Skip to main content
Log in

yellow0, a marker for low body weight in Drosophila melanogaster

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Marker-assisted selection (MAS) is an important modern breeding technique, but it has been found that the effect of the markers for quantitative trait loci (QTL) is inconsistent, leading in some cases to MAS failure and raising doubts about its effectiveness. Here the model organism Drosophila melanogaster was employed to study whether an effective marker could be found and applied to MAS. We crossed the stock carrying the y0 marker (a recessive mutation allele of the yellow gene on the X chromosome) with three other stocks carrying corresponding wild-type markers in an F2 design, and found that the y0 marker was in significant association with low body weight (P<0.001). This association was consistent across different backgrounds and the marker effects in female and male were approximately 0.95 σP (phenotypic standard deviation) and 0.68 σP, respectively. We next introgressed a fragment via the y0 marker into a wild stock background over 20 generations of marker-assisted introgression (MAI), and constructed the introgression stock y0(OR)20 in which body weight decreased by 13% and 7%, in female and male, respectively, compared to the wild stock (P<0.0001). This indicated that there must be a single QTL for low body weight that is tightly linked to the y0 marker. We then shortened the introgressed fragment to less than 1.5 cM by a deeper MAI using the y0 marker and the white marker. This narrower fragment also resulted in a similar decrease in body weight to that induced by y0(OR)20, indicating that the QTL for low body weight is located within this less-than-1.5 cM interval. Molecular characteristics of the y0 marker by PCR amplification and Southern blotting revealed that yellow gene was deficient in the y0 stock, leading to disappearance of melanin from the cuticle and probably influencing the developmental process. The above results confirmed the existence of effective QTL markers applicable to MAS breeding schemes, and their potential application in breeding new stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson L. Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet, 2001, 2: 130–138, 11253052, 10.1038/35052563, 1:CAS:528:DC%2BD3MXisVGjtbc%3D

    Article  PubMed  CAS  Google Scholar 

  2. Dekkers J C M. Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J Anim Sci, 2004, 82(E.Suppl.): E313–E328, 15471812

    PubMed  Google Scholar 

  3. Dekkers J C M, hospital F. The use of molecular genetics in improvement of agricultural populations. Nat Rev Genet, 2002, 3: 22–32, 11823788, 10.1038/nrg701, 1:CAS:528:DC%2BD38XhsV2gsbw%3D

    Article  PubMed  CAS  Google Scholar 

  4. Charlier C, Farnir F. The mh gene causing double-muscling in cattle maps to bovine chromosome 2. Mamm Genome, 1995, 6: 788–792, 8597635, 10.1007/BF00539005, 1:CAS:528:DyaK28XktVWksw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  5. Spelman R J, van Arendonk J A M. Effect of inaccurate parameter estimates on genetc response to marker assisted selection in an outbred population. J Dairy Sci, 1997, 80: 3399–3410, 9436122, 1:CAS:528:DyaK1cXht1yksA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  6. Bier E. Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet, 2005, 6: 9–23, 15630418, 10.1038/nrg1503, 1:CAS:528:DC%2BD2MXlvVGm

    Article  PubMed  CAS  Google Scholar 

  7. Mackay T F C. The genetic architecture of quantitative traits. Annu Rev Genet, 2001, 35: 303–339, 11700286, 10.1146/annurev.genet.35.102401.090633, 1:CAS:528:DC%2BD38XlsVKk

    Article  PubMed  CAS  Google Scholar 

  8. Wittkopp P J, Vaccaro K, Carroll S B. Evolution of yellow gene regulation and pigmentation in Drosophila. Curr Biol, 2002, 12: 1547–1556, 12372246, 10.1016/S0960-9822(02)01113-2, 1:CAS:528:DC%2BD38XnvVOqsro%3D

    Article  PubMed  CAS  Google Scholar 

  9. Nappi A J, Christensen B M. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol, 2005, 35: 443–459, 15804578, 10.1016/j.ibmb.2005.01.014, 1:CAS:528:DC%2BD2MXjt1Wru7k%3D

    Article  PubMed  CAS  Google Scholar 

  10. Sudermana R J, Dittmera N T, Kanost M R. Model reactions for insect cuticle sclerotization: cross-linking of recombinant cuticular proteins upon their laccase-catalyzed oxidative conjugation with catechols. Insect Biochem Mol Biol, 2006, 36: 353–365, 10.1016/j.ibmb.2006.01.012, 1:CAS:528:DC%2BD28XivVGhu7c%3D

