Skip to main content
Log in

Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) system provides a novel genome editing technology that can precisely target a genomic site to disrupt or repair a specific gene. Some CRISPR-Cas9 systems from different bacteria or artificial variants have been discovered or constructed by biologists, and Cas9 nucleases and single guide RNAs (sgRNA) are the major components of the CRISPR-Cas9 system. These Cas9 systems have been extensively applied for identifying therapeutic targets, identifying gene functions, generating animal models, and developing gene therapies. Moreover, CRISPR-Cas9 systems have been used to partially or completely alleviate disease symptoms by mutating or correcting related genes. However, the efficient transfer of CRISPR-Cas9 system into cells and target organs remains a challenge that affects the robust and precise genome editing activity. The current review focuses on delivery systems for Cas9 mRNA, Cas9 protein, or vectors encoding the Cas9 gene and corresponding sgRNA. Non-viral delivery of Cas9 appears to help Cas9 maintain its on-target effect and reduce off-target effects, and viral vectors for sgRNA and donor template can improve the efficacy of genome editing and homology-directed repair. Safe, efficient, and producible delivery systems will promote the application of CRISPR-Cas9 technology in human gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, A.F., Grigsby, C.L., Kulangara, K., Wang, H., Yasuda, R., and Leong, K.W. (2012). Nonviral direct conversion of primary mouse embryonic fibroblasts to neuronal cells. Mol Ther Nucleic Acids 1, e32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aubrey, B.J., Kelly, G.L., Kueh, A.J., Brennan, M.S., O’Connor, L., Milla, L., Wilcox, S., Tai, L., Strasser, A., and Herold, M.J. (2015). An inducible lentiviral guide RNA platform enables the identification of tumor- essential genes and tumor-promoting mutations in vivo. Cell Rep 10, 1422–1432.

    Article  CAS  PubMed  Google Scholar 

  • Blinka, S., Reimer M.H., Pulakanti, K., and Rao, S. (2016). Super-enhancers at the nanog locus differentially regulate neighboring pluripotency-associated genes. Cell Rep 17, 19–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Wang, Z., Ni, H., Xu, Y., Chen, Q., and Jiang, L. (2017). CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci in press doi: 10.1007/s11427-017-9021-5.

    Google Scholar 

  • Cheong, T.C., Compagno, M., and Chiarle, R. (2016). Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system. Nat Commun 7, 10934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, S.W., Kim, S., Kim, Y., Kweon, J., Kim, H.S., Bae, S., and Kim, J.S. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNAguided endonucleases and nickases. Genome Res 24, 132–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox, D.B.T., Platt, R.J., and Zhang, F. (2015). Therapeutic genome editing: prospects and challenges. Nat Med 21, 121–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croce, C.M., Zhang, K., and Wei, Y. (2016). Announcing signal transduction and targeted therapy. Sig Transduct Target Ther 1, 15006.

    Article  Google Scholar 

  • Cyranoski, D. (2016). Chinese scientists to pioneer first human CRISPR trial. Nature 535, 476–477.

    Article  CAS  PubMed  Google Scholar 

  • Davis, K.M., Pattanayak, V., Thompson, D.B., Zuris, J.A., and Liu, D.R. (2015). Small molecule-triggered Cas9 protein with improved genomeediting specificity. Nat Chem Biol 11, 316–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, H., Li, W., and Wei, Y. (2016). Translational medicine center of West China Hospital. Sci China Life Sci 59, 1055–1056.

    Article  PubMed  Google Scholar 

  • Feng, Y., Sassi, S., Shen, J.K., Yang, X., Gao, Y., Osaka, E., Zhang, J., Yang, S., Yang, C., Mankin, H.J., Hornicek, F.J., and Duan, Z. (2015). Targeting Cdk11 in osteosarcoma cells using the CRISPR-cas9 system. J Orthop Res 33, 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Fricano-Kugler, C.J., Williams, M.R., Salinaro, J.R., Li, M., and Luikart, B. (2016). Designing, packaging, and delivery of high titer CRISPR retro and lentiviruses via stereotaxic injection. J Vis Exp in press doi: 10.3791/53783.

  • Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M., and Joung, J.K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32, 279–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj, T., Gersbach, C.A., and Barbas Iii, C.F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotech 31, 397–405.

