Y., Wang, C., Liu, Q., Yang, Y., Li, S., Guo, X., Lian, R., Yu, R., Liu, H., et al. (2014). Non-genetic direct reprogramming and biomimetic platforms in a preliminary study for adipose-derived stem cells into corneal endothelia-like cells. PLoS ONE 9, e109856.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dauendorffer, J.N., Fraitag, S., and Dupuy, A. (2013). Basal cell carcinoma following platelet-rich plasma injection for skin rejuvenation. Ann Dermatol Venereol 140, 723–724.

    Article  PubMed  Google Scholar 

  • Damgaard, I.B., Liu, Y.C., Riau, A.K., Teo, E.P.W., Tey, M.L., Nyein, C.L., and Mehta, J.S. (2019). Corneal remodelling and topography following biological inlay implantation with combined crosslinking in a rabbit model. Sci Rep 9, 4479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Damgaard, I.B., Riau, A.K., Liu, Y.C., Tey, M.L., Yam, G.H.F., and Mehta, J.S. (2018). Reshaping and customization of SMILE-derived biological lenticules for intrastromal implantation. Invest Ophthalmol Vis Sci 59, 2555–2563.

    Article  CAS  PubMed  Google Scholar 

  • Davanger, M., and Evensen, A. (1971). Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 229, 560–561.

    Article  CAS  PubMed  Google Scholar 

  • Daya, S.M., Watson, A., Sharpe, J.R., Giledi, O., Rowe, A., Martin, R., and James, S.E. (2005). Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 112, 470–477.

    Article  PubMed  Google Scholar 

  • Dehghani, S., Rasoulianboroujeni, M., Ghasemi, H., Keshel, S.H., Nozarian, Z., Hashemian, M.N., Zarei-Ghanavati, M., Latifi, G., Ghaffari, R., Cui, Z., et al. (2018). 3D-Printed membrane as an alternative to amniotic membrane for ocular surface/conjunctival defect reconstruction: An in vitro & in vivo study. Biomaterials 174, 95–112.

    Article  CAS  PubMed  Google Scholar 

  • DiCarlo, J.E., Sengillo, J.D., Justus, S., Cabral, T., Tsang, S.H., and Mahajan, V.B. (2017). CRISPR-cas genome surgery in ophthalmology. Trans Vis Sci Tech 6, 13.

    Article  Google Scholar 

  • Doetschman, T., and Georgieva, T. (2017). Gene editing with CRISPR/Cas9 RNA-directed nuclease. Circ Res 120, 876–894.

    Article  CAS  PubMed  Google Scholar 

  • Dohan Ehrenfest, D.M., Andia, I., Zumstein, M.A., Zhang, C.Q., Pinto, N. R., and Bielecki, T. (2014). Classification of platelet concentrates (platelet-rich plasma-PRP, platelet-rich fibrin-PRF) for topical and infiltrative use in orthopaedic and sports medicine: Current consensus, clinical implications and perspectives. Muscles Ligaments Tendons J 4, 3–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donati, S., Caprani, S.M., Airaghi, G., Vinciguerra, R., Bartalena, L., Testa, F., Mariotti, C., Porta, G., Simonelli, F., and Azzolini, C. (2014). Vitreous substitutes: The present and the future. Biomed Res Int 2014, 1–12.

    Article  CAS  Google Scholar 

  • Dos Santos, A., Balayan, A., Funderburgh, M.L., Ngo, J., Funderburgh, J. L., and Deng, S.X. (2019). Differentiation capacity of human mesenchymal stem cells into keratocyte lineage. Invest Ophthalmol Vis Sci 60, 3013–3023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, Y., Roh, D.S., Funderburgh, M.L., Mann, M.M., Marra, K.G., Rubin, J. P., Li, X., and Funderburgh, J.L. (2010). Adipose-derived stem cells differentiate to keratocytes in vitro. Mol Vis 16, 2680–2689.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey, A., and Prabhu, P. (2014). Formulation and evaluation of stimulisensitive hydrogels of timolol maleate and brimonidine tartrate for the treatment of glaucoma. Int J Pharma Investig 4, 112.

    Article  CAS  Google Scholar 

  • Drury, J.L., and Mooney, D.J. (2003). Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337–4351.

    Article  CAS  PubMed  Google Scholar 

  • EDQM. (2019). Guide to the quality and safety of tissues and cells for human application. 4th ed. European Directorate for the Quality of Medicines and Healthcare.

  • El-Feky, G.S., Zayed, G.M., Elshaier, Y.A.M.M., and Alsharif, F.M. (2018). Chitosan-gelatin hydrogel crosslinked with oxidized sucrose for the ocular delivery of timolol maleate. J Pharm Sci 107, 3098–3104.

    Article  CAS  PubMed  Google Scholar 

  • Elisseeff, J., Madrid, M.G., Lu, Q., Chae, J.J., and Guo, Q. (2013). Future perspectives for regenerative medicine in ophthalmology. Middle East Afr J Ophthalmol 20, 38–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elshaer, S.L., Evans, W., Pentecost, M., Lenin, R., Periasamy, R., Jha, K. A., Alli, S., Gentry, J., Thomas, S.M., Sohl, N., et al. (2018). Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2Akita mouse. Stem Cell Res Ther 9, 322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espandar, L., Caldwell, D., Watson, R., Blanco-Mezquita, T., Zhang, S., and Bunnell, B. (2014). Application of adipose-derived stem cells on scleral contact lens carrier in an animal model of severe acute alkaline burn. Eye Contact Lens Sci Clin Practice 40, 243–247.

    Article  Google Scholar 

  • Ezquer, M., Urzua, C.A., Montecino, S., Leal, K., Conget, P., and Ezquer, F. (2016). Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther 7, 42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fallacara, A., Baldini, E., Manfredini, S., and Vertuani, S. (2018). Hyaluronic acid in the third millennium. Polymers 10, 701.

    Article  PubMed Central  CAS  Google Scholar 

  • Fallacara, A., Vertuani, S., Panozzo, G., Pecorelli, A., Valacchi, G., and Manfredini, S. (2017). Novel artificial tears containing cross-linked hyaluronic acid: An in vitro re-epithelialization study. Molecules 22, 2104.

    Article  PubMed Central  CAS  Google Scholar 

  • Fagerholm, P., Lagali, N.S., Carlsson, D.J., Merrett, K., and Griffith, M. (2009). Corneal regeneration following implantation of a biomimetic tissue-engineered substitute. Clin Transl Sci 2, 162–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freire, V., Andollo, N., Etxebarria, J., Durán, J.A., and Morales, M.C. (2012). In vitro effects of three blood derivatives on human corneal epithelial cells. Invest Ophthalmol Vis Sci 53, 5571–5578.

    Article  CAS  PubMed  Google Scholar 

  • Galindo, S., Herreras, J.M., López-Paniagua, M., Rey, E., de la Mata, A., Plata-Cordero, M., Calonge, M., and Nieto-Miguel, T. (2017). Therapeutic effect of human adipose tissue-derived mesenchymal stem cells in experimental corneal failure due to limbal stem cell niche damage. Stem Cells 35, 2160–2174.

    Article  CAS  PubMed  Google Scholar 

  • Ganesh, S., and Brar, S. (2015). Femtosecond intrastromal lenticular implantation combined with accelerated collagen cross-linking for the treatment of keratoconus—initial clinical result in 6 eyes. Cornea 34, 1331–1339.

    Article  PubMed  Google Scholar 

  • Ganesh, S., Brar, S., and Rao, P.A. (2014). Cryopreservation of extracted corneal lenticules after small incision lenticule extraction for potential use in human subjects. Cornea 33, 1355–1362.

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Conca, V., Abad-Collado, M., Hueso-Abancens, J.R., Mengual-Verdú, E., Piñero, D.P., Aguirre-Balsalobre, F., and Molina, J.C. (2019). Efficacy and safety of treatment of hyposecretory dry eye with platelet-rich plasma. Acta Ophthalmol 97, e170–e178.