    Article  Google Scholar 

  11. Broman K W, Sen S, Owens S E, et al. The X chromosome in quantitative traint locus mapping. Genetics, 2006, 174: 2151–2158, 17028340, 10.1534/genetics.106.061176, 1:CAS:528:DC%2BD2sXhs1Wgt7k%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Mackay T F C. Quantitative trait loci in Drosophila. Nature Rev Genet, 2001, 2: 11–20, 11253063, 10.1038/35047544, 1:CAS:528:DC%2BD3MXisVGjs7w%3D

    Article  PubMed  CAS  Google Scholar 

  13. Crow J F, Kimura M. An Introduction to Population Genetiics Theory. Minneapolis: Burgess Publishing Company, 1970. 94–95

    Google Scholar 

  14. Sullivan W, Ashburner M, Hawley S. Drosophila protocols. NewYork: Cold Spring Harbor Laboratory Press, 2000. 431–432

    Google Scholar 

  15. Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001. 492–499

    Google Scholar 

  16. Falconer D S, Mackay T F C. Introduction to Quantitative Genetics. 4th ed. Essex: Longman, 1996. 361–363

    Google Scholar 

  17. Gutiérrez-Gil B, Wiener P, Nute G, et al. Detection of quantitative loci for meat quality traits in cattle. Anim Genet, 2008, 39: 51–61, 18254735, 10.1111/j.1365-2052.2007.01682.x

    Article  PubMed  Google Scholar 

  18. Duthie C, Simm G, Doeschl-Wilson A, et al. Quantitative trait loci for chemical body composition traits in pigs and their positional associations with body tissues, growth and feed intake. Anim Genet, 2008, 39: 130–140, 18307580, 10.1111/j.1365-2052.2007.01689.x, 1:CAS:528:DC%2BD1cXltlWhs7c%3D

    Article  PubMed  CAS  Google Scholar 

  19. Wright D, Kerje S, Lundström K, et al. Quantitative trait loci analysis of egg and meat production traits in a red junlefowl×White Leghorn cross. Anim Genet, 2006, 37: 529–534, 17121597, 10.1111/j.1365-2052.2006.01515.x, 1:CAS:528:DC%2BD2sXmvFKjtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  20. Lahav T, Atzmon G, Blum S, et al. Msrker-assisted selection based on a multi-trait economic index in chichen: experimental results and simulation. Anim Genet, 2006, 37: 482–488, 16978178, 10.1111/j.1365-2052.2006.01512.x, 1:CAS:528:DC%2BD28Xht1ert7fE

    Article  PubMed  CAS  Google Scholar 

  21. Kim K S, Lee J J, Shin H Y, et al. Association of melanocortin 4 receptor( MC4R) and high mobility group AT-hook 1(HMGA1) polymorphisms with pig growth and fat deposition traits. Anim Genet, 2006, 37: 419–421, 16879362, 10.1111/j.1365-2052.2006.01482.x, 1:CAS:528:DC%2BD28XhtVCmtr%2FK

    Article  PubMed  CAS  Google Scholar 

  22. Spelman R J, Bovenhuis H. Moving from QTL experimental results to the utilization of QTL in breeding programmes. Anim Genet, 1998, 29: 77–84, 9699266, 10.1046/j.1365-2052.1998.00238.x, 1:STN:280:DyaK1czmsVChsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  23. Moreau L, Charcosset A, Hospital F, et al. Marker-assisted selection efficiency in populations of finite size. Genetics, 1998, 148: 1353–1365, 9539448, 1:STN:280:DyaK1c7pvVymtw%3D%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Long A D, Lyman R F, Morgan A H, et al. Both naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster. Genetics, 2000, 154: 1255–1269, 10757767, 1:CAS:528:DC%2BD3cXitVOhs74%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Lyman R F, Lai C, Mackay T F C. Linkage disequilibrium mapping of molecular polymorphisms at the scabrous locus associated with naturally occurring variation in bristle number in Drosophila melanogaster. Genet Res, 1999, 74: 303–311, 10689806, 10.1017/S001667239900419X, 1:CAS:528:DC%2BD3cXhs1GrtbY%3D

    Article  PubMed  CAS  Google Scholar 

  26. Lyman R F, Mackay T F C. Candidate quantitative trait loci and naturally occurring phenotypic variation for bristle number in Drosophila melanogaster: the Delta-Hairless gene region. Genetics, 1998, 149: 983–998, 9611208, 1:CAS:528:DyaK1cXks1ehtrk%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Rothschild M F, Larson R G, Jacobson C, et al. PvuII polymorphisms at the porcine oestrogen receptor locus (ESR). Anim Genet, 1991, 22: 448, 1685641, 1:CAS:528:DyaK38Xhs1Omur4%3D, 10.1111/j.1365-2052.1991.tb00715.x