    Article  CAS  Google Scholar 

  • Garneau, J.E., Dupuis, M.È., Villion, M., Romero, D.A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadá n, A.H., and Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71.

    Article  CAS  PubMed  Google Scholar 

  • Harel, I., Valenzano, D.R., and Brunet, A. (2016). Efficient genome engineering approaches for the short-lived African turquoise killifish. Nat Protoc 11, 2010–2028.

    Article  CAS  PubMed  Google Scholar 

  • He, Z.Y., Deng, F., Wei, X.W., Ma, C.C., Luo, M., Zhang, P., Sang, Y.X., Liang, X., Liu, L., Qin, H.X., Shen, Y.L., Liu, T., Liu, Y.T., Wang, W., Wen, Y.J., Zhao, X., Zhang, X.N., Qian, Z.Y., and Wei, Y.Q. (2016). Ovarian cancer treatment with a tumor-targeting and gene expressioncontrollable lipoplex. Sci Rep 6, 23764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hille, F., and Charpentier, E. (2016). CRISPR-Cas: biology, mechanisms and relevance. Phil Trans R Soc B 371, 20150496.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jao, L.E., Wente, S.R., and Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 110, 13904–13909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, C., Mei, M., Li, B., Zhu, X., Zu, W., Tian, Y., Wang, Q., Guo, Y., Dong, Y., and Tan, X. (2017). A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res 27, 440–443.

    Article  CAS  PubMed  Google Scholar 

  • Joung, J.K., and Sander, J.D. (2013). TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14, 49–55.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, E.M., Bassit, L.C., Mueller, H., Kornepati, A.V.R., Bogerd, H.P., Nie, T., Chatterjee, P., Javanbakht, H., Schinazi, R.F., and Cullen, B.R. (2015). Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 476, 196–205.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, E.M., Kornepati, A.V.R., Goldstein, M., Bogerd, H.P., Poling, B.C., Whisnant, A.W., Kastan, M.B., and Cullen, B.R. (2014). Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 88, 11965–11972.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, S., Kim, D., Cho, S.W., Kim, J., and Kim, J.S. (2014). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24, 1012–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z., and Joung, J.K. (2016). High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Eishingdrelo, A., Kongsamut, S., and Eishingdrelo, H. (2016). G-protein-coupled receptors mediate 14-3-3 signal transduction. Sig Transduct Target Ther 1, 16018.

    Article  Google Scholar 

  • Lin, S.R., Yang, H.C., Kuo, Y.T., Liu, C.J., Yang, T.Y., Sung, K.C., Lin, Y.Y., Wang, H.Y., Wang, C.C., Shen, Y.C., Wu, F.Y., Kao, J.H., Chen, D.S., and Chen, P.J. (2014a). The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids 3, e186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Y., Cradick, T.J., Brown, M.T., Deshmukh, H., Ranjan, P., Sarode, N., Wile, B.M., Vertino, P.M., Stewart, F.J., and Bao, G. (2014b). CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42, 7473–7485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., and Shui, S.L. (2016). Delivery methods for site-specific nucleases: achieving the full potential of therapeutic gene editing. J Control Release 244, 83–97.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Zeng, Y., Liu, L., Zhuang, C., Fu, X., Huang, W., and Cai, Z. (2014). Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells. Nat Commun 5, 5393.

    Article  CAS  PubMed  Google Scholar 

  • Long, C., Amoasii, L., Mireault, A.A., McAnally, J.R., Li, H., Sanchez-Ortiz, E., Bhattacharyya, S., Shelton, J.M., Bassel-Duby, R., and Olson, E.N. (2016). Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400–403.

    Article  CAS  PubMed  Google Scholar 

  • Maggio, I., Holkers, M., Liu, J., Janssen, J.M., Chen, X., and Gonçalves, M.A.F.V. (2014). Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Sci Rep 4, 5105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal, P.K., Ferreira, L.M.R., Collins, R., Meissner, T.B., Boutwell, C.L., Friesen, M., Vrbanac, V., Garrison, B.S., Stortchevoi, A., Bryder, D., Musunuru, K., Brand, H., Tager, A.M., Allen, T.M., Talkowski, M.E., Rossi, D.J., and Cowan, C.A. (2014). Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 15, 643–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama, T., Dougan, S.K., Truttmann, M.C., Bilate, A.M., Ingram, J.R., and Ploegh, H.L. (2015). Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33, 538–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mentis, A.F. (2016). Epigenomic engineering for Down syndrome. Neurosci Biobehav Rev 71, 323–327.

