Skip to main content
Log in

Polarization engineering in porous organic polymers for charge separation efficiency and its applications in photocatalytic aerobic oxidations

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Photocatalytic aerobic oxidation reactions are largely governed by the efficiency of charge separation and subsequent reactive oxygen species (ROS) generation. Herein, we report a polarization engineering strategy to promote the charge separation and ROS generation efficiency by substituting the benzene unit with furan/thiophene in porous organic polymers (POPs). Benefiting from the extent of local polarization, the thiophene-containing POP (JNU-218) exhibits the best photocatalytic performance in aerobic oxidation reactions, with a yield much higher than those for the furan-containing POP (JNU-217) and the benzene-containing POP (JNU-216). Experimental studies and theoretical calculations reveal that the increase of local polarization can indeed reduce the exciton binding energy, and therefore facilitate the separation of electron-hole pairs. This work demonstrates a viable strategy to tune charge separation and ROS generation efficiency by modulating the dipole moments of the building blocks in porous polymeric organic semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y, Liu H, Pan Q, Ding N, Yang C, Zhang Z, Jia C, Li Z, Liu J, Zhao Y. ACS Appl Mater Interfaces, 2020, 12: 46483–46489

    Article  CAS  PubMed  Google Scholar 

  2. Dong P, Wang Y, Zhang A, Cheng T, Xi X, Zhang J. ACS Catal, 2021, 11: 13266–13279

    Article  CAS  Google Scholar 

  3. Fan M, Wang WD, Zhu Y, Sun X, Zhang F, Dong Z. Appl Catal B-Environ, 2019, 257: 117942

    Article  CAS  Google Scholar 

  4. Liu Y, Wu J, Wang F. Appl Catal B-Environ, 2022, 307: 121144

    Article  CAS  Google Scholar 

  5. Sun K, Qian Y, Jiang HL. Angew Chem Int Ed, 2023, 62: e202217565

    Article  CAS  Google Scholar 

  6. Xiao JD, Li R, Jiang HL. Small Methods, 2022, 7: 2201258

    Article  Google Scholar 

  7. Liu H, Xu C, Li D, Jiang HL. Angew Chem Int Ed, 2018, 57: 5379–5383

    Article  CAS  Google Scholar 

  8. Wu K, Liu XY, Cheng PW, Huang YL, Zheng J, Xie M, Lu W, Li D. J Am Chem Soc, 2023, 145: 18931–18938

    Article  CAS  PubMed  Google Scholar 

  9. Zhang D, Zou XN, Wang XG, Su J, Luan TX, Fan W, Li PZ, Zhao Y. ACS Appl Mater Interfaces, 2022, 14: 23518–23526

    Article  CAS  Google Scholar 

  10. Su C, Tandiana R, Tian B, Sengupta A, Tang W, Su J, Loh KP. ACS Catal, 2016, 6: 3594–3599

    Article  CAS  Google Scholar 

  11. Michelin C, Hoffmann N. ACS Catal, 2018, 8: 12046–12055

    Article  CAS  Google Scholar 

  12. Goswami S, Miller CE, Logsdon JL, Buru CT, Wu YL, Bowman DN, Islamoglu T, Asiri AM, Cramer CJ, Wasielewski MR, Hupp JT, Farha OK. ACS Appl Mater Interfaces, 2017, 9: 19535–19540

