Skip to main content
Log in

Effect of elevated CO2 and O3 on phytohormone-mediated plant resistance to vector insects and insect-borne plant viruses

  • Review
  • THEMATIC ISSUE: Biotic information and pest control
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Climatic variations are becoming important limiting factors for agriculture productivity, as they not only directly affect the plant net primary productivity but can also modulate the outbreak of plant diseases and pests. Elevated CO2 and O3 are two important climatic factors that have been widely studied before. Elevated CO2 or O3 alters the host plant physiology and affects the vector insects and plant viruses via bottom-up effects of the host plants. Many studies have shown that elevated CO2 or O3 decreases the plant nitrogen content, which modulates the characteristics of vector insects. Recent evidence also reveals that hormone-dependent signaling pathways play a critical role in regulating the response of insects and plant viruses to elevated CO2 or O3. In the current review, we describe how elevated CO2 or O3 affects the vector insects and plant viruses by altering the SA and JA signaling pathways. We also discuss how changes in the feeding behavior of vector insects or the occurrence of plant viruses affects the interactions between vector insects and plant viruses under elevated CO2 or O3. We suggest that new insights into the upstream network that regulates hormone signaling and top-down effects of natural enemies would provide a comprehensive understanding of the complex interactions taking place under elevated CO2 or O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya, B.R., and Assmann, S.M. (2009). Hormone interactions in stomatal function. Plant Mol Biol 69, 451–462.

    Article  CAS  PubMed  Google Scholar 

  • Aguilar, E., Allende, L., Del Toro, F.J., Chung, B.N., Canto, T., and Tenllado, F. (2015). Effects of elevated CO2 and temperature on pathogenicity determinants and virulence of Potato virus X/potyvirus-associated synergism. Mol Plant-Microbe Interact 28, 1364–1373.

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth, E.A., and Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ 30, 258–270.

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth, E.A., Yendrek, C.R., Sitch, S., Collins, W.J., and Emberson, L.D. (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63, 637–661.

    Article  CAS  PubMed  Google Scholar 

  • Alazem, M., Lin, K.Y., and Lin, N.S. (2014). The abscisic acid pathway has multifaceted effects on the accumulation of Bamboo mosaic virus. Mol Plant-Microbe Interact 27, 177–189.

    Article  CAS  PubMed  Google Scholar 

  • Alazem, M., and Lin, N.S. (2015). Roles of plant hormones in the regulation of host-virus interactions. Mol Plant Pathol 16, 529–540.

    Article  CAS  PubMed  Google Scholar 

  • Baxter, A., Mittler, R., and Suzuki, N. (2014). ROS as key players in plant stress signalling. J Exp Bot 65, 1229–1240.

    Article  CAS  PubMed  Google Scholar 

  • Baier, M., Kandlbinder, A., Golldack, D., and Dietz, K.J. (2005). Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ 28, 1012–1020.

    Article  CAS  Google Scholar 

  • Belliure, B., Janssen, A., Maris, P.C., Peters, D., and Sabelis, M.W. (2005). Herbivore arthropods benefit from vectoring plant viruses. Ecol Lett 8, 70–79.

    Article  Google Scholar 

  • Bilgin, D.D., Aldea, M., O’Neill, B.F., Benitez, M., Li, M., Clough, S.J., and DeLucia, E.H. (2008). Elevated ozone alters soybean-virus interaction. Mol Plant-Microbe Interact 21, 1297–1308.

    Article  CAS  PubMed  Google Scholar 

  • Birkenbihl, R.P., Diezel, C., and Somssich, I.E. (2012). Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol 159, 266–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc, S., Drucker, M., and Uzest, M., (2014). Localizing viruses in their insect vectors. Annu Rev Phytopathol 52, 403–425.

    Article  CAS  PubMed  Google Scholar 

  • Bloom, A.J., Burger, M., Rubio Asensio, J.S., and Cousins, A.B. (2010). Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328, 899–903.

    Article  CAS  PubMed  Google Scholar 

  • Cao, H.H., Wang, S.H., and Liu, T.X. (2014). Jasmonate- and salicylateinduced defenses in wheat affect host preference and probing behavior but not performance of the grain aphid, Sitobion avenae. Insect Sci 21, 47–55.