    Article  CAS  PubMed  Google Scholar 

  • Munshi, N.V. (2016). CRISPR (clustered regularly interspaced palindromic repeat)/Cas9 system. Circulation 134, 777–779.

    Article  PubMed  Google Scholar 

  • Nelson, C.E., Hakim, C.H., Ousterout, D.G., Thakore, P.I., Moreb, E.A., Castellanos Rivera, R.M., Madhavan, S., Pan, X., Ran, F.A., Yan, W.X., Asokan, A., Zhang, F., Duan, D., and Gersbach, C.A. (2016). In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407.

    Article  CAS  PubMed  Google Scholar 

  • Nishimasu, H., Ran, F.A., Hsu, P.D., Konermann, S., Shehata, S.I., Dohmae, N., Ishitani, R., Zhang, F., and Nureki, O. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si, W., Li, W., Xiang, A.P., Zhou, J., Guo, X., Bi, Y., Si, C., Hu, B., Dong, G., Wang, H., Zhou, Z., Li, T., Tan, T., Pu, X., Wang, F., Ji, S., Zhou, Q., Huang, X., Ji, W., and Sha, J. (2014). Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843.

    Article  CAS  PubMed  Google Scholar 

  • Osakabe, Y., Watanabe, T., Sugano, S.S., Ueta, R., Ishihara, R., Shinozaki, K., and Osakabe, K. (2016). Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep 6, 26685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Pinera, P., Kocak, D.D., Vockley, C.M., Adler, A.F., Kabadi, A.M., Polstein, L.R., Thakore, P.I., Glass, K.A., Ousterout, D.G., Leong, K.W., Guilak, F., Crawford, G.E., Reddy, T.E., and Gersbach, C.A. (2013). RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Meth 10, 973–976.

    Article  CAS  Google Scholar 

  • Ramakrishna, S., Kwaku Dad, A.B., Beloor, J., Gopalappa, R., Lee, S.K., and Kim, H. (2014). Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24, 1020–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., Koonin, E.V., Sharp, P.A., and Zhang, F. (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reardon, S. (2016). First CRISPR clinical trial gets green light from USpanel. Nature in press doi: 10.1038/nature.2016.20137.

  • Sakuma, T., Masaki, K., Abe-Chayama, H., Mochida, K., Yamamoto, T., and Chayama, K. (2016). Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus. Genes Cells 21, 1253–1262.

    Article  CAS  PubMed  Google Scholar 

  • Savic, N., and Schwank, G. (2016). Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res 168, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Schumann, K., Lin, S., Boyer, E., Simeonov, D.R., Subramaniam, M., Gate, R.E., Haliburton, G.E., Ye, C.J., Bluestone, J.A., Doudna, J.A., and Marson, A. (2015). Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci USA 112, 10437–10442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessions, J.W., Skousen, C.S., Price, K.D., Hanks, B.W., Hope, S., Alder, J.K., and Jensen, B.D. (2016). CRISPR-Cas9 directed knock-out of a constitutively expressed gene using lance array nanoinjection. Springer-Plus 5, 1521.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T.S., Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G., and Zhang, F. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87.

    Article  CAS  PubMed  Google Scholar 

  • Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X., and Zhang, F. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88.

    Article  CAS  PubMed  Google Scholar 

  • Su, S., Hu, B., Shao, J., Shen, B., Du, J., Du, Y., Zhou, J., Yu, L., Zhang, L., Chen, F., Sha, H., Cheng, L., Meng, F., Zou, Z., Huang, X., and Liu, B. (2016). CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep 6, 20070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suenaga, T., Kohyama, M., Hirayasu, K., and Arase, H. (2014). Engineering large viral DNA genomes using the CRISPR-Cas9 system. Microbiol Immunol 58, 513–522.

    Article  CAS  PubMed  Google Scholar 

  • Suresh, B., Ramakrishna, S., and Kim, H. (2017). Cell-penetrating peptidemediated delivery of Cas9 protein and guide RNA for genome editing. Methods Mol Biol 1507, 81–94.