    Article  PubMed  Google Scholar 

  • Gasiunas, G., Barrangou, R., Horvath, P., and Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109, E2579–E2586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geremicca, W., Fonte, C., and Vecchio, S. (2010). Blood components for topical use in tissue regeneration: Evaluation of corneal lesions treated with platelet lysate and considerations on repair mechanisms. Blood Transfus 8, 107–112.

    PubMed  PubMed Central  Google Scholar 

  • Giannaccare, G., Buzzi, M., Fresina, M., Velati, C., and Versura, P. (2017). Efficacy of 2-month treatment with cord blood serum eye drops in ocular surface disease. Cornea 36, 915–921.

    Article  PubMed  Google Scholar 

  • Gibney, R., Matthyssen, S., Patterson, J., Ferraris, E., and Zakaria, N. (2017). The human cornea as a model tissue for additive biomanufacturing: A review. Procedia CIRP 65, 56–63.

    Article  Google Scholar 

  • Gill, K.P., Hung, S.S.C., Sharov, A., Lo, C.Y., Needham, K., Lidgerwood, G.E., Jackson, S., Crombie, D.E., Nayagam, B.A., Cook, A.L., et al. (2016). Enriched retinal ganglion cells derived from human embryonic stem cells. Sci Rep 6, 30552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Cordero, A., Kruczek, K., Naeem, A., Fernando, M., Kloc, M., Ribeiro, J., Goh, D., Duran, Y., Blackford, S.J.I., Abelleira-Hervas, L., et al. (2017). Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Rep 9, 820–837.

    Article  Google Scholar 

  • Gouveia, R.M., Castelletto, V., Hamley, I.W., and Connon, C.J. (2015). New self-assembling multifunctional templates for the biofabrication and controlled self-release of cultured tissue. Tissue Eng Part A 21, 1772–1784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouveia, R.M., González-Andrades, E., Cardona, J.C., González-Gallardo, C., Ionescu, A.M., Garzon, I., Alaminos, M., González-Andrades, M., and Connon, C.J. (2017). Controlling the 3D architecture of self-lifting auto-generated tissue equivalents (SLATEs) for optimized corneal graft composition and stability. Biomaterials 121, 205–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith, G.L., Wirostko, B., Lee, H.K., Cornell, L.E., McDaniel, J.S., Zamora, D.O., and Johnson, A.J. (2018). Treatment of corneal chemical alkali burns with a crosslinked thiolated hyaluronic acid film. Burns 44, 1179–1186.

    Article  PubMed  Google Scholar 

  • Guan, Y., Cui, L., Qu, Z., Lu, L., Wang, F., Wu, Y., Zhang, J., Gao, F., Tian, H., Xu, L., et al. (2013). Subretinal transplantation of rat MSCs and erythropoietin gene modified rat MSCs for protecting and rescuing degenerative retina in rats. CMM 13, 1419–1431.

    Article  CAS  Google Scholar 

  • Guo, Y., Wu, W., Ma, X., Shi, M., and Yang, X. (2019). Comparative gene expression profiling reveals key pathways and genes different in skin epidermal stem cells and corneal epithelial cells. Genes Genom 41, 679–688.

    Article  Google Scholar 

  • Gupta, N., Joshi, J., Farooqui, J.H., and Mathur, U. (2018). Results of simple limbal epithelial transplantation in unilateral ocular surface burn. Ind J Ophthalmol 66, 45–52.

    Article  Google Scholar 

  • Gwon, A., and Gruber, L. (2010). Engineering the crystalline lens with a biodegradable or non-degradable scaffold. Exp Eye Res 91, 220–228.

    Article  CAS  PubMed  Google Scholar 

  • Han, Z., Conley, S.M., Makkia, R.S., Cooper, M.J., and Naash, M.I. (2012). DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice. J Clin Invest 122, 3221–3226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, J., Wang, X., Bi, Y., Teng, Y., Wang, J., Li, F., Li, Q., Zhang, J., Guo, F., and Liu, J. (2014). Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Colloids Surf B Biointerface 114, 111–120.

    Article  CAS  Google Scholar 

  • Hertsenberg, A.J., Shojaati, G., Funderburgh, M.L., Mann, M.M., Du, Y., and Funderburgh, J.L. (2017). Corneal stromal stem cells reduce corneal scarring by mediating neutrophil infiltration after wounding. PLoS ONE 12, e0171712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirano, M., Yamamoto, A., Yoshimura, N., Tokunaga, T., Motohashi, T., Ishizaki, K., Yoshida, H., Okazaki, K., Yamazaki, H., Hayashi, S.I., et al. (2003). Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells. Dev Dyn 228, 664–671.

    Article  PubMed  Google Scholar 

  • Hirschberg, J. (1991). The history of ophthalmology: The Netherlands, Scandinavia, Russia, Poland, Spain, Hispano-America, Portugal, Brazil, Greece, Turkey, the Balkan. (Canada, Japan, Egypt: Wayenborgh Verlag), vol 1991, First and Second Half of the Nineteenth Century (Parts Nine to Seventeen).

    Google Scholar 

  • Holan, V., Trosan, P., Cejka, C., Javorkova, E., Zajicova, A., Hermankova, B., Chudickova, M., and Cejkova, J. (2015). A comparative study of the therapeutic potential of mesenchymal stem cells and limbal epithelial stem cells for ocular surface reconstruction. Stem Cell Transl Med 4, 1052–1063.

    Article  CAS  Google Scholar 

  • Hsiue, G.H., Lai, J.Y., and Lin, P.K. (2002). Absorbable sandwich-like membrane for retinal-sheet transplantation. J Biomed Mater Res 61, 19–25.

    Article  CAS  PubMed  Google Scholar 

  • Hua, J., Gross, N., Schulze, B., Michaelis, U., Bohnenkamp, H., Guenzi, E., Hansen, L.L., Martin, G., and Agostini, H.T. (2012). In vivo imaging of choroidal angiogenesis using fluorescence-labeled cationic liposomes. Mol Vis 18, 1045–1054.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H.Y., Wang, M.C., Chen, Z.Y., Chiu, W.Y., Chen, K.H., Lin, I.C., Yang, W.C.V., Wu, C.C., and Tseng, C.L. (2018). Gelatinepigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. Int J Nanomed Volume 13, 7251–7273.

    Article  CAS  Google Scholar 

  • Huang, L.L.H, Chen, Y.A., Zhuo, Z.Y., Hsieh, Y.T., Yang, C.L., Chen, W.T., Lin, J.Y., Lin, Y.X., Jiang, J.T., Zhuang, C.H., et al. (2018). Medical applications of collagen and hyaluronan in regenerative medicine. Adv Exp Med Biol 1077, 285–306.

    Article  CAS  PubMed  Google Scholar 

  • Hung, S.S.C., McCaughey, T., Swann, O., Pébay, A., and Hewitt, A.W. (2016). Genome engineering in ophthalmology: Application of CRISPR/Cas to the treatment of eye disease. Prog Retinal Eye Res 53, 1–20.

    Article  CAS  Google Scholar 

  • Irimia, T., Dinu-Pîrvu, C.E., Ghica, M.V., Lupuleasa, D., Muntean, D.L., Udeanu, D.I., and Popa, L. (2018). Chitosan-based in situ gels for ocular delivery of therapeutics: A state-of-the-art review. Mar Drugs 16, 373.

    Article  CAS  PubMed Central  Google Scholar 

  • Jacob, S., Dhawan, P., Tsatsos, M., Agarwal, A., Narasimhan, S., and Kumar, A. (2019). Fibrin glue-assisted closure of macroperforation in predescemetic deep anterior lamellar keratoplasty with a donor obtained from small incision lenticule extraction. Cornea 38, 775–779.