    Article  CAS  PubMed  Google Scholar 

  • Carmo-Sousa, M., Moreno, A., Garzo, E., and Fereres, A. (2014). A nonpersistently transmitted-virus induces a pull-push strategy in its aphid vector to optimize transmission and spread. Virus Res 186, 38–46.

    Article  CAS  PubMed  Google Scholar 

  • Casteel, C.L., O’Neill, B.F., Zavala, J.A., Bilgin, D.D., Berenbaum, M.R., and Delucia, E.H. (2008). Transcriptional profiling reveals elevated CO2and elevated O3 alter resistance of soybean (Glycine max) to Japanese beetles (Popillia japonica). Plant Cell Environ 31, 419–434.

    Article  CAS  PubMed  Google Scholar 

  • Casteel, C.L., Yang, C., Nanduri, A.C., De Jong, H.N., Whitham, S.A., and Jander, G. (2014). The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Plant J 77, 653–663.

    Article  CAS  PubMed  Google Scholar 

  • Casteel, C.L., De Alwis, M., Bak, A., Dong, H., Whitham, S.A., and Jander, G. (2015). Disruption of ethylene responses by Turnip mosaic virus mediates suppression of plant defense against the green peach aphid vector. Plant Physiol 169, 209–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary, R., Atamian, H.S., Shen, Z., Briggs, S.P., and Kaloshian, I. (2014). GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. Proc Natl Acad Sci USA 111, 8919–8924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Zhang, L., Li, D., Wang, F., and Yu, D. (2013). WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 110, E1963–E1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collum, T.D., and Culver, J.N. (2016). The impact of phytohormones on virus infection and disease. Curr Opin Virol 17, 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Colvin, J., Omongo, C.A., Govindappa, M.R., Stevenson, P.C., Maruthi, M.N., Gibson, G., Seal, S.E., and Muniyappa, V. (2006). Host-plant viral infection effects on arthropod-vector population growth, development and behaviour: management and epidemiological implications. Adv Virus Res 67, 419–452.

    Article  CAS  PubMed  Google Scholar 

  • Cui, H., Sun, Y., Su, J., Ren, Q., Li, C., and Ge, F. (2012). Elevated O3 reduces the fitness of Bemisia tabaci via enhancement of the SA-dependent defense of the tomato plant. Arthropod-Plant Interact 6, 425–437.

    Article  Google Scholar 

  • Cui, H., Su, J., Wei, J., Hu, Y., and Ge, F. (2014). Elevated O3 enhances the attraction of whitefly-infested tomato plants to Encarsia formosa. Sci Rep 4, 5350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, H., Sun, Y., Chen, F., Zhang, Y., and Ge, F. (2016). Elevated O3 and TYLCV infection reduce the suitability of tomato as a host for the whitefly Bemisia tabaci. Int J Mol Sci 17, 1964.

    Article  PubMed Central  Google Scholar 

  • Dáder, B., Fereres, A., Moreno, A., and Trebicki, P. (2016). Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability. Sci Rep 6, 19120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desikan, R., Last, K., Harrett-Williams, R., Tagliavia, C., Harter, K., Hooley, R., Hancock, J.T., and Neill, S.J. (2006). Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J 47, 907–916.

    Article  CAS  PubMed  Google Scholar 

  • DeLucia, E.H., Nabity, P.D., Zavala, J.A., and Berenbaum, M.R. (2012). Climate change: resetting plant-insect interactions. Plant Physiol 160, 1677–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Moraes, C.M., Stanczyk, N.M., Betz, H.S., Pulido, H., Sim, D.G., Read, A.F., and Mescher, M.C. (2014). Malaria-induced changes in host odors enhance mosquito attraction. Proc Natl Acad Sci USA 111, 11079–11084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donaldson, J.R., and Gratton, C. (2007). Antagonistic effects of soybean viruses on soybean aphid performance: table 1. Environ Entomol 36, 918–925.

    Article  PubMed  Google Scholar 

  • Eastburn, D.M., McElrone, A.J., and Bilgin, D.D. (2011). Influence of atmospheric and climatic change on plant-pathogen interactions. Plant Pathol 60, 54–69.

    Article  Google Scholar 

  • Erb, M., Meldau, S., and Howe, G.A. (2012). Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17, 250–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fereres, A., and Moreno, A. (2009). Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 141, 158–168.

