Skip to main content
Log in

Improved performance of Li–Se battery based on a novel dual functional CNTs@graphene/CNTs cathode construction

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A dual functional CNTs@graphene/CNTs cathode for Li–Se battery was constructed by a CNTs@graphene network and a CNTs interlayer. CNTs were first integrated with graphene to form a three-dimensional (3D) framework and work together as a conductive matrix for Se confinement. The optimized composite cathode delivers a high initial capacity of 575 mAh·g−1 at 0.5 A·g−1 and good rate capacity with a retained capacity of 479 mAh·g−1 at 2.0 A·g−1 (73% of the capacity at 0.2 A·g−1). CNTs were further served as an interlayer to confine the diffusion of polyselenides by constructing a thin CNTs layer outside the CNTs@graphene network. An improved initial capacity of 616 mAh·g−1 at 0.5 A·g−1 is achieved with a retained capacity of 538 mAh·g−1 after 80 cycles, indicating the effective dual function of CNTs in this novel cathode construction and great application potential for Li–Se battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li–O2 and Li–S batteries with high energy storage. Nat Mater. 2011;11(1):19.

    Article  Google Scholar 

  2. Black R, Adams B, Nazar LF. Non-aqueous and hybrid Li–O2 batteries. Adv Funct Mater. 2012;2(7):801.

    Google Scholar 

  3. Lim HD, Park KY, Song H, Jang EY, Gwon H, Kim J, Kim YH, Lima MD, Ovalle Robles R, Lepro X, Baughman RH, Kang K. Enhanced power and rechargeability of a Li–O2 battery based on a hierarchical-fibril CNT electrode. Adv Mater. 2013;25(9):1348.

    Article  Google Scholar 

  4. Goodenough JB, Kim Y. Challenges for rechargeable batteries. J Power Sour. 2011;196(16):6688.

    Article  Google Scholar 

  5. Li F, Zhang T, Zhou H. Challenges of non-aqueous Li–O2 batteries: electrolytes, catalysts, and anodes. Energy Environ Sci. 2013;6(4):1125.

    Article  Google Scholar 

  6. Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes. Chem Soc Rev. 2013;42(7):3018.

    Article  Google Scholar 

  7. Zhang C, Lv W, Zhang WG, Zheng XY, Wu MB, Wei W, Tao Y, Li ZJ, Yang QH. Reduction of graphene oxide by hydrogen sulfide: a promising strategy for pollutant control and as an electrode for Li–S batteries. Adv Energy Mater. 2014;4(7):1301565.

    Article  Google Scholar 

  8. Ji XL, Nazar LF. Advances in Li–S batteries. J Mater Chem. 2010;20(44):9821.

    Article  Google Scholar 

  9. Ji XL, Evers S, Black R, Nazar LF. Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat Commun. 2011;2:325.

    Article  Google Scholar 

  10. Abouimrane A, Dambournet D, Chapman KW, Chupas PJ, Weng W, Amine K. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J Am Chem Soc. 2012;134(10):4505.

    Article  Google Scholar 

  11. Yang CP, Yin YX, Guo YG. Elemental selenium for electrochemical energy storage. J Phys Chem Lett. 2015;6(2):256.

    Article  Google Scholar 

  12. Li J, Zhang C, Tao Y, Ling GW, Yang QH. The Li–Se battery and its C/Se composite electrode: opportunities and challenges. New Carbon Mater. 2016;31(5):459.

    Google Scholar 

  13. Cui Y, Abouimrane A, Lu J, Bolin T, Ren Y, Weng W, Sun C, Maroni VA, Heald SM, Amine K. Lithiation mechanism of Li/SeS(x) (x = 0–7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. J Am Chem Soc. 2013;135(21):8047.

    Article  Google Scholar 

  14. Yang CP, Xin S, Yin YX, Ye H, Zhang J, Guo YG. An advanced selenium carbon cathode for rechargeable lithium–selenium batteries. Angew Chem Int Ed. 2013;52(32):8363.

    Article  Google Scholar 

  15. Han K, Liu Z, Ye H, Dai F. Flexible self-standing graphene-Se@CNT composite film as a binder-free cathode for rechargeable Li–Se batteries. J Power Sour. 2014;263:85.