    Article  PubMed  Google Scholar 

  • Swiech, L., Heidenreich, M., Banerjee, A., Habib, N., Li, Y., Trombetta, J., Sur, M., and Zhang, F. (2015). In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33, 102–106.

    Article  CAS  PubMed  Google Scholar 

  • Tabebordbar, M., Zhu, K., Cheng, J.K.W., Chew, W.L., Widrick, J.J., Yan, W.X., Maesner, C., Wu, E.Y., Xiao, R., Ran, F.A., Cong, L., Zhang, F., Vandenberghe, L.H., Church, G.M., and Wagers, A.J. (2016). In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407–411.

    Article  CAS  PubMed  Google Scholar 

  • Tanihara, F., Takemoto, T., Kitagawa, E., Rao, S., Do, L.T.K., Onishi, A., Yamashita, Y., Kosugi, C., Suzuki, H., Sembon, S., Suzuki, S., Nakai, M., Hashimoto, M., Yasue, A., Matsuhisa, M., Noji, S., Fujimura, T., Fuchimoto, D.I., and Otoi, T. (2016). Somatic cell reprogramming-free generation of genetically modified pigs. Sci Adv 2, e1600803–e1600803.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao, L., Zhang, J., Meraner, P., Tovaglieri, A., Wu, X., Gerhard, R., Zhang, X., Stallcup, W.B., Miao, J., He, X., Hurdle, J.G., Breault, D.T., Brass, A.L., and Dong, M. (2016). Frizzled proteins are colonic epithelial receptors for C.difficile toxin B. Nature 538, 350–355.

    Article  CAS  PubMed  Google Scholar 

  • Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., Powderly, J.D., Carvajal, R.D., Sosman, J.A., Atkins, M.B., Leming, P.D., Spigel, D.R., Antonia, S.J., Horn, L., Drake, C.G., Pardoll, D.M., Chen, L., Sharfman, W.H., Anders, R.A., Taube, J.M., McMiller, T.L., Xu, H., Korman, A.J., Jure-Kunkel, M., Agrawal, S., McDonald, D., Kollia, G.D., Gupta, A., Wigginton, J.M., and Sznol, M. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366, 2443–2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth, E., Weinhardt, N., Bencsura, P., Huszár, K., Kulcsár, P.I., Tálas, A., Fodor, E., and Welker, E. (2016). Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells. Biol Direct 11, 46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Truong, D.J.J., Kü hner, K., Kü hn, R., Werfel, S., Engelhardt, S., Wurst, W., and Ortiz, O. (2015). Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res 43, 6450–6458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai, S.Q., Wyvekens, N., Khayter, C., Foden, J.A., Thapar, V., Reyon, D., Goodwin, M.J., Aryee, M.J., and Joung, J.K. (2014). Dimeric CRISPR RNA-guided Fok I nucleases for highly specific genome editing. Nat Biotechnol 32, 569–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., and Gregory, P.D. (2010). Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11, 636–646.

    Article  CAS  PubMed  Google Scholar 

  • Valletta, S., Dolatshad, H., Bartenstein, M., Yip, B.H., Bello, E., Gordon, S., Yu, Y., Shaw, J., Roy, S., Scifo, L., Schuh, A., Pellagatti, A., Fulga, T.A., Verma, A., and Boultwood, J. (2015). ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget 6, 44061–44071.

    PubMed  PubMed Central  Google Scholar 

  • Wang, D., Mou, H., Li, S., Li, Y., Hough, S., Tran, K., Li, J., Yin, H., Anderson, D.G., Sontheimer, E.J., Weng, Z., Gao, G., and Xue, W. (2015). Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Therapy 26, 432–442.

    Article  CAS  Google Scholar 

  • Wang, L., Li, F., Dang, L., Liang, C., Wang, C., He, B., Liu, J., Li, D., Wu, X., Xu, X., Lu, A., and Zhang, G. (2016). In vivo delivery systems for therapeutic genome editing. Int J Mol Sci 17, 626.