    Article  PubMed  Google Scholar 

  • Jacob, S., Kumar, D.A., Agarwal, A., Agarwal, A., Aravind, R., and Saijimol, A.I. (2017). Preliminary evidence of successful near vision enhancement with a new technique: PrEsbyopic allogenic refractive lenticule (PEARL) corneal inlay using a SMILE lenticule. J Refract Surg 33, 224–229.

    Article  PubMed  Google Scholar 

  • Jain, A., Zode, G., Kasetti, R.B., Ran, F.A., Yan, W., Sharma, T.P., Bugge, K., Searby, C.C., Fingert, J.H., Zhang, F., et al. (2017). CRISPR-Cas9-based treatment of myocilin-associated glaucoma. Proc Natl Acad Sci USA 114, 11199–11204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jangamreddy, J.R., Haagdorens, M.K.C., Mirazul Islam, M., Lewis, P., Samanta, A., Fagerholm, P., Liszka, A., Ljunggren, M.K., Buznyk, O., Alarcon, E.I., et al. (2018). Short peptide analogs as alternatives to collagen in pro-regenerative corneal implants. Acta Biomater 69, 120–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, J., Zhang, D., Wei, W., Shen, B., Zhang, Y., Wang, Y., Tang, Z., Ni, N., Sun, H., Liu, J., et al. (2018). Decellularized matrix of adipose-derived mesenchymal stromal cells enhanced retinal progenitor cell proliferation via the Akt/erk pathway and neuronal differentiation. Cytotherapy 20, 74–86.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., Li, Y., Liu, X.W., and Xu, J. (2016). A novel tectonic keratoplasty with femtosecond laser intrastromal lenticule for corneal ulcer and perforation. Chin Med J 129, 1817–1821.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin, H., He, M., Liu, H., Zhong, X., Wu, J., Liu, L., Ding, H., Zhang, C., and Zhong, X. (2019). Small-incision femtosecond laser-assisted intracorneal concave lenticule implantation in patients with keratoconus. Cornea 38, 446–453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jopling, C., Boue, S., and Izpisua Belmonte, J.C. (2011). Dedifferentiation, transdifferentiation and reprogramming: Three routes to regeneration. Nat Rev Mol Cell Biol 12, 79–89.

    Article  CAS  PubMed  Google Scholar 

  • Kang, X.J., Caparas, C.I.N., Soh, B.S., and Fan, Y. (2017). Addressing challenges in the clinical applications associated with CRISPR/Cas9 technology and ethical questions to prevent its misuse. Protein Cell 8, 791–795.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapanigowda, U.G., Nagaraja, S.H., Ramaiah, B., and Boggarapu, P.R. (2015). Improved intraocular bioavailability of ganciclovir by mucoadhesive polymer based ocular microspheres: Development and simulation process in Wistar rats. Daru 23, 49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karamichos, D. (2015). Ocular tissue engineering: current and future directions. J Funct Biomater 6, 77–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katagiri, Y., Iwasaki, T., Ishikawa, T., Yamakawa, N., Suzuki, H., and Usui, M. (2005). Application of thermo-setting gel as artificial vitreous. Jpn J Ophthalmol 49, 491–496.

    Article  PubMed  Google Scholar 

  • Ke, Y., Wu, Y., Cui, X., Liu, X., Yu, M., Yang, C., and Li, X. (2015). Polysaccharide hydrogel combined with mesenchymal stem cells promotes the healing of corneal alkali burn in rats. PLoS ONE 10, e0119725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kenyon, K.R., and Tseng, S.C.G. (1989). Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96, 709–723.

    Article  CAS  PubMed  Google Scholar 

  • Kieb, M., Sander, F., Prinz, C., Adam, S., Mau-Möller, A., Bader, R., Peters, K., and Tischer, T. (2017). Platelet-rich plasma powder: A new preparation method for the standardization of growth factor concentrations. Am J Sports Med 45, 954–960.

    Article  PubMed  Google Scholar 

  • Kilic Bektas, C., and Hasirci, V. (2018). Mimicking corneal stroma using keratocyte-loaded photopolymerizable methacrylated gelatin hydrogels. J Tissue Eng Regen Med 12, e1899–e1910.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K., Park, S.W., Kim, J.H., Lee, S.H., Kim, D., Koo, T., Kim, K.E., Kim, J.H., and Kim, J.S. (2017). Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res 27, 419–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klassen, H. (2016). Stem cells in clinical trials for treatment of retinal degeneration. Expert Opin Biol Ther 16, 7–14.

    Article  CAS  PubMed  Google Scholar 

  • Koirala, A., Makkia, R.S., Cooper, M.J., and Naash, M.I. (2011). Nanoparticle-mediated gene transfer specific to retinal pigment epithelial cells. Biomaterials 32, 9483–9493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koivusalo, L., Karvinen, J., Sorsa, E., Jönkkäri, I., Väliaho, J., Kallio, P., Ilmarinen, T., Miettinen, S., Skottman, H., and Kellomäki, M. (2018). Hydrazone crosslinked hyaluronan-based hydrogels for therapeutic delivery of adipose stem cells to treat corneal defects. Mater Sci Eng C Mater Biol Appl 85, 68–78.

    Article  CAS  PubMed  Google Scholar 

  • Kojima, T., Higuchi, A., Goto, E., Matsumoto, Y., Dogru, M., and Tsubota, K. (2008). Autologous serum eye drops for the treatment of dry eye diseases. Cornea 27, S25–S30.

    Article  PubMed  Google Scholar 

  • Kong, L., Cai, X., Zhou, X., Wong, L.L., Karakoti, A.S., Seal, S., and McGinnis, J.F. (2011). Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways. Neurobiol Dis 42, 514–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo, M., Sonoda, Y., Muramatsu, R., and Usui, M. (2001). Immunogenicity of human amniotic membrane in experimental xeno-transplantation. Invest Ophthalmol Vis Sci 42, 1539–1546.

    CAS  PubMed  Google Scholar 

  • Lai, J.Y., Chen, K.H., Hsu, W.M., Hsiue, G.H., and Lee, Y.H. (2006). Bioengineered human corneal endothelium for transplantation. Arch Ophthalmol 124, 1441.

    Article  CAS  PubMed  Google Scholar 

  • Lai, J.Y. (2013a). Influence of solvent composition on the performance of carbodiimide cross-linked gelatin carriers for retinal sheet delivery. J Mater Sci Mater Med 24, 2201–2210.

    Article  CAS  PubMed  Google Scholar 

  • Lai, J.Y. (2013b). Corneal stromal cell growth on gelatin/chondroitin sulfate scaffolds modified at different NHS/EDC molar ratios. Int J Mol Sci 14, 2036–2055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai, J.Y., Chen, K.H., and Hsiue, G.H. (2007). Tissue-engineered human corneal endothelial cell sheet transplantation in a rabbit model using functional biomaterials. Transplantation 84, 1222–1232.

    Article  PubMed  Google Scholar 

  • Lai, J.Y., Cheng, H.Y., and Ma, D.H.K. (2015). Investigation of overrun-processed porous hyaluronic acid carriers in corneal endothelial tissue engineering. PLoS ONE 10, e0136067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lau, Y.T.Y., Shih, K.C., Tse, R.H.K., Chan, T.C.Y., and Jhanji, V. (2019). Comparison of visual, refractive and ocular surface outcomes between small incision lenticule extraction and laser-assisted in situ keratomileusis for myopia and myopic astigmatism. Ophthalmol Ther 8, 373–386.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, H.K., Luo, S., Wirostko, B.M., and Mann, B. (2017). Carbox-ymethylated hyaluronic acid (CMHA-S)-based ocular delivery of antibiotics. Invest Ophthalmol Vis Sci 58, 4119.