    Article  CAS  PubMed  Google Scholar 

  • Finlay, K.J., Luck, J.E., Chakraborty, S., Constable, F., Freeman, A., Griffiths, W., Hollaway, G., Melloy, P., Nancarrow, N., and Trebicki, P. (2011). An analysis of plant disease and vector threats under future climates. Phytopathology 101, S53–S53.

    Google Scholar 

  • Fu, X., Ye, L., Kang, L., and Ge, F. (2010). Elevated CO2 shifts the focus of tobacco plant defences from cucumber mosaic virus to the green peach aphid. Plant Cell Environ 33, 2056–2064.

    Article  CAS  PubMed  Google Scholar 

  • Garrett, K.A., Dendy, S.P., Frank, E.E., Rouse, M.N., and Travers, S.E. (2006). Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44, 489–509.

    Article  CAS  PubMed  Google Scholar 

  • Ghini, R., Bettiol, W., and Hamada, E. (2011). Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathol 60, 122–132.

    Article  Google Scholar 

  • Guo, H., Sun, Y., Li, Y., Liu, X., Wang, P., Zhu-Salzman, K., and Ge, F. (2014a). Elevated CO2alters the feeding behaviour of the pea aphid by modifying the physical and chemical resistance of Medicago truncatula. Plant Cell Environ 37, 2158–2168.

    Article  CAS  PubMed  Google Scholar 

  • Guo, H., Sun, Y., Li, Y., Liu, X., Zhang, W., and Ge, F. (2014b). Elevated CO2decreases the response of the ethylene signaling pathway in Medicago truncatula and increases the abundance of the pea aphid. New Phytol 201, 279–291.

    Article  CAS  PubMed  Google Scholar 

  • Guo, H.J., Huang, L.C., Sun, Y.C., Guo, H.G., and Ge, F., (2016). The contrasting effects of elevated CO2 on TYLCV infection of tomato genotypes with and without the resistance gene, Mi-1.2. Front Plant Sci 7, 1680.

    PubMed  PubMed Central  Google Scholar 

  • Guo, H., and Ge, F. (2017). Root nematode infection enhances leaf defense against whitefly in tomato. Arthropod-Plant Interact 11, 23–33.

    Article  Google Scholar 

  • Hettenhausen, C., Schuman, M.C., and Wu, J. (2015). MAPK signaling: a key element in plant defense response to insects. Insect Sci 22, 157–164.

    Article  CAS  PubMed  Google Scholar 

  • Hodge, S., and Powell, G. (2008). Complex interactions between a plant pathogen and insect parasitoid via the shared vector-host: consequences for host plant infection. Oecologia 157, 387–397.

    Article  PubMed  Google Scholar 

  • Huang, L., Ren, Q., Sun, Y., Ye, L., Cao, H., and Ge, F. (2012). Lower incidence and severity of tomato virus in elevated CO2 is accompanied by modulated plant induced defence in tomato. Plant Biol 14, 905–913.

    Article  CAS  PubMed  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, R. Pachauri, and L. Meyer, eds. (Cambridge: Cambridge University Press), pp. 151.

  • Jactel, H., Petit, J., Desprez-Loustau, M.L., Delzon, S., Piou, D., Battisti, A., and Koricheva, J. (2012). Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob Change Biol 18, 267–276.

    Article  Google Scholar 

  • Jeger, M.J., Chen, Z., Powell, G., Hodge, S., and van den Bosch, F. (2011). Interactions in a host plant-virus-vector-parasitoid system: modelling the consequences for virus transmission and disease dynamics. Virus Res 159, 183–193.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y.J., and Yu, D.Q. (2015). WRKY transcription factors: links between phytohormones and plant processes. Sci China Life Sci 58, 501–502.

    Article  PubMed  Google Scholar 

  • Jiu, M., Zhou, X.P., Tong, L., Xu, J., Yang, X., Wan, F.H., and Liu, S.S. (2007). Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS ONE 2, e182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin, Z., Zhuang, Q., Wang, J., Archontoulis, S.V., Zobel, Z., and Kotamarthi, V.R. (2017). The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2. Glob Change Biol 23, 2687–2704.