    Article  CAS  PubMed  Google Scholar 

  13. Oheix E, Gravel E, Doris E. Chem Eur J, 2021, 27: 54–68

    Article  CAS  PubMed  Google Scholar 

  14. Pradipta AR, Tanaka K. Chem Record, 2021, 21: 646–662

    Article  CAS  Google Scholar 

  15. Yus M, González-Gómez JC, Foubelo F. Chem Rev, 2013, 113: 5595–5698

    Article  CAS  PubMed  Google Scholar 

  16. Huang W, Wang ZJ, Ma BC, Ghasimi S, Gehrig D, Laquai F, Landfester K, Zhang KAI. J Mater Chem A, 2016, 4: 7555–7559

    Article  CAS  Google Scholar 

  17. Wang W, Zheng A, Zhao P, Xia C, Li F. ACS Catal, 2013, 4: 321–327

    Article  Google Scholar 

  18. Luo J, Zhang X, Zhang J. ACS Catal, 2015, 5: 2250–2254

    Article  CAS  Google Scholar 

  19. Wu K, Liu XY, Xie M, Cheng PW, Zheng J, Lu W, Li D. Appl Catal B-Environ, 2023, 334: 122847

    Article  CAS  Google Scholar 

  20. Wu K, Liu XY, Cheng PW, Xie M, Lu W, Li D. Sci China Chem, 2023, 66: 1634–1653

    Article  CAS  Google Scholar 

  21. Huang K, Zhang JY, Liu F, Dai S. ACS Catal, 2018, 8: 9079–9102

    Article  CAS  Google Scholar 

  22. Kramer S, Bennedsen NR, Kegnæs S. ACS Catal, 2018, 8: 6961–6982

    Article  CAS  Google Scholar 

  23. Yu J, Sun X, Xu X, Zhang C, He X. Appl Catal B-Environ, 2019, 257: 117935

    Article  CAS  Google Scholar 

  24. Zhang A, Dong P, Wang Y, Gao K, Pan J, Yang B, Xi X, Zhang J. Appl Catal A-Gen, 2022, 644: 118793

    Article  CAS  Google Scholar 

  25. Huang X, Lu Y, Mao G, Yin S, Long B, Deng GJ, Ali A, Song T. J Mater Chem A, 2022, 10: 24147–24155

    Article  CAS  Google Scholar 

  26. Guo J, Ma D, Sun F, Zhuang G, Wang Q, Al-Enizi AM, Nafady A, Ma S. Sci China Chem, 2022, 65: 1704–1709

    Article  CAS  Google Scholar 

  27. Han BH, Wang D. Sci China Chem, 2017, 60: 997–998

    Article  CAS  Google Scholar 

  28. Hao Q, Tao Y, Ding X, Yang Y, Feng J, Wang RL, Chen XM, Chen GL, Li X, OuYang H, Hu XL, Tian J, Han BH, Zhu G, Wang W, Zhang F, Tan B, Li ZT, Wang D, Wan LJ. Sci China Chem, 2023, 66: 620–682

    CAS  Google Scholar 

  29. Huang N, Day G, Yang X, Drake H, Zhou HC. Sci China Chem, 2017, 60: 1007–1014

    Article  CAS  Google Scholar 

  30. Liu M, Yang K, Li Z, Fan E, Fu H, Zhang L, Zhang Y, Zheng Z. Chem Commun, 2021, 58: 92–95

    Article  Google Scholar 

  31. Li S, Li L, Li Y, Dai L, Liu C, Liu Y, Li J, Lv J, Li P, Wang B. ACS Catal, 2020, 10: 8717–8726

    Article  CAS  Google Scholar 

  32. Jin JK, Wu K, Liu XY, Huang GQ, Huang YL, Luo D, Xie M, Zhao Y, Lu W, Zhou XP, He J, Li D. J Am Chem Soc, 2021, 143: 21340–21349

    Article  CAS  PubMed  Google Scholar 

  33. Wu K, Jin JK, Liu XY, Huang YL, Cheng PW, Xie M, Zheng J, Lu W, Li D. J Mater Chem C, 2022, 10: 11967–11974

    Article  CAS  Google Scholar 

  34. Liu M, Jiang K, Ding X, Wang S, Zhang C, Liu J, Zhan Z, Cheng G, Li B, Chen H, Jin S, Tan B. Adv Mater, 2019, 31: e1807865