    Google Scholar 

  • Lee, J.H., Kim, M.J., Ha, S.W., and Kim, H.K. (2016). Autologous platelet-rich plasma eye drops in the treatment of recurrent corneal erosions. Korean J Ophthalmol 30, 101–107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, J.Y., Lee, K.H., Shin, H.M., Chung, K.H., Kim, G.I., and Lew, H. (2013). Orbital volume augmentation after injection of human orbital adipose-derived stem cells in rabbits. Invest Ophthalmol Vis Sci 54, 2410–2416.

    Article  PubMed  Google Scholar 

  • Lee, M.J., Ko, A.Y., Ko, J.H., Lee, H.J., Kim, M.K., Wee, W.R., Khwarg, S. I., and Oh, J.Y. (2015). Mesenchymal stem/stromal cells protect the ocular surface by suppressing inflammation in an experimental dry eye. Mol Ther 23, 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Li, F., Truong, V.X., Thissen, H., Frith, J.E., and Forsythe, J.S. (2017). Microfluidic encapsulation of human mesenchymal stem cells for articular cartilage tissue regeneration. ACS Appl Mater Interfaces 9, 8589–8601.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Lu, C., Wang, L., Chen, M., White, J., Hao, X., McLean, K.M., Chen, H., and Hughes, T.C. (2018). Gelatin-based photocurable hydrogels for corneal wound repair. ACS Appl Mater Interfaces 10, 13283–13292.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Zhao, F., Li, M., Knorz, M.C., and Zhou, X. (2018). Treatment of corneal ectasia by implantation of an allogenic corneal lenticule. J Refract Surg 34, 347–350.

    Article  PubMed  Google Scholar 

  • Li, X., Zhao, S., and Wang, L. (2017). Therapeutic effect of adipose-derived stem cell transplantation on optic nerve injury in rats. Mol Med Report 17, 2529–2534.

    Google Scholar 

  • Lin, H.F., Lai, Y.C., Tai, C.F., Tsai, J.L., Hsu, H.C., Hsu, R.F., Lu, S.N., Feng, N.H., Chai, C.Y., and Lee, C.H. (2013). Effects of cultured human adipose-derived stem cells transplantation on rabbit cornea regeneration after alkaline chemical burn. Kaohsiung J Med Sci 29, 14–18.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J.Y. (2012). Optogenetic excitation of neurons with channel rhodopsins: Light instrumentation, expression systems, and channelrhodopsin variants. Prog Brain Res 196, 29–47.

    Article  CAS  PubMed  Google Scholar 

  • Liu, R., Zhao, J., Xu, Y., Li, M., Niu, L., Liu, H., Sun, L., Chu, R., and Zhou, X. (2015). Femtosecond laser-assisted corneal small incision allogenic intrastromal lenticule implantation in monkeys: A pilot study. Invest Ophthalmol Vis Sci 56, 3715–3720.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. (2017). Adipose-derived mesenchymal stem cells reduce lymphocytic infiltration in a rabbit model of induced autoimmune dacryoadenitis: Some discussions. Invest Ophthalmol Vis Sci 58, 1585.

    Article  PubMed  Google Scholar 

  • Liu, Y., Liu, J., Zhang, X., Zhang, R., Huang, Y., and Wu, C. (2010). In situ gelling gelrite/alginate formulations as vehicles for ophthalmic drug delivery. AAPS Pharm Sci Tech 11, 610–620.

    Article  CAS  Google Scholar 

  • Liu, Y., Ren, L., and Wang, Y. (2013). Crosslinked collagen-gelatinhyaluronic acid biomimetic film for cornea tissue engineering applications. Mater Sci Eng C Mater Biol App 33, 196–201.

    Article  CAS  Google Scholar 

  • Liu, Y.C., Williams, G.P., George, B.L., Soh, Y.Q., Seah, X.Y., Peh, G.S.L., Yam, G.H.F., and Mehta, J.S. (2017). Corneal lenticule storage before reimplantation. Mol Vis 23, 753–764.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig, P.E., Huff, T.J., and Zuniga, J.M. (2018). The potential role of bioengineering and three-dimensional printing in curing global corneal blindness. J Tissue Eng 9, 204173141876986.

    Article  CAS  Google Scholar 

  • Lund, R.D., Wang, S., Klimanskaya, I., Holmes, T., Ramos-Kelsey, R., Lu, B., Girman, S., Bischoff, N., Sauvé, Y., and Lanza, R. (2006). Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8, 189–199.

    Article  CAS  PubMed  Google Scholar 

  • Luo, L.J., Lai, J.Y., Chou, S.F., Hsueh, Y.J., and Ma, D.H.K. (2018). Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering. Acta Biomater 65, 123–136.

    Article  CAS  PubMed  Google Scholar 

  • Lv, J.N., Zhou, G.H., Chen, X., Chen, H., Wu, K.C., Xiang, L., Lei, X.L., Zhang, X., Wu, R.H., and Jin, Z.B. (2017). Targeted RP9 ablation and mutagenesis in mouse photoreceptor cells by CRISPR-Cas9. Sci Rep 7, 43062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLaren, R.E., Pearson, R.A., MacNeil, A., Douglas, R.H., Salt, T.E., Akimoto, M., Swaroop, A., Sowden, J.C., and Ali, R.R. (2006). Retinal repair by transplantation of photoreceptor precursors. Nature 444, 203–207.

    Article  CAS  PubMed  Google Scholar 

  • Malhotra, C., and Jain, A.K. (2014). Human amniotic membrane transplantation: Different modalities of its use in ophthalmology. World J Transplant 4, 111–121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandai, M., Watanabe, A., Kurimoto, Y., Hirami, Y., Morinaga, C., Daimon, T., Fujihara, M., Akimaru, H., Sakai, N., Shibata, Y., et al. (2017). Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 376, 1038–1046.

    Article  CAS  PubMed  Google Scholar 

  • Mandal, S., Prabhushankar, G.L., Thimmasetty, M.K., and Geetha, M.S. (2012). Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride. Int J Pharma Invest 2, 78–82.

    Article  CAS  Google Scholar 

  • Mann, B.K., Stirland, D.L., Lee, H.K., and Wirostko, B.M. (2018). Ocular translational science: A review of development steps and paths. Adv Drug Deliv Rev 126, 195–203.

    Article  CAS  PubMed  Google Scholar 

  • Mansouri, K., Medeiros, F.A., Tafreshi, A., and Weinreb, R.N. (2012). Continuous 24-hour monitoring of intraocular pressure patterns with a contact lens sensor. Arch Ophthalmol 130, 1534–1539.

    Article  PubMed  Google Scholar 

  • Mastropasqua, L., Nubile, M., Salgari, N., and Mastropasqua, R. (2018). Femtosecond laser-assisted stromal lenticule addition keratoplasty for the treatment of advanced keratoconus: a preliminary study. J Refract Surg 34, 36–44.

    Article  PubMed  Google Scholar 

  • Matthyssen, S., Van den Bogerd, B., Dhubhghaill, S.N., Koppen, C., and Zakaria, N. (2018). Corneal regeneration: A review of stromal replacements. Acta Biomater 69, 31–41.

    Article  CAS  PubMed  Google Scholar 

  • McGill, T.J., Bohana-Kashtan, O., Stoddard, J.W., Andrews, M.D., Pandit, N., Rosenberg-Belmaker, L.R., Wiser, O., Matzrafi, L., Banin, E., Reubinoff, B., et al. (2017). Long-term efficacy of GMP grade xenofree hESC-derived RPE cells following transplantation. Trans Vis Sci Tech 6, 17.

    Article  Google Scholar 

  • Mehta, P., Haj-Ahmad, R., Al-Kinani, A., Arshad, M.S., Chang, M.W., Alany, R.G., and Ahmad, Z. (2017). Approaches in topical ocular drug delivery and developments in the use of contact lenses as drug-delivery devices. Ther Deliv 8, 521–541.