    Article  Google Scholar 

  • Kangasjärvi, J., Jaspers, P., and Kollist, H. (2005). Signalling and cell death in ozone-exposed plants. Plant Cell Environ 28, 1021–1036.

    Article  Google Scholar 

  • Kerchev, P.I., Fenton, B., Foyer, C.H., and Hancock, R.D. (2012). Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ 35, 441–453.

    Article  CAS  PubMed  Google Scholar 

  • Kloth, K.J., Wiegers, G.L., Busscher-Lange, J., van Haarst, J.C., Kruijer, W., Bouwmeester, H.J., Dicke, M., and Jongsma, M.A. (2016). AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. J Exp Bot 67, 3383–3396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang, Z.B., and Zuo, J.R. (2015). Say “NO” to ABA signaling in guard cells by S-nitrosylation of OST1. Sci China Life Sci 58, 313–314.

    Article  PubMed  Google Scholar 

  • Leakey, A.D.B., Ainsworth, E.A., Bernacchi, C.J., Rogers, A., Long, S.P., and Ort, D.R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60, 2859–2876.

    Article  CAS  PubMed  Google Scholar 

  • Lei, J. A. Finlayson, S., Salzman, R.A., Shan, L., and Zhu-Salzman, K. (2014). BOTRYTIS-INDUCED KINASE1 modulates Arabidopsis resistance to green peach aphids via PHYTOALEXIN DEFICIENT4. Plant Physiol 165, 1657–1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Yu, Y., Zhou, Z., and Zhou, J.M. (2016). Plant pattern-recognition receptors controlling innate immunity. Sci China Life Sci 59, 878–888.

    Article  PubMed  Google Scholar 

  • Li, R., Weldegergis, B.T., Li, J., Jung, C., Qu, J., Sun, Y., Qian, H., Tee, C.S., van Loon, J.J.A., Dicke, M., Chua, N.H., Liu, S.S., and Ye, J. (2014). Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell 26, 4991–5008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindroth, R.L. (2010). Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. J Chem Ecol 36, 2–21.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Zhao, H., Jiang, K., Zhou, X.P., and Liu, S.S. (2009). Differential indirect effects of two plant viruses on an invasive and an indigenous whitefly vector: implications for competitive displacement. Ann Appl Biol 155, 439–448.

    Article  Google Scholar 

  • Liu, B., Preisser, E.L., Chu, D., Pan, H., Xie, W., Wang, S., Wu, Q., Zhou, X., and Zhang, Y. (2013). Multiple forms of vector manipulation by a plant-infecting virus: Bemisia tabaci and tomato yellow leaf curl virus. J Virol 87, 4929–4937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano-Durán, R., Rosas-Díaz, T., Gusmaroli, G., Luna, A.P., Taconnat, L., Deng, X.W., and Bejarano, E.R. (2011). Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. Plant Cell 23, 1014–1032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luan, J.B., Yao, D.M., Zhang, T., Walling, L.L., Yang, M., Wang, Y.J., and Liu, S.S. (2013). Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecol Lett 16, 390–398.

    Article  PubMed  Google Scholar 

  • Mann, R.S., Ali, J.G., Hermann, S.L., Tiwari, S., Pelz-Stelinski, K.S., Alborn, H.T., and Stelinski, L.L. (2012). Induced release of a plant-defense volatile ‘deceptively’ attracts insect vectors to plants infected with a bacterial pathogen. PLoS Pathog 8, e1002610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, Y.B., Liu, Y.Q., Chen, D.Y., Chen, F.Y., Fang, X., Hong, G.J., Wang, L.J., Wang, J.W., and Chen, X.Y. (2017). Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nat Commun 8, 13925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo, A., Funck, D., Mü hlenbock, P., Kular, B., Mullineaux, P.M., and Karpinski, S. (2006). Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J Exp Bot 57, 1795–1807.

    Article  CAS  PubMed  Google Scholar 

  • Mauck, K.E., De Moraes, C.M., and Mescher, M.C. (2010). Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci USA 107, 3600–3605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauck, K., Bosque-Pérez, N.A., Eigenbrode, S.D., Moraes, C.M., and Mescher, M.C. (2012). Transmission mechanisms shape pathogen effects on host-vector interactions: evidence from plant viruses. Funct Ecol 26, 1162–1175.

