Skip to main content
Log in

A universal performance-enhancing method for Li-S batteries: the cathode material of Li2S@Li2S2@Li2S6 double-shell structure

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Lithium sulfide (Li2S) as a cathode material for lithium-sulfur (Li-S) batteries, one of the most promising advanced batteries in the future, has received tremendous attention in the past decades. However, developing the practical Li2S cathode confronts challenges of low conductivity for Li-ions and electrons, high sensitivity to environmental moisture, big overpotential barrier to electrochemical activation, and poor cyclability due to the shuttle effect of intermediate species. This article herein reports a simple and effective strategy for making Li2S@Li2S2@Li2S6 double-shelled microparticles, which can significantly mitigate these problems. They are synthesized by dissolving Li2S together with S in dimethoxyethane, then drying off the solvent, and finally calcining the collected solid. Compared with pure Li2S, such a double-shell material presents a 26.7% improvement in cycling capacity, 0.5 V lower in activation overpotential, and prolonged tolerance in the ambient environment. The density functional theory calculation shows that the performance enhancement lies in the higher stability of Li2S6 in contact with moisture and some autocatalytic effect of Li2S2@Li2S6. Such a double-shell structure becomes a universal performance-enhancing approach when being combined with other means, such as cathodes composited with catalytic MoS2, separators modified with selenium-doped sulfurized-polyacrylonitrile/montmorillonite, electrolytes containing fluorenone additive, and Li anodes coated with a layer of Li3N. The corresponding capacity retention shows up to 80% improvement compared with pure Li2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kartini E, Manawan M. AIP Conf Proc, 2016, 1710: 020001

    Article  Google Scholar 

  2. Peng H, Huang J, Cheng X, Zhang Q. Adv Energy Mater, 2017, 7: 1700260

    Article  Google Scholar 

  3. Yao C, Li W, Duan K, Zhu C, Li J, Ren Q, Bai G. Nanomaterials, 2021, 11: 2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cui J, Li Z, Wang G, Guo J, Shao M. J Mater Chem A, 2020, 8: 23738–23755

    Article  CAS  Google Scholar 

  5. Fang R, Zhao S, Pei S, Qian X, Hou PX, Cheng HM, Liu C, Li F. ACS Nano, 2016, 10: 8676–8682

    Article  CAS  PubMed  Google Scholar 

  6. Xue L, Li Y, Hu A, Zhou M, Chen W, Lei T, Yan Y, Huang J, Yang C, Wang X, Hu Y, Xiong J. Small Struct, 2022, 3: 2100170

    Article  Google Scholar 

  7. Wang W, Xi K, Li B, Li H, Liu S, Wang J, Zhao H, Li H, Abdelkader AM, Gao X, Li G. Adv Energy Mater, 2022, 12: 2200160

    Article  CAS  Google Scholar 

  8. Yu B, Huang A, Chen D, Srinivas K, Zhang X, Wang X, Wang B, Ma F, Liu C, Zhang W, He J, Wang Z, Chen Y. Small, 2021, 17: e2100460

    Article  PubMed  Google Scholar 

  9. Li J, Zhang C, Wu CJ, Tao Y, Zhang L, Yang QH. Rare Met, 2017, 36: 425–433

    Article  CAS  Google Scholar 

  10. Wu HL, Huff LA, Esbenshade JL, Gewirth AA. ACS Appl Mater Interfaces, 2015, 7: 20820–20828

    Article  CAS  PubMed  Google Scholar 

  11. Partovi-Azar P, Kühne TD, Kaghazchi P. Phys Chem Chem Phys, 2015, 17: 22009–22014

    Article  CAS  PubMed  Google Scholar 

  12. Chen JJ, Yuan RM, Feng JM, Zhang Q, Huang JX, Fu G, Zheng MS, Ren B, Dong QF. Chem Mater, 2015, 27: 2048–2055

    Article  CAS  Google Scholar 

  13. Huang P, Wang Y. Int J Electrochem Sci, 2019, 14: 5154–5160

    Article  CAS  Google Scholar 

  14. Zheng D, Wang G, Liu D, Harris JB, Ding T, Si J, Qu D, Yang XQ, Qu D. Electrochim Acta, 2018, 282: 687–693

    Article  CAS  Google Scholar 

  15. Chen D, Wen K, Lv W, Wei Z, He W. Phys Rapid Res Ltrs, 2018, 12: 1800249

    Article  Google Scholar 

  16. Xu J, Lin Z, Lei Y, Huang X, Chen C. Dalton Trans, 2022, 51: 17942–17946

    Article  CAS  PubMed  Google Scholar 

  17. Qi X, Yang F, Sang P, Zhu Z, Jin X, Pan Y, Ji J, Jiang R, Du H, Ji Y, Fu Y, Qie L, Huang Y. Angew Chem Int Ed, 2023, 62: e202218803