    Article  CAS  PubMed  Google Scholar 

  • Mendel, T.A., Clabough, E.B.D., Kao, D.S., Demidova-Rice, T.N., Durham, J.T., Zotter, B.C., Seaman, S.A., Cronk, S.M., Rakoczy, E.P., Katz, A.J., et al. (2013). Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PLoS ONE 8, e65691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkle, F.T., Ghosh, S., Kamitaki, N., Mitchell, J., Avior, Y., Mello, C., Kashin, S., Mekhoubad, S., Ilic, D., Charlton, M., et al. (2017). Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 545, 229–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messina, M., and Dua, H.S. (2019). Early results on the use of chitosan-N-acetylcysteine (Lacrimera®) in the management of dry eye disease of varied etiology. Int Ophthalmol 39, 693–696.

    Article  PubMed  Google Scholar 

  • Miltner, A.M., and La Torre, A. (2019). Retinal ganglion cell replacement: Current status and challenges ahead. Dev Dyn 248, 118–128.

    Article  PubMed  Google Scholar 

  • Mimura, T., Amano, S., Yokoo, S., Uchida, S., Yamagami, S., Usui, T., Kimura, Y., and Tabata, Y. (2008). Tissue engineering of corneal stroma with rabbit fibroblast precursors and gelatin hydrogels. Mol Vis 14, 1819–1828.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miotto, M., Gouveia, R., Abidin, F.Z., Figueiredo, F., and Connon, C.J. (2017). Developing a continuous bioprocessing approach to stromal cell manufacture. ACS Appl Mater Interfaces 9, 41131–41142.

    Article  CAS  PubMed  Google Scholar 

  • Miotto, M., Gouveia, R.M., and Connon, C.J. (2015). Peptide amphiphiles in corneal tissue engineering. J Funct Biomater 6, 687–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirazul Islam, M., Cėpla, V., He, C., Edin, J., Rakickas, T., Kobuch, K., Ruželė, Ž., Bruce Jackson, W., Rafat, M., Lohmann, C.P., et al. (2015). Functional fabrication of recombinant human collagen-phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomater 12, 70–80.

    Article  CAS  PubMed  Google Scholar 

  • Mittal, V., Jain, R., Mittal, R., Vashist, U., and Narang, P. (2016). Successful management of severe unilateral chemical burns in children using simple limbal epithelial transplantation (SLET). Br J Ophthalmol 100, 1102–1108.

    Article  PubMed  Google Scholar 

  • Mohan, R.R., Stapleton, W.M., Sinha, S., Netto, M.V., and Wilson, S.E. (2008). A novel method for generating corneal haze in anterior stroma of the mouse eye with the excimer laser. Exp Eye Res 86, 235–240.

    Article  CAS  PubMed  Google Scholar 

  • Momenzadeh, D., Baradaran-Rafii, A., Keshel, S.H., Ebrahimi, M., and Biazar, E. (2017). Electrospun mat with eyelid fat-derived stem cells as a scaffold for ocular epithelial regeneration. Artificial Cells NanoMed Biotech 45, 120–127.

    Article  CAS  Google Scholar 

  • Moore, D.R. (2008). Reverse translation: clearing a path from bedside to bench. Nature 454, 274.

    Article  CAS  PubMed  Google Scholar 

  • Nadri, S., Kazemi, B., Eslaminejad, M.B., Eeslaminejad, M.B., Yazdani, S., and Soleimani, M. (2013). High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds. Mol Biol Rep 40, 3883–3890.

    Article  CAS  PubMed  Google Scholar 

  • Nanjwade, B.K., Deshmukh, R.V., Gaikwad, K.R., Parikh, K.A., and Manvi, F.V. (2012). Formulation and evaluation of micro hydrogel of moxifloxacin hydrochloride. Eur J Drug Metab Pharmacokinet 37, 117–123.

    Article  CAS  PubMed  Google Scholar 

  • Naahidi, S., Jafari, M., Logan, M., Wang, Y., Yuan, Y., Bae, H., Dixon, B., and Chen, P. (2017). Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotech Adv 35, 530–544.

    Article  CAS  Google Scholar 

  • Nibourg, L.M., Gelens, E., de Jong, M.R., Kuijer, R., van Kooten, T.G., and Koopmans, S.A. (2016). Nanofiber-based hydrogels with extracellular matrix-based synthetic peptides for the prevention of capsular opacification. Exp Eye Res 143, 60–67.

    Article  CAS  PubMed  Google Scholar 

  • Nightingale, H., Kemp, K., Gray, E., Hares, K., Mallam, E., Scolding, N., and Wilkins, A. (2012). Changes in expression of the antioxidant enzyme SOD3 occur upon differentiation of human bone marrow-derived mesenchymal stem cells in vitro. Stem Cells Dev 21, 2026–2035.

    Article  CAS  PubMed  Google Scholar 

  • Niu, G., Choi, J.S., Wang, Z., Skardal, A., Giegengack, M., and Soker, S. (2014). Heparin-modified gelatin scaffolds for human corneal endothelial cell transplantation. Biomaterials 35, 4005–4014.

    Article  CAS  PubMed  Google Scholar 

  • Noorani, B., Tabandeh, F., Yazdian, F., Soheili, Z.S., Shakibaie, M., and Rahmani, S. (2018). Thin natural gelatin/chitosan nanofibrous scaffolds for retinal pigment epithelium cells. Int J Polym Mater Polym Biomater 67, 754–763.

    Article  CAS  Google Scholar 

  • Ogawa, Y., He, H., Mukai, S., Imada, T., Nakamura, S., Su, C.W., Mahabole, M., Tseng, S.C.G., and Tsubota, K. (2017). Heavy chain-hyaluronan/PENTRAXIN 3 from amniotic membrane suppresses inflammation and scarring in murine lacrimal gland and conjunctiva of chronic graft-versus-host disease. Sci Rep 7, 42195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang, H., Xue, Y., Lin, Y., Zhang, X., Xi, L., Patel, S., Cai, H., Luo, J., Zhang, M., Zhang, M., et al. (2014). WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature 511, 358–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paliwal, R., Paliwal, S.R., Sulakhiya, K., Kurmi, B.D., Kenwat, R., and Mamgain, A. (2019). Chitosan-based nanocarriers for ophthalmic applications. Polysaccharide Carr Drug Deliv 4, 79–104.

    Article  Google Scholar 

  • Pant, O.P., Hao, J.L., Zhou, D.D., Wang, F., and Lu, C.W. (2018). A novel case using femtosecond laser-acquired lenticule for recurrent pterygium: Case report and literature review. J Int Med Res 46, 2474–2480.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pant, O.P., Hao, J.L., Zhou, D.D., Wang, F., Zhang, B.J., and Lu, C.W. (2018). Lamellar keratoplasty using femtosecond laser intrastromal lenticule for limbal dermoid: Case report and literature review. J Int Med Res 46, 4753–4759.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paques, M., Chastang, C., Mathis, A., Sahel, J., Massin, P., Dosquet, C., Korobelnik, J.F., Le Gargasson, J.F., and Gaudric, A. (1999). Effect of autologous platelet concentrate in surgery for idiopathic macular hole. Ophthalmology 106, 932–938.

    Article  CAS  PubMed  Google Scholar 

  • Park, J., Baranov, P., Aydin, A., Abdelgawad, H., Singh, D., Niu, W., Kurisawa, M., Spector, M., and Young, M.J. (2019). In situ cross-linking hydrogel as a vehicle for retinal progenitor cell transplantation. Cell Transplant 28, 596–606.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pascolini, D., and Mariotti, S.P. (2012). Global estimates of visual impairment: 2010. Br J Ophthalmol 96, 614–618.

    Article  PubMed  Google Scholar 

  • Patel, P.B., Shastri, D.H., Shelat, P.K., Shukla, A.K., and Shah, G.B. (2012). Design and characterization of ofloxacin mucoadhesive in situ hydrogel. Afr J Pharm Pharmacol 6, 1644–1652.