    Article  Google Scholar 

  • Merilo, E., Laanemets, K., Hu, H., Xue, S., Jakobson, L., Tulva, I., Gonzalez-Guzman, M., Rodriguez, P.L., Schroeder, J.I., Broschè, M., and Kollist, H. (2013). PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. Plant Physiol 162, 1652–1668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhamdi, A., and Noctor, G. (2016). High CO2 primes plant biotic stress defences through redox-linked pathways. Plant Physiol 172, 929–942.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Delafuente, A., Garzo, E., Moreno, A., and Fereres, A. (2013). A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread. PLoS ONE 8, e61543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou, Z., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113, 935–944.

    Article  CAS  PubMed  Google Scholar 

  • Namazkar, S., Stockmarr, A., Frenck, G., Egsgaard, H., Terkelsen, T., Mikkelsen, T., Ingvordsen, C.H., and Jørgensen, R.B. (2016). Concurrent elevation of CO2, O3 and temperature severely affects oil quality and quantity in rapeseed. J Exp Bot 67, 4117–4125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng, J.C.K., and Falk, B.W. (2006). Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol 44, 183–212.

    Article  CAS  PubMed  Google Scholar 

  • Ode, P.J., Johnson, S.N., and Moore, B.D. (2014). Atmospheric change and induced plant secondary metabolites—are we reshaping the building blocks of multi-trophic interactions? Curr Opin Insect Sci 5, 57–65.

    Article  Google Scholar 

  • Padmanabhan, M.S., Goregaoker, S.P., Golem, S., Shiferaw, H., and Culver, J.N. (2005). Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J Virol 79, 2549–2558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palacios, I., Drucker, M., Blanc, S., Leite, S., Moreno, A., and Fereres, A. (2002). Cauliflower mosaic virus is preferentially acquired from the phloem by its aphid vectors. J Gen Virol 83, 3163–3171.

    Article  CAS  PubMed  Google Scholar 

  • Pan, H., Chu, D., Liu, B., Shi, X., Guo, L., Xie, W., Carrière, Y., Li, X., and Zhang, Y. (2013). Differential effects of an exotic plant virus on its two closely related vectors. Sci Rep 3, 2230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pegadaraju, V., Louis, J., Singh, V., Reese, J.C., Bautor, J., Feys, B.J., Cook, G., Parker, J.E., and Shah, J. (2007). Phloem-based resistance to green peach aphid is controlled by Arabidopsis PHYTOALEXIN DEFICIENT4 without its signaling partner ENHANCED DISEASE SUSCEPTIBILITY1. Plant J 52, 332–341.

    Article  CAS  PubMed  Google Scholar 

  • Pieterse, C.M.J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., and van Wees, S.C.M. (2012). Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28, 489–521.

    Article  CAS  PubMed  Google Scholar 

  • Pinto, D.M., Blande, J.D., Souza, S.R., Nerg, A.M., and Holopainen, J.K. (2010). Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J Chem Ecol 36, 22–34.

    Article  CAS  PubMed  Google Scholar 

  • Pompon, J., Quiring, D., Goyer, C., Giordanengo, P., and Pelletier, Y. (2011). A phloem-sap feeder mixes phloem and xylem sap to regulate osmotic potential. J Insect Physiol 57, 1317–1322.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, E.A., Ryan, G.D., and Newman, J.A. (2012). A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194, 321–336.

    Article  CAS  PubMed  Google Scholar 

  • Prince, D.C., Drurey, C., Zipfel, C., and Hogenhout, S.A. (2014). The leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1- ASSOCIATED KINASE1 and the cytochrome P450 PHYTOALEXIN DEFICIENT3 contribute to innate immunity to aphids in Arabidopsis. Plant Physiol 164, 2207–2219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarris, P.F., Duxbury, Z., Huh, S.U., Ma, Y., Segonzac, C., Sklenar, J., Derbyshire, P., Cevik, V., Rallapalli, G., Saucet, S.B., Wirthmueller, L., Menke, F.L.H., Sohn, K.H., and Jones, J.D.G. (2015). A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161, 1089–1100.