    Article  CAS  Google Scholar 

  18. Yang S, Wan F, Han A, Fang L, Sun Q, Zhao Z, Song D, Zhang L, Chen L, Wolden CA, Zhang X, Yang Y. J Cleaner Prod, 2023, 382: 135221

    Article  CAS  Google Scholar 

  19. Yang S, Hu X, Xu S, Han A, Zhang X, Zhang N, Chen X, Tian RZ, Song D, Yang Y. ACS Appl Mater Interfaces, 2023, 15: 40633–40647

    Article  CAS  PubMed  Google Scholar 

  20. Yang H, Sun Y, Yang S, Han A, Hu X, Zhang H, Yao X, Zhang X, Yang Y. Inorg Chem, 2023, 62: 5576–5585

    Article  CAS  PubMed  Google Scholar 

  21. Chen Y, Lu S, Li Y, Qin W, Wu X. Mater Lett, 2019, 248: 157–160

    Article  CAS  Google Scholar 

  22. Shen Z, Jin X, Tian J, Li M, Yuan Y, Zhang S, Fang S, Fan X, Xu W, Lu H, Lu J, Zhang H. Nat Catal, 2022, 5: 555–563

    Article  CAS  Google Scholar 

  23. Chen P, Wang T, Tang F, Chen G, Wang C. Chem Eng J, 2022, 446: 136990

    Article  CAS  Google Scholar 

  24. Xue L, Zeng L, Kang W, Chen H, Hu Y, Li Y, Chen W, Lei T, Yan Y, Yang C, Hu A, Wang X, Xiong J, Zhang C. Adv Energy Mater, 2021, 11: 2100420

    Article  CAS  Google Scholar 

  25. Peng J, Zheng X, Wu Y, Li C, Lv Z, Zheng C, Liu J, Zhong H, Gong Z, Yang Y. ACS Appl Mater Interfaces, 2023, 15: 20191–20199

    Article  CAS  PubMed  Google Scholar 

  26. Padchasri J, Montreeuppathum A, Siriroj S, Lomon J, Senanon W, Thumanu K, Pooarporn Y, Pinitsoontorn S, Chanlek N, Kidkhunthod P. Radiat Phys Chem, 2023, 207: 110822

    Article  CAS  Google Scholar 

  27. Wang DH, Xia XH, Xie D, Niu XQ, Ge X, Gu CD, Wang XL, Tu JP. J Power Sources, 2015, 299: 293–300

    Article  CAS  Google Scholar 

  28. Jin M, Gao R, Sun G, Li H, Xue X, Qu C, Li N, Zhang Y, Wang Z, Feng M. J Alloys Compd, 2021, 873: 159798

    Article  CAS  Google Scholar 

  29. Zhang J, Hu J, Li X, Yang L, Yang L, Lin J, Huang J, Xu G. Chem Eng J, 2023, 456: 140972

    Article  CAS  Google Scholar 

  30. Xia S, Zhou Q, Peng B, Zhang X, Liu L, Guo F, Fu L, Wang T, Liu Y, Wu Y. Mater Today Energy, 2022, 30: 101163

    Article  CAS  Google Scholar 

  31. Mao J, Niu D, Huang G, Jin X, Wei C, Cai J, Li Y, Shi J. Sci China Mater, 2022, 65: 2453–2462

    Article  CAS  Google Scholar 

  32. Shen Z, Gao Q, Zhu X, Guo Z, Guo K, Song X, Zhao Y. Energy Storage Mater, 2023, 57: 299–307

    Article  Google Scholar 

  33. Ye H, Sun J, Zhang S, Zhang T, Zhao Y, Song C, Yao Q, Lee JY. Chem Eng J, 2021, 410: 128284

    Article  CAS  Google Scholar 

  34. Liang X, Yun J, Xu K, Shi P, Sun Y, Chen C, Xiang H. Chem Commun, 2019, 55: 10088–10091

    Article  CAS  Google Scholar 

  35. Lin Z, Liu Z, Fu W, Dudney NJ, Liang C. Adv FunctMater, 2013, 23: 1064–1069

    CAS  Google Scholar 

  36. Shi P, Liang X, Xu K, Sun Y, Cheng S, Chen C, Xiang H. Chem Eng J, 2020, 398: 125608

    Article  CAS  Google Scholar 

  37. Liu M, Ren YX, Jiang HR, Luo C, Kang FY, Zhao TS. Nano Energy, 2017, 40: 240–247

    Article  CAS  Google Scholar 

  38. Luo C, Liang X, Sun Y, Lv W, Sun Y, Lu Z, Hua W, Yang H, Wang R, Yan C, Li J, Wan Y, Yang QH. Energy Storage Mater, 2020, 33: 290–297