    CAS  Google Scholar 

  • Patel, S., Müller, G., Stracke, J.O., Altenburger, U., Mahler, H.C., and Jere, D. (2015). Evaluation of protein drug stability with vitreous humor in a novel ex-vivo intraocular model. Eur J Pharm Biopharm 95, 407–417.

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini, G., Traverso, C.E., Franzi, A.T., Zingirian, M., Cancedda, R., and De Luca, M. (1997). Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349, 990–993.

    Article  CAS  PubMed  Google Scholar 

  • Peyman, G.A., Blinder, K.J., Paris, C.L., Alturki, W., Nelson, N.C., and Desai, U. (1991). A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthal Surg 22, 102–108.

    CAS  Google Scholar 

  • Pezzotta, S., Del Fante, C., Scudeller, L., Rossi, G.C., Perotti, C., Bianchi, P.E., and Antoniazzi, E. (2017). Long-term safety and efficacy of autologous platelet lysate drops for treatment of ocular GvHD. Bone Marrow Transplant 52, 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Polosukhina, A., Litt, J., Tochitsky, I., Nemargut, J., Sychev, Y., De Kouchkovsky, I., Huang, T., Borges, K., Trauner, D., Van Gelder, R.N., et al. (2012). Photochemical restoration of visual responses in blind mice. Neuron 75, 271–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan, K.R., Reinstein, D.Z., Carp, G.I., Archer, T.J., Gobbe, M., and Gurung, R. (2013). Femtosecond laser-assisted keyhole Endokeratophakia: Correction of hyperopia by implantation of an allogeneic lenticule obtained by SMILE from a myopic donor. J Refract Surg 29, 777–782.

    Article  PubMed  Google Scholar 

  • Prina, E., Mistry, P., Sidney, L.E., Yang, J., Wildman, R.D., Bertolin, M., Breda, C., Ferrari, B., Barbaro, V., Hopkinson, A., et al. (2017). 3D microfabricated scaffolds and microfluidic devices for ocular surface replacement: a review. Stem Cell Rev Rep 13, 430–441.

    Article  CAS  PubMed  Google Scholar 

  • Rafie, F., Javadzadeh, Y., Javadzadeh, A.R., Ghavidel, L.A., Jafari, B., Moogooee, M., and Davaran, S. (2010). In vivo evaluation of novel nanoparticles containing dexamethasone for ocular drug delivery on rabbit eye. Curr Eye Res 35, 1081–1089.

    Article  CAS  PubMed  Google Scholar 

  • Rahmani, S., Tabandeh, F., Faghihi, S., Amoabediny, G., Shakibaie, M., Noorani, B., and Yazdian, F. (2018). Fabrication and characterization of poly(ε-caprolactone)/gelatin nanofibrous scaffolds for retinal tissue engineering. Int J Polym Mater Polym Biomater 67, 27–35.

    Article  CAS  Google Scholar 

  • Rama, P., Matuska, S., Paganoni, G., Spinelli, A., De Luca, M., and Pellegrini, G. (2010). Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 363, 147–155.

    Article  CAS  PubMed  Google Scholar 

  • Ramtin, A., Seyfoddin, A., Coutinho, F.P., Waterhouse, G.I.N., Rupenthal, I.D., and Svirskis, D. (2016). Cytotoxicity considerations and electrically tunable release of dexamethasone from polypyrrole for the treatment of back-of-the-eye conditions. Drug Deliv Transl Res 6, 793–799.

    Article  CAS  PubMed  Google Scholar 

  • Röck, T., Bartz-Schmidt, K.U., Landenberger, J., Bramkamp, M., and Röck, D. (2018). Amniotic membrane transplantation in reconstructive and regenerative ophthalmology. Ann Transplant 23, 160–165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodgers, G.M. (2011). Immune-mediated coagulopathy associated with topical bovine thrombin. J Pediatr Hematol Oncol 33, 86–88.

    Article  CAS  PubMed  Google Scholar 

  • Ronci, C., Ferraro, A.S., Lanti, A., Missiroli, F., Sinopoli, S., Del Proposto, G., Cipriani, C., De Felici, C., Ricci, F., Ciotti, M., et al. (2015). Platelet-rich plasma as treatment for persistent ocular epithelial defects. Transfus Apher Sci 52, 300–304.

    Article  PubMed  Google Scholar 

  • Rose, J.B., Pacelli, S., Haj, A.J.E., Dua, H.S., Hopkinson, A., White, L.J., and Rose, F.R.A.J. (2014). Gelatin-based materials in ocular tissue engineering. Materials 7, 3106–3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbaum, J.T., McDevitt, H.O., Guss, R.B., and Egbert, P.R. (1980). Endotoxin-induced uveitis in rats as a model for human disease. Nature 286, 611–613.

    Article  CAS  PubMed  Google Scholar 

  • Rossmiller, B., Mao, H., and Lewin, A.S. (2012). Gene therapy in animal models of autosomal dominant retinitis pigmentosa. Mol Vis 18, 2479–2496.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy, S., Do Thi, H., Feusier, M., and Mermoud, A. (2012). Crosslinked sodium hyaluronate implant in deep sclerectomy for the surgical treatment of glaucoma. Eur J Ophthalmol 22, 70–76.

    Article  PubMed  Google Scholar 

  • Ruan, G.X., Barry, E., Yu, D., Lukason, M., Cheng, S.H., and Scaria, A. (2017). CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10. Mol Ther 25, 331–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahle, F.F., Kim, S., Niloy, K.K., Tahia, F., Fili, C.V., Cooper, E., Hamilton, D.J., and Lowe, T.L. (2019). Nanotechnology in regenerative ophthalmology. Adv Drug Deliv Rev 148, 290–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saichanma, S., Bunyaratvej, A., and Sila-Asna, M. (2012). In vitro transdifferentiation of corneal epithelial-like cells from human skin-derived precursor cells. Int J Ophthalmol 5, 158–163.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sangwan, V.S., Basu, S., MacNeil, S., and Balasubramanian, D. (2012). Simple limbal epithelial transplantation (SLET): A novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol 96, 931–934.

    Article  PubMed  Google Scholar 

  • Santos, M.S., Gomes, J.A.P., Hofling-Lima, A.L., Rizzo, L.V., Romano, A. C., and Belfort Jr., R. (2005). Survival analysis of conjunctival limbal grafts and amniotic membrane transplantation in eyes with total limbal stem cell deficiency. Am J Ophthalmol 140, 223.e1.

    Article  PubMed  Google Scholar 

  • Santos-Ferreira, T., Llonch, S., Borsch, O., Postel, K., Haas, J., and Ader, M. (2016). Retinal transplantation of photoreceptors results in donor-host cytoplasmic exchange. Nat Commun 7, 13028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz, S.D., Hubschman, J.P., Heilwell, G., Franco-Cardenas, V., Pan, C.K., Ostrick, R.M., Mickunas, E., Gay, R., Klimanskaya, I., and Lanza, R. (2012). Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet 379, 713–720.

    Article  CAS  PubMed  Google Scholar 

  • Sekundo, W., Kunert, K., Russmann, C., Gille, A., Bissmann, W., Stobrawa, G., Sticker, M., Bischoff, M., and Blum, M. (2008). First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia. J Cataract Refract Surg 34, 1513–1520.

    Article  PubMed  Google Scholar 

  • Shao, T., Li, X., and Ge, J. (2011). Target drug delivery system as a new scarring modulation after glaucoma filtration surgery. Diagn Pathol 6, 64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, N., Kaur, M., Agarwal, T., Sangwan, V.S., and Vajpayee, R.B. (2018). Treatment of acute ocular chemical burns. Surv Ophthalmol 63, 214–235.

    Article  PubMed  Google Scholar 

  • Shastri, D.H., Patel, L.D., and Parikh, R.K. (2010). Studies on in situ hydrogel: A smart way for safe and sustained ocular drug delivery. J Young Pharm 2, 116–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheardown, H., Clark, H., Wedge, C., Apel, R., Rootman, D., and Cheng, Y.L. (2009). A semi-solid drug delivery system for epidermal growth factor in corneal epithelial wound healing. Curr Eye Res 16, 183–190.