    Article  CAS  PubMed  Google Scholar 

  • Schmiesing, A., Emonet, A., Gouhier-Darimont, C., and Reymond, P. (2016). Arabidopsis MYC transcription factors are the target of hormonal salicylic acid/jasmonic acid cross talk in response to Pieris brassicae egg extract. Plant Physiol 170, 2432–2443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweiger, R., Heise, A.M., Persicke, M., and Müller, C. (2014). Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types. Plant Cell Environ 37, 1574–1585.

    Article  CAS  PubMed  Google Scholar 

  • Selig, P., Keough, S., Nalam, V.J., and Nachappa, P. (2016). Jasmonate-dependent plant defenses mediate soybean thrips and soybean aphid performance on soybean. Arthropod-Plant Interact 10, 273–282.

    Article  Google Scholar 

  • Shi, X., Chen, G., Tian, L., Peng, Z., Xie, W., Wu, Q., Wang, S., Zhou, X., and Zhang, Y. (2016). The salicylic acid-mediated release of plant volatiles affects the host choice of Bemisia tabaci. Int J Mol Sci 17, 1048.

    Article  PubMed Central  Google Scholar 

  • Sisterson, M.S. (2008). Effects of insect-vector preference for healthy or infected plants on pathogen spread: insights from a model. J Econ Entomol 101, 1–8.

    Article  PubMed  Google Scholar 

  • Smyrnioudis, I.N., Harrington, R., Clark, S.J., and Katis, N. (2001). The effect of natural enemies on the spread of barley yellow dwarf virus (BYDV) by Rhopalosiphum padi (Hemiptera: Aphididae). Bull Entomol Res 91, 301–306.

    Article  CAS  PubMed  Google Scholar 

  • Spoel, S.H., and Loake, G.J. (2011). Redox-based protein modifications: the missing link in plant immune signalling. Curr Opin Plant Biol 14, 358–364.

    Article  CAS  PubMed  Google Scholar 

  • Su, Q., Preisser, E.L., Zhou, X.M., Xie, W., Liu, B.M., Wang, S.L., Wu, Q.J., and Zhang, Y.J. (2015). Manipulation of host quality and defense by a plant virus improves performance of whitefly vectors. J Economic Entomol 108, 11–19.

    Article  Google Scholar 

  • Su, Q., Mescher, M.C., Wang, S., Chen, G., Xie, W., Wu, Q., Wang, W., and Zhang, Y. (2016). Tomato yellow leaf curl virus differentially influences plant defence responses to a vector and a non-vector herbivore. Plant Cell Environ 39, 597–607.

    Article  CAS  PubMed  Google Scholar 

  • Sugio, A., Kingdom, H.N., MacLean, A.M., Grieve, V.M., and Hogenhout, S.A. (2011). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc Natl Acad Sci USA 108, E1254–E1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y.C., Chen, F.J., and Ge, F. (2009). Elevated CO2 changes interspecific competition among three species of wheat aphids: Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum. Environ Entomol 38, 26–34.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Guo, H., Zhu-Salzman, K., and Ge, F. (2013). Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses. Plant Sci 210, 128–140.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Guo, H., Yuan, L., Wei, J., Zhang, W., and Ge, F. (2015). Plant stomatal closure improves aphid feeding under elevated CO2. Glob Change Biol 21, 2739–2748.

    Article  Google Scholar 

  • Thaler, J.S., Humphrey, P.T., and Whiteman, N.K. (2012). Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17, 260–270.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, G.A., and Goggin, F.L. (2006). Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J Exp Bot 57, 755–766.

    Article  CAS  PubMed  Google Scholar 

  • Tian, M., Sasvari, Z., Gonzalez, P.A., Friso, G., Rowland, E., Liu, X.M., van Wijk, K.J., Nagy, P.D., and Klessig, D.F. (2015). Salicylic acid inhibits the replication of Tomato bushy stunt virus by directly targeting a host component in the replication complex. Mol Plant Microbe Interact 28, 379–386.

    Article  CAS  PubMed  Google Scholar 

  • Trebicki, P., Nancarrow, N., Cole, E., Bosque-Pérez, N.A., Constable, F.E., Freeman, A.J., Rodoni, B., Yen, A.L., Luck, J.E., and Fitzgerald, G.J. (2015). Virus disease in wheat predicted to increase with a changing climate. Glob Change Biol 21, 3511–3519.