    Article  PubMed Central  Google Scholar 

  • Williams, M.R., Fricano-Kugler, C.J., Getz, S.A., Skelton, P.D., Lee, J., Rizzuto, C.P., Geller, J.S., Li, M., and Luikart, B.W. (2016). A retroviral CRISPR-Cas9 system for cellular autism-associated phenotype discovery in developing neurons. Sci Rep 6, 25611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, S.L., Bian, W.P., Wang, C., Junaid, M., Zou, J.X., and Pei, D.S. (2016). A novel technique based on in vitro oocyte injection to improve CRISPR/Cas9 gene editing in zebrafish. Sci Rep 6, 34555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, L., Park, K.H., Zhao, L., Xu, J., El Refaey, M., Gao, Y., Zhu, H., Ma, J., and Han, R. (2016). CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 24, 564–569.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue, W., Chen, S., Yin, H., Tammela, T., Papagiannakopoulos, T., Joshi, N.S., Cai, W., Yang, G., Bronson, R., Crowley, D.G., Zhang, F., Anderson, D.G., Sharp, P.A., and Jacks, T. (2014). CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Wang, L., Bell, P., McMenamin, D., He, Z., White, J., Yu, H., Xu, C., Morizono, H., Musunuru, K., Batshaw, M.L., and Wilson, J.M. (2016). A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34, 334–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, S., He, Z., and Chen, C. (2015). CRISPR/Cas9-mediated genome editing of epigenetic factors for cancer therapy. Hum Gene Ther 26, 463–471.

    Article  CAS  PubMed  Google Scholar 

  • Yi, L., and Li, J. (2016). CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges. Biochim Biophys Acta 1866, 197–207.

    CAS  PubMed  Google Scholar 

  • Yin, H., Song, C.Q., Dorkin, J.R., Zhu, L.J., Li, Y., Wu, Q., Park, A., Yang, J., Suresh, S., Bizhanova, A., Gupta, A., Bolukbasi, M.F., Walsh, S., Bogorad, R.L., Gao, G., Weng, Z., Dong, Y., Koteliansky, V., Wolfe, S.A., Langer, R., Xue, W., and Anderson, D.G. (2016). Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34, 328–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, H., Xue, W., Chen, S., Bogorad, R.L., Benedetti, E., Grompe, M., Koteliansky, V., Sharp, P.A., Jacks, T., and Anderson, D.G. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32, 551–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, M., Gao, X., Chard, L.S., Ali, Z., Ahmed, J., Li, Y., Liu, P., Lemoine, N.R., and Wang, Y. (2015a). A marker-free system for highly efficient construction of vaccinia virus vectors using CRISPR Cas9. Mol Ther Methods Clin Dev 2, 15035.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, M., Zhang, W., Wang, J., Al Yaghchi, C., Ahmed, J., Chard, L., Lemoine, N.R., and Wang, Y. (2015b). Efficiently editing the vaccinia virus genome by using the CRISPR-Cas9 system. J Virol 89, 5176–5179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, D., and Li, J.F. (2016). DNA-guided genome editing tool. Sci China Life Sci 59, 740–741.

    Article  PubMed  Google Scholar 

  • Zhang, T., Yin, Y., Liu, H., Du, W., Ren, C., Wang, L., Lu, H., and Zhang, Z. (2016). Generation of VDR knock-out mice via zygote injection of CRISPR/Cas9 system. PLoS ONE 11, e0163551.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., and Wang, S. (2016). From the first human gene-editing to the birth of three-parent baby. Sci China Life Sci 59, 1341–1342.

    Article  PubMed  Google Scholar 

  • Zuris, J.A., Thompson, D.B., Shu, Y., Guilinger, J.P., Bessen, J.L., Hu, J.H., Maeder, M.L., Joung, J.K., Chen, Z.Y., and Liu, D.R. (2015). Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33, 73–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural and Scientific Foundation of China (81602699 to Zhi-Yao He, 81502677 to Ke Men, 81402302 to Yang Yang), the National High Technology Research and Development Program of China (2015AA020309 to Zhi-Yao He), and the China Postdoctoral Science Foundation Funded Project (2015M570791 to Zhi-Yao He).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, ZY., Men, K., Qin, Z. et al. Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field. Sci. China Life Sci. 60, 458–467 (2017). https://doi.org/10.1007/s11427-017-9033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9033-0

Keywords

Navigation