    Article  Google Scholar 

  • Shirai, H., Mandai, M., Matsushita, K., Kuwahara, A., Yonemura, S., Nakano, T., Assawachananont, J., Kimura, T., Saito, K., Terasaki, H., et al. (2016). Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci USA 113, E81–E90.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R.K., Occelli, L.M., Binette, F., Petersen-Jones, S.M., and Nasonkin, I.O. (2019). Transplantation of human embryonic stem cell-derived retinal tissue in the subretinal space of the cat eye. Stem Cells Dev 28, 1151–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhal, S., Bhatia, B., Jayaram, H., Becker, S., Jones, M.F., Cottrill, P.B., Khaw, P.T., Salt, T.E., and Limb, G.A. (2012). Human Müller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo following transplantation. Stem Cell Transl Med 1, 188–199.

    Article  CAS  Google Scholar 

  • Slaughter, B.V., Khurshid, S.S., Fisher, O.Z., Khademhosseini, A., and Peppas, N.A. (2009). Hydrogels in regenerative medicine. Adv Mater 21, 3307–3329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, W.K., Park, K.M., Kim, H.J., Lee, J.H., Choi, J., Chong, S.Y., Shim, S.H., Del Priore, L.V., and Lanza, R. (2015). Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: Preliminary results in Asian patients. Stem Cell Rep 4, 860–872.

    Article  CAS  Google Scholar 

  • Song, Y.J., Kim, S., and Yoon, G.J. (2018). Case series: Use of stromal lenticule as patch graft. Am J Ophthalmol Case Rep 12, 79–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Soppimath, K.S., Aminabhavi, T.M., Dave, A.M., Kumbar, S.G., and Rudzinski, W.E. (2002). Stimulus-responsive “smart” hydrogels as novel drug delivery systems. Drug Dev Ind Pharm 28, 957–974.

    Article  CAS  PubMed  Google Scholar 

  • Stern, J.H., Tian, Y., Funderburgh, J., Pellegrini, G., Zhang, K., Goldberg, J.L., Ali, R.R., Young, M., Xie, Y., and Temple, S. (2018). Regenerating eye tissues to preserve and restore vision. Cell Stem Cell 22, 834–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoltz, J.F., de Isla, N., Li, Y.P., Bensoussan, D., Zhang, L., Huselstein, C., Chen, Y., Decot, V., Magdalou, J., Li, N., et al. (2015). Stem cells and regenerative medicine: Myth or reality of the 21th century. Stem Cells Int 2015, 1–19.

    Article  CAS  Google Scholar 

  • Su, X., Tan, M.J., Li, Z., Wong, M., Rajamani, L., Lingam, G., and Loh, X. J. (2015). Recent progress in using biomaterials as vitreous substitutes. Biomacromolecules 16, 3093–3102.

    Article  CAS  PubMed  Google Scholar 

  • Suárez-Barrio, C., Etxebarria, J., Hernáez-Moya, R., Del Val-Alonso, M., Rodriguez-Astigarraga, M., Urkaregi, A., Freire, V., Morales, M.C., Durán, J.A., Vicario, M., et al. (2019). Hyaluronic acid combined with serum rich in growth factors in corneal epithelial defects. Int J Mol Sci 20, 1655.

    Article  PubMed Central  CAS  Google Scholar 

  • Suen, W.L.L., and Chau, Y. (2013). Specific uptake of folate-decorated triamcinolone-encapsulating nanoparticles by retinal pigment epithelium cells enhances and prolongs antiangiogenic activity. J Control Release 167, 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Sun, J., Liu, W.H., Deng, F.M., Luo, Y.H., Wen, K., Zhang, H., Liu, H.R., Wu, J., Su, B.Y., and Liu, Y.L. (2018). Differentiation of rat adipose-derived mesenchymal stem cells into corneal-like epithelial cells driven by PAX6. Exp Ther Med 15, 1424–1432.

    CAS  PubMed  Google Scholar 

  • Sun, L., Yao, P., Li, M., Shen, Y., Zhao, J., and Zhou, X. (2015). The safety and predictability of implanting autologous lenticule obtained by SMILE for hyperopia. J Refract Surg 31, 374–379.

    Article  PubMed  Google Scholar 

  • Sun, P., Shen, L., Zhang, C., Du, L., and Wu, X. (2017). Promoting the expansion and function of human corneal endothelial cells with an orbital adipose-derived stem cell-conditioned medium. Stem Cell Res Ther 8, 287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, T.T., and Green, H. (1977). Cultured epithelial cells of cornea, conjunctiva and skin: Absence of marked intrinsic divergence of their differentiated states. Nature 269, 489–493.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Zhang, T., Zhou, Y., Liu, M., Zhou, Y., Yang, X., Weng, S., To, C. H., and Liu, Q. (2016). Reversible femtosecond laser-assisted Endokeratophakia using cryopreserved allogeneic corneal lenticule. J Refract Surg 32, 569–576.

    Article  PubMed  Google Scholar 

  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, K., Nakazawa, M., Metoki, T., Yamazaki, H., Miyagawa, Y., and Ito, T. (2011). Effects of solid hyaluronic acid film on postoperative fibrous scar formation after strabismus surgery in animals. J Pediatr Ophthalmol Strabismus 48, 301–304.

    Article  PubMed  Google Scholar 

  • Tan, G., Yu, S., Li, J., and Pan, W. (2017). Development and characterization of nanostructured lipid carriers based chitosan thermosensitive hydrogel for delivery of dexamethasone. Int J Biol Macromol 103, 941–947.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Z., Jiang, F., Zhang, Y., Zhang, Y., YuanYang, Y., Huang, X., Wang, Y., Zhang, D., Ni, N., Liu, F., et al. (2019). Mussel-inspired injectable hydrogel and its counterpart for actuating proliferation and neuronal differentiation of retinal progenitor cells. Biomaterials 194, 57–72.

    Article  CAS  PubMed  Google Scholar 

  • Thanathanee, O., Phanphruk, W., Anutarapongpan, O., Romphruk, A., and Suwan-Apichon, O. (2013). Contamination risk of 100% autologous serum eye drops in management of ocular surface diseases. Cornea 32, 1116–1119.

    Article  PubMed  Google Scholar 

  • Thoft, R.A., and Friend, J. (1983). The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci 24, 1442–1443.

    CAS  PubMed  Google Scholar 

  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  • Tonsomboon, K., and Oyen, M.L. (2013). Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. J Mech Behav Biomed Mater 21, 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Torrejon, K.Y., Pu, D., Bergkvist, M., Danias, J., Sharfstein, S.T., and Xie, Y. (2013). Recreating a human trabecular meshwork outflow system on microfabricated porous structures. Biotechnol Bioeng 110, 3205–3218.

    Article  CAS  PubMed  Google Scholar 

  • Trippel, S.B. (1998). Potential role of insulinlike growth factors in fracture healing. Clin Orthop Relat Res 355S, S301–S313.

    Article  Google Scholar 

  • Turturro, S.B., Guthrie, M.J., Appel, A.A., Drapala, P.W., Brey, E.M., Pérez-Luna, V.H., Mieler, W.F., and Kang-Mieler, J.J. (2011). The effects of cross-linked thermo-responsive PNIPAAm-based hydrogel injection on retinal function. Biomaterials 32, 3620–3626.

    Article  CAS  PubMed  Google Scholar 

  • van Zeeburg, E.J.T., Maaijwee, K.J.M., Missotten, T.O.A.R., Heimann, H., and van Meurs, J.C. (2012). A free retinal pigment epithelium-choroid graft in patients with exudative age-related macular degeneration: results up to 7 years. Am J Ophthalmol 153, 120–127.e2.