    Article  Google Scholar 

  16. Ye H, Yin YX, Zhang SF, Guo YG. Advanced Se-C nanocomposites: a bifunctional electrode material for both Li–Se and Li–ion batteries. J Mater Chem A. 2014;2(33):13293–8.

    Article  Google Scholar 

  17. Liu L, Hou Y, Wu X, Xiao S, Chang Z, Yang Y, Wu Y. Nanoporous selenium as a cathode material for rechargeable lithium–selenium batteries. Chem Commun. 2013;49(98):11515.

    Article  Google Scholar 

  18. Liu L, Hou Y, Yang Y, Li M, Wang X, Wu Y. A Se/C composite as cathode material for rechargeable lithium batteries with good electrochemical performance. RSC Adv. 2014;4(18):9086.

    Article  Google Scholar 

  19. Li Z, Yuan LX, Yil ZQ, Liu Y, Huang YH. Confined selenium within porous carbon nanospheres as cathode for advanced Li–Se batteries. Nano Energy. 2014;9:229.

    Article  Google Scholar 

  20. Zhang ZA, Zhang ZY, Zhang K, Yang X, Li Q. Improvement of electrochemical performance of rechargeable lithium–selenium batteries by inserting a free-standing carbon interlayer. RSC Adv. 2014;4(30):15489.

    Article  Google Scholar 

  21. Fang R, Zhou G, Pei S, Li F, Cheng HM. Localized polyselenides in a graphene-coated polymer separator for high rate and ultralong life lithium–selenium batteries. Chem Commun. 2015;51(17):3667.

    Article  Google Scholar 

  22. Luo C, Xu Y, Zhu Y, Liu Y, Zheng S, Liu Y, Langrock A, Wang C. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano. 2013;7(9):8003.

    Article  Google Scholar 

  23. Han K, Liu Z, Shen J, Lin Y, Dai F, Ye H. A free-standing and ultralong-life lithium–selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture. Adv Funct Mater. 2015;25(3):455.

    Article  Google Scholar 

  24. Jiang Y, Ma XJ, Feng JK, Xiong SL. Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium–selenium batteries. J Mater Chem A. 2015;3(8):4539.

    Article  Google Scholar 

  25. Hong YJ, Kang YC. Selenium-impregnated hollow carbon microspheres as efficient cathode materials for lithium–selenium batteries. Carbon. 2017;111:198.

    Article  Google Scholar 

  26. Peng X, Wang L, Zhang X, Gao B, Fu J, Xiao S, Huo K, Chu PK. Reduced graphene oxide encapsulated selenium nanoparticles for high-power lithium–selenium battery cathode. J Power Sour. 2015;288:214.

    Article  Google Scholar 

  27. Zeng L, Zeng W, Jiang Y, Wei X, Li W, Yang C, Zhu Y, Yu Y. A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li–Se and Na–Se batteries. Adv Energy Mater. 2015;5(4):1401377.

    Article  Google Scholar 

  28. Li IL, Zhai JP, Launois P, Ruan SC, Tang ZK. Geometry, phase stability, and electronic properties of isolated selenium chains incorporated in a nanoporous matrix. J Am Chem Soc. 2005;127(46):16111.

    Article  Google Scholar 

  29. Gates B, Yin Y, Xia Y. A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10–30 nm. J Am Chem Soc. 2000;122(50):12582.

    Article  Google Scholar 

  30. Wei W, Tao Y, Lv W, Su FY, Ke L, Li J, Wang DW, Li B, Kang F, Yang QH. Unusual high oxygen reduction performance in all-carbon electrocatalysts. Sci Rep. 2014;4:6289.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Basic Research Program of China (No. 2014CB932400) and the National Science Foundation of China (Nos. 21406161 and 51602220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, C., Wu, CJ. et al. Improved performance of Li–Se battery based on a novel dual functional CNTs@graphene/CNTs cathode construction. Rare Met. 36, 425–433 (2017). https://doi.org/10.1007/s12598-017-0903-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0903-z

Keywords

Navigation