    Article  PubMed  CAS  Google Scholar 

  28. Short T H, Rothschild M F, Southwood O I, et al. Effect of the estrogen receptor locus on reproduction and production traits in four commercial pig lines. J Anim Sci, 1997, 75: 3138–3142, 9419986, 1:CAS:528:DyaK2sXotVWgt78%3D

    PubMed  CAS  Google Scholar 

  29. Isler B J, Irvin K M, Neal S M, et al. Examination of the relationship between the estrogen receptor gene and reproductive traits in swine. J Anim Sci, 2002, 80: 2334–2339, 12350010, 1:CAS:528:DC%2BD38XntVygsb8%3D

    PubMed  CAS  Google Scholar 

  30. Gibson J P, Jiang Z H, Robinson J A B, et al. No detectable association of the ESR PvuII mutation with sow productivity in a Meishan·Large White F2 population. Anim Genet, 2002, 33: 448–450, 12464020, 10.1046/j.1365-2052.2002.00889.x, 1:CAS:528:DC%2BD3sXjslyhu7c%3D

    Article  PubMed  CAS  Google Scholar 

  31. Guo Y M, Lee G J, Archibald A L, et al. Quantitative trait loci for production traits in pigs: a combined analysis of two Meishan × Large White populations. Anim genet, 2008, 39: 486–495, 18651874, 10.1111/j.1365-2052.2008.01756.x

    Article  PubMed  Google Scholar 

  32. Huang Y, Haley C S, Hu S, et al. Detection of quantitative trait loci for body weight and conformation traits in Beijing ducks. Anim Genet, 2007, 38: 525–526, 17803724, 10.1111/j.1365-2052.2007.01637.x, 1:CAS:528:DC%2BD2sXht1ertr3K

    Article  PubMed  CAS  Google Scholar 

  33. Gao y, Hu X X, Du Z Q, et al. A genome scan for quantitative trait loci associated with body weight at different developmental stages in chickens. Anim genet, 2006, 37: 276–278, 16734692, 10.1111/j.1365-2052.2006.01428.x, 1:STN:280:DC%2BD28zgslSrsQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  34. Yucel G, Small S J. The role of Giant in anterior patterning in Drosophila melanogaster. Dev Biol, 2006, 295: 449, 10.1016/j.ydbio.2006.04.383

    Article  Google Scholar 

  35. Emmerich J, Meyer C A, et al. Cyclin D does not provide essential Cdk4-independent functions in Drosophila. Genetics, 2004, 168: 867–875, 15514060, 10.1534/genetics.104.027417, 1:CAS:528:DC%2BD2cXhtVKms73J

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Johnston L A, Prober D A, Edgar B A, et al. Drosophila myc regulates cellular growth during development. Cell, 1999, 98: 779–790, 10499795, 10.1016/S0092-8674(00)81512-3, 1:CAS:528:DyaK1MXmt1Grs7o%3D

    Article  PubMed  CAS  Google Scholar 

  37. Wang Z P, Liu R, Wang A, et al. Phototoxic effect of UVR on wild type, ebony and yellow mutants of Drosophila melanogaster: Life Span, fertility, courtship and biochemical aspects. Sci China Ser-C Life Sci, 2008, 51: 885–893, 10.1007/s11427-008-0085-5, 1:CAS:528:DC%2BD1cXhsVWlt7fF

    Article  CAS  Google Scholar 

  38. Marklund S, Kijas J, Rodriguez-Martinez H, et al. Molecular basis for the dominant white phenotype in the domestic pig. Genome Res, 1998, 8: 826–833, 9724328, 1:CAS:528:DyaK1cXlvFahtrY%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Pielberg G, Olsson C, Syvänen A C, et al. Unexpectedly high allelic diversity at the KIT locus causing Dominant white color in the domestic pig. Genetics, 2002, 160: 305–311, 11805065, 1:CAS:528:DC%2BD38XhsFKqsbc%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Johansson A, Pielberg G, Andersson L, et al. Polymorphism at the porcine Dominant white/KIT locus influence coat colour and peripheral blood cell measures. Anim Genet, 36: 288–296

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueMei Deng.

Additional information

Supported by the National Key Basic Research and Development Program of China (Grant No. 2006CB102101) and the National Natural Science Foundation of China (Grant No. 30771535)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Deng, X. yellow0, a marker for low body weight in Drosophila melanogaster. SCI CHINA SER C 52, 672–682 (2009). https://doi.org/10.1007/s11427-009-0075-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0075-7

Keywords

Navigation