    Article  PubMed  Google Scholar 

  • Wang, J., Zhang, J., Xiong, Y., Li, J., Li, X., Zhao, J., Zhu, G., He, H., Mayinuer, Y., and Wan, X. (2020). TGF-β regulation of microRNA miR-497–5p and ocular lens epithelial cell mesenchymal transition. Sci China Life Sci https://doi.org/10.1007/s11427-019-1603-y.

  • Wang, K., and Han, Z. (2017). Injectable hydrogels for ophthalmic applications. J Control Release 268, 212–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westenskow, P., Sedillo, Z., Barnett, A., and Friedlander, M. (2015) Efficient derivation of retinal pigment epithelium cells from stem cells. JoVE.

  • White, C.E., and Olabisi, R.M. (2017). Scaffolds for retinal pigment epithelial cell transplantation in age-related macular degeneration. J Tissue Eng 8, 204173141772084.

    Article  CAS  Google Scholar 

  • Woolf, S.H. (2008). The meaning of translational research and why it matters. JAMA 299, 211–213.

    CAS  PubMed  Google Scholar 

  • Xi, Y., Dong, H., Sun, K., Liu, H., Liu, R., Qin, Y., Hu, Z., Zhao, Y., Nie, F., and Wang, S. (2013). Scab-inspired cytophilic membrane of anisotropic nanofibers for rapid wound healing. ACS Appl Mater Interfaces 5, 4821–4826.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, P., Wu, K.C., Zhu, Y., Xiang, L., Li, C., Chen, D.L., Chen, F., Xu, G., Wang, A., Li, M., et al. (2014). A novel Bruch’s membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials 35, 9777–9788.

    Article  CAS  PubMed  Google Scholar 

  • Xu, W., Wang, Z., Liu, Y., Wang, L., Jiang, Z., Li, T., Zhang, W., and Liang, Y. (2018). Carboxymethyl chitosan/gelatin/hyaluronic acid blended-membranes as epithelia transplanting scaffold for corneal wound healing. Carbohydr Polym 192, 240–250.

    Article  CAS  PubMed  Google Scholar 

  • Xuqian, W., Kanghua, L., WeiHong, Y., Xi, Y., Rongping, D., Qin, H., Fangtian, D., and Chunhua Zhao, R. (2011). Intraocular transplantation of human adipose-derived mesenchymal stem cells in a rabbit model of experimental retinal holes. Ophthalmic Res 46, 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, S., Hirata, A., Ishikawa, S., Ohta, K., Nakamura, K., and Okinami, S. (2013). Feasibility of using gelatin-microbial transglutaminase complex to repair experimental retinal detachment in rabbit eyes. Graefes Arch Clin Exp Ophthalmol 251, 1109–1114.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., Moldovan, N.I., Zhao, Q., Mi, S., Zhou, Z., Chen, D., Gao, Z., Tong, D., and Dou, Z. (2008). Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells. Mol Vis 14, 1064–1070.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, H., Qiu, P., Wu, F., Zhang, W., Teng, W., Qin, Z., Li, C., Zhou, J., Fang, Z., Tang, Q., et al. (2016). Construction of a corneal stromal equivalent with SMILE-derived lenticules and fibrin glue. Sci Rep 6, 33848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, K.C. (2014). Use of umbilical cord serum in ophthalmology. Chonnam Med J 50, 82–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Feng, R., Yu, S., Li, J., Wang, Y., Song, Y., Yang, X., Pan, W., and Li, S. (2018). Nanostructured lipid carrier-based pH and temperature dual-responsive hydrogel composed of carboxymethyl chitosan and poloxamer for drug delivery. Int J Biol Macromol 114, 462–469.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, L., Yao, H., Xu, Y., Chen, M., Deng, J., Song, Y., Sui, T., Wang, Y., Huang, Y., Li, Z., et al. (2017). CRISPR/Cas9-mediated mutation of αA-crystallin gene induces congenital cataracts in rabbits. Invest Ophthalmol Vis Sci 58, BIO34.

    Article  CAS  PubMed  Google Scholar 

  • Zarbin, M.A., Montemagno, C., Leary, J.F., and Ritch, R. (2010a). Nanomedicine in ophthalmology: The new frontier. Am J Ophthalmol 150, 144–162.e2.

    Article  CAS  PubMed  Google Scholar 

  • Zarbin, M.A., Montemagno, C., Leary, J.F., and Ritch, R. (2010b). Nanotechnology in ophthalmology. Can J Ophthalmol 45, 457–476.

    Article  PubMed  Google Scholar 

  • Zarembinski, T.I., Doty, N.J., Erickson, I.E., Srinivas, R., Wirostko, B.M., and Tew, W.P. (2014). Thiolated hyaluronan-based hydrogels cross-linked using oxidized glutathione: an injectable matrix designed for ophthalmic applications. Acta Biomater 10, 94–103.

    Article  CAS  PubMed  Google Scholar 

  • Zeppieri, M., Salvetat, M.L., Beltrami, A.P., Cesselli, D., Bergamin, N., Russo, R., Cavaliere, F., Varano, G.P., Alcalde, I., Merayo, J., et al. (2013). Human adipose-derived stem cells for the treatment of chemically burned rat cornea: Preliminary results. Curr Eye Res 38, 451–463.

    Article  CAS  PubMed  Google Scholar 

  • Zeppieri, M., Salvetat, M.L., Beltrami, A., Cesselli, D., Russo, R., Alcalde, I., Merayo-Lloves, J., Brusini, P., and Parodi, P.C. (2017). Adipose derived stem cells for corneal wound healing after laser induced corneal lesions in mice. J Clin Med 6, 115.

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang, T., Sun, Y., Liu, M., Zhou, Y., Wang, D., Chen, Y., and Liu, Q. (2015). Femtosecond laser-assisted Endokeratophakia using allogeneic corneal lenticule in a rabbit model. J Refract Surg 31, 775–782.

    Article  PubMed  Google Scholar 

  • Zhao, J., Sun, L., Shen, Y., Tian, M., Yao, P., and Zhou, X. (2016). Using donor lenticules obtained through SMILE for an epikeratophakia technique combined with phototherapeutic keratectomy. J Refract Surg 32, 840–845.

    Article  PubMed  Google Scholar 

  • Zhou, G., Duan, Y., Ma, G., Wu, W., Hu, Z., Chen, N., Chee, Y., Cui, J., Samad, A., Matsubara, J.A., et al. (2017). Introduction of the MDM2 T309G mutation in primary human retinal epithelial cells enhances experimental proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 58, 5361–5367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., Peng, S.W., Wang, Y.Y., Zheng, S.B., Wang, Y., and Chen, G.Q. (2010). The use of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tarsal repair in eyelid reconstruction in the rat. Biomaterials 31, 7512–7518.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X., Wong, L.L., Karakoti, A.S., Seal, S., and McGinnis, J.F. (2011). Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr knockout mouse. PLoS ONE 6, e16733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, W., Gramlich, O.W., Laboissonniere, L., Jain, A., Sheffield, V.C., Trimarchi, J.M., Tucker, B.A., and Kuehn, M.H. (2016). Transplantation of iPSC-derived TM cells rescues glaucoma phenotypes in vivo. Proc Natl Acad Sci USA 113, E3492–E3500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16040201). The authors thank Mrs. Meiyuan Xing and Mr. Haifeng Tu for the development of literature search strategy and conducting the actual search. They also thank Dr. Yuxi Zheng, Dr. Hong Zhu, Dr. Mengyun Liu, Dr. Liyue Zhang, and Dr. Qianjie Yang (Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University) for their help in information gathering and useful discussion. The strong technical support from Mr. Tang-liang Jiang during the development of the manuscript is deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwu Dai.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Shen, H., Guo, D. et al. Recent developments in regenerative ophthalmology. Sci. China Life Sci. 63, 1450–1490 (2020). https://doi.org/10.1007/s11427-019-1684-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1684-x

Keywords

Navigation