    Article  Google Scholar 

  • van Eck, L., Schultz, T., Leach, J.E., Scofield, S.R., Peairs, F.B., Botha, A.M., and Lapitan, N.L.V. (2010). Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance. Plant Biotech J 8, 1023–1032.

    Article  CAS  Google Scholar 

  • Vuorinen, T., Nerg, A.M., Ibrahim, M.A., Reddy, G.V.P., and Holopainen, J.K. (2004). Emission of Plutella xylostella-induced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemies. Plant Physiol 135, 1984–1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vahisalu, T., Puzõrjova, I., Brosché, M., Valk, E., Lepiku, M., Moldau, H., Pechter, P., Wang, Y.S., Lindgren, O., Salojärvi, J., Loog, M., Kangasjärvi, J., and Kollist, H. (2010). Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant J 62, 442–453.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L.L., Wang, X.R., Wei, X.M., Huang, H., Wu, J.X., Chen, X.X., Liu, S.S., and Wang, X.W. (2016). The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies. Autophagy 12, 1560–1574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng, S.H., Tsai, W.S., Kenyon, L., and Tsai, C.W. (2015). Different transmission efficiencies may drive displacement of tomato begomoviruses in the fields in Taiwan. Ann Appl Biol 166, 321–330.

    Article  Google Scholar 

  • Wilkinson, S., and Davies, W.J. (2009). Ozone suppresses soil drying- and abscisic acid (ABA)-induced stomatal closure via an ethylene-dependent mechanism. Plant Cell Environ 32, 949–959.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson, S., and Davies, W.J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33, 510–525.

    Article  CAS  PubMed  Google Scholar 

  • Wittig, V.E., Ainsworth, E.A., and Long, S.P. (2007). To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ 30, 1150–1162.

    Article  CAS  PubMed  Google Scholar 

  • Wu, D., Qi, T., Li, W.X., Tian, H., Gao, H., Wang, J., Ge, J., Yao, R., Ren, C., Wang, X.B., Liu, Y., Kang, L., Ding, S.W., and Xie, D. (2017). Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Res 27, 402–415.

    Article  CAS  PubMed  Google Scholar 

  • Ye, L., Fu, X., and Ge, F. (2010). Elevated CO2 alleviates damage from Potato virus Y infection in tobacco plants. Plant Sci 179, 219–224.

    Article  CAS  Google Scholar 

  • Ye, L., Fu, X., and Ge, F. (2012). Enhanced sensitivity to higher ozone in a pathogen-resistant tobacco cultivar. J Exp Bot 63, 1341–1347.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, X., Calatayud, V., Gao, F., Fares, S., Paoletti, E., Tian, Y., and Feng, Z. (2016). Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar. Plant Cell Environ 39, 2276–2287.

    Article  CAS  PubMed  Google Scholar 

  • Zarate, S.I., Kempema, L.A., and Walling, L.L. (2007). Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143, 866–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavala, J.A., Nabity, P.D., and DeLucia, E.H. (2013). An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu Rev Entomol 58, 79–97.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, S., Gao, F., Cao, X., Chen, M., Ye, G., Wei, C., and Li, Y. (2005). The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol 139, 1935–1945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S., Li, X., Sun, Z., Shao, S., Hu, L., Ye, M., Zhou, Y., Xia, X., Yu, J., and Shi, K. (2015). Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. J Exp Bot 66, 1951–1963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, T., Luan, J.B., Qi, J.F., Huang, C.J., Li, M., Zhou, X.P., and Liu, S.S. (2012). Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor. Mol Ecol 21, 1294–1304.

    Article  PubMed  Google Scholar 

  • Ziebell, H., Murphy, A.M., Groen, S.C., Tungadi, T., Westwood, J.H., Lewsey, M.G., Moulin, M., Kleczkowski, A., Smith, A.G., Stevens, M., Powell, G., and Carr, J.P. (2011). Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Sci Rep 1, 187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB11050400), the National Natural Science Foundation of China (31370438), and the R&D Special Fund for the Public Welfare Industry (201303019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Wan, S. & Ge, F. Effect of elevated CO2 and O3 on phytohormone-mediated plant resistance to vector insects and insect-borne plant viruses. Sci. China Life Sci. 60, 816–825 (2017). https://doi.org/10.1007/s11427-017-9126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9126-0

Keywords

Navigation