    Article  Google Scholar 

  39. Fan L, Guo Z, Zhao D, Zhao C, Lu X, Chen A, Yin X, Zhang Y, Sun B, Zhang N. Adv Energy Sustain Res, 2021, 2: 2100051

    Article  CAS  Google Scholar 

  40. Liang Y, Shen C, Liu H, Wang C, Li D, Zhao X, Fan L. Adv Sci, 2023, 10: 2300985

    Article  CAS  Google Scholar 

  41. Jiang S, Huang S, Yao M, Zhu J, Liu L, Niu Z. Chin Chem Lett, 2020, 31: 2347–2352

    Article  CAS  Google Scholar 

  42. Liu J, Liu M, Wang C, Li Q, Li J, Chen Y, Hong Z, Song F, Bai L, Zeng F. Int J Energy Res, 2021, 45: 16551–16564

    Article  CAS  Google Scholar 

  43. Jiang Z, Zeng Z, Hu W, Han Z, Cheng S, Xie J. EnergyStorage Mater, 2021, 36: 333–340

    Google Scholar 

  44. Jin Q, Zhao K, Wang J, Xiao J, Wu L, Zhang X, Kong L, Li L, Lu H, Xie Y, Li W, Zhang X. ACS Appl Mater Interfaces, 2022, 14: 53850–53859

    Article  CAS  PubMed  Google Scholar 

  45. Li M, Lu J, Shi J, Son SB, Luo D, Bloom I, Chen Z, Amine K. J Am Chem Soc, 2021, 143: 2185–2189

    Article  CAS  PubMed  Google Scholar 

  46. Feng Z, Kim C, Vijh A, Armand M, Bevan KH, Zaghib K. J Power Sources, 2014, 272: 518–521

    Article  CAS  Google Scholar 

  47. Paolella A, Zhu W, Marceau H, Kim C, Feng Z, Liu D, Gagnon C, Trottier J, Abdelbast G, Hovington P, Vijh A, Demopoulos GP, Armand M, Zaghib K. J Power Sources, 2016, 325: 641–645

    Article  CAS  Google Scholar 

  48. Zhang X, Yang H, Sun Y, Yang Y. ACS Appl Mater Interfaces, 2022, 14: 41003–41012

    Article  CAS  PubMed  Google Scholar 

  49. Fang L, Zhang Q, Han A, Zhao Z, Hu X, Wan F, Yang H, Song D, Zhang X, Yang Y. Chem Commun, 2022, 58: 5498–5501

    Article  CAS  Google Scholar 

  50. Yeon JT, Jang JY, Han JG, Cho J, Lee KT, Choi NS. J Electrochem Soc, 2012, 159: A1308–A1314

    Article  CAS  Google Scholar 

  51. Kuzmina E, Karaseva E, Ivanov A, Kolosnitsyn V. EnergyTech, 2019, 7: 1900134

    CAS  Google Scholar 

  52. Drvarič Talian S, Kapun G, Moškon J, Dominko R, Gaberšček M. J Electrochem Soc, 2022, 169: 010529

    Article  Google Scholar 

  53. Zhang B, Wu J, Gu J, Li S, Yan T, Gao XP. ACS Energy Lett, 2021, 6: 537–546

    Article  CAS  Google Scholar 

  54. Cui W, Li H, Liu Y, Cai Q, Zhao J. Physica E-Low-dimensional Syst NanoStruct, 2021, 130: 114715

    Article  CAS  Google Scholar 

  55. Zhao B, Ren Z, Li Z, Tan G, Xie J. Acta Mater, 2023, 242: 118441

    Article  CAS  Google Scholar 

  56. Ma G, Wen Z, Wu M, Shen C, Wang Q, Jin J, Wu X. Chem Commun, 2014, 50: 14209–14212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFE0111600). We thank the Haihe Laboratory of Sustainable Chemical Transformations (YYJC202104) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongan Yang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11426_2023_1893_MOESM1_ESM.pdf

A Universal Performance-Enhancing Method for Li-S Batteries: The Cathode Material of Li2S@Li2S2@Li2S6 Double-Shell Structure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Sun, Y., Zhang, Q. et al. A universal performance-enhancing method for Li-S batteries: the cathode material of Li2S@Li2S2@Li2S6 double-shell structure. Sci. China Chem. 67, 1229–1241 (2024). https://doi.org/10.1007/s11426-023-1893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1893-1

Navigation