    Article  PubMed  Google Scholar 

  35. Ye H, Gong N, Cao Y, Fan X, Song X, Li H, Wang C, Mei Y, Zhu Y. Chem Mater, 2022, 34: 1481–1490

    Article  CAS  Google Scholar 

  36. Wu C, Teng Z, Yang C, Chen F, Yang HB, Wang L, Xu H, Liu B, Zheng G, Han Q. Adv Mater, 2022, 34: e2110266

    Article  PubMed  Google Scholar 

  37. Li X, Du Y, Ge L, Hao C, Bai Y, Fu Z, Lu Y, Cheng Z. Adv Funct Mater, 2022, 33: 2210194

    Article  Google Scholar 

  38. Wu B, Liu Y, Zhang Y, Fan L, Li QY, Yu Z, Zhao X, Zheng YC, Wang XJ. J Mater Chem A, 2022, 10: 12489–12496

    Article  CAS  Google Scholar 

  39. Zhang W, Deng Z, Deng J, Au CT, Liao Y, Yang H, Liu Q. J Mater Chem A, 2022, 10: 22419–22427

    Article  CAS  Google Scholar 

  40. Yu F, Wang L, Xing Q, Wang D, Jiang X, Li G, Zheng A, Ai F, Zou JP. Chin Chem Lett, 2020, 31: 1648–1653

    Article  CAS  Google Scholar 

  41. Fan L, Ma R, Yang Y, Chen S, Lu B. Nano Energy, 2016, 28: 304–310

    Article  CAS  Google Scholar 

  42. Li C, Li D, Zhang W, Li H, Yu G. Angew Chem Int Ed, 2021, 60: 27135–27143

    Article  CAS  Google Scholar 

  43. Dong X, Zhang F, Huang F, Lang X. Appl Catal B-Environ, 2022, 318: 121875

    Article  CAS  Google Scholar 

  44. Nosaka Y, Nosaka AY. Chem Rev, 2017, 117: 11302–11336

    Article  CAS  PubMed  Google Scholar 

  45. Li S, Yin J, Zhang H, Zhang KAI. ACS Appl Mater Interfaces, 2023, 15: 2825–2831

    Article  CAS  PubMed  Google Scholar 

  46. Hou L, Jing X, Huang H, Duan C. J Mater Chem A, 2022, 10: 24320–24330

    Article  CAS  Google Scholar 

  47. Liu Y, Ji K, Wang J, Li H, Zhu X, Ma P, Niu J, Wang J. ACS Appl Mater Interfaces, 2022, 14: 27882–27890

    Article  CAS  PubMed  Google Scholar 

  48. Elewa AM, EL-Mahdy AFM, Hassan AE, Wen Z, Jayakumar J, Lee TL, Ting LY, Mekhemer IMA, Huang TF, Elsayed MH, Chang CL, Lin WC, Chou HH. J Mater Chem A, 2022, 10: 12378–12390

    Article  CAS  Google Scholar 

  49. Ben H, Yan G, Liu H, Ling C, Fan Y, Zhang X. Adv Funct Mater, 2022, 32: 2104519

    Article  CAS  Google Scholar 

  50. Lan ZA, Zhang G, Chen X, Zhang Y, Zhang KAI, Wang X. Angew Chem Int Ed, 2019, 58: 10236–10240

    Article  CAS  Google Scholar 

  51. Liu Y, Jiang X, Chen L, Cui Y, Li QY, Zhao X, Han X, Zheng YC, Wang XJ. J Mater Chem A, 2023, 11: 1208–1215

    Article  CAS  Google Scholar 

  52. You Z, Wang B, Zhao Z, Zhang Q, Song W, Zhang C, Long X, Xia Y. Adv Mater, 2023, 35: e2209129

    Article  PubMed  Google Scholar 

  53. Li R, Wang ZJ, Wang L, Ma BC, Ghasimi S, Lu H, Landfester K, Zhang KAI. ACS Catal, 2016, 6: 1113–1121

    Article  CAS  Google Scholar 

  54. Guo L, Niu Y, Razzaque S, Tan B, Jin S. ACS Catal, 2019, 9: 9438–9445

    Article  CAS  Google Scholar 

  55. Ayed C, Yin J, Landfester K, Zhang KAI. Angew Chem Int Ed, 2023, 62: e202216159

    Article  CAS  Google Scholar 

  56. Cinar ME, Ozturk T. Chem Rev, 2015, 115: 3036–3140

    Article  CAS  PubMed  Google Scholar 

  57. Zhang F, Li X, Dong X, Hao H, Lang X. Chin J Catal, 2022, 43: 2395–2404

    Article  CAS  Google Scholar 

  58. Li Q, Wang J, Zhang Y, Ricardez-Sandoval L, Bai G, Lan X. ACS Appl Mater Interfaces, 2021, 13: 39291–39303

    Article  CAS  PubMed  Google Scholar 

  59. Clennan EL. Acc Chem Res, 2001, 34: 875–884

    Article  CAS  PubMed  Google Scholar 

  60. Liu Y, Buru CT, Howarth AJ, Mahle JJ, Buchanan JH, DeCoste JB, Hupp JT, Farha OK. J Mater Chem A, 2016, 4: 13809–13813

    Article  CAS  Google Scholar 

  61. Long ZH, Luo D, Wu K, Chen ZY, Wu MM, Zhou XP, Li D. ACS Appl Mater Interfaces, 2021, 13: 37102–37110

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Y, Pang J, Li J, Yang X, Feng M, Cai P, Zhou HC. Chem Sci, 2019, 10: 8455–8460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao FJ, Zhang G, Ju Z, Tan YX, Yuan D. Inorg Chem, 2020, 59: 3297–3303

    Article  CAS  PubMed  Google Scholar 

  64. Xu C, Liu H, Li D, Su JH, Jiang HL. Chem Sci, 2018, 9: 3152–3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang F, Ma J, Tan Y, Yu G, Qin H, Zheng L, Liu H, Li R. ACS Catal, 2022, 12: 5827–5833

    Article  CAS  Google Scholar 

  66. Liu X, Qi R, Li S, Liu W, Yu Y, Wang J, Wu S, Ding K, Yu Y. J Am Chem Soc, 2022, 144: 23396–23404

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21731002, 21975104, 22101099, 22150004, 22271120), Guangdong Major Project of Basic and Applied Research (2019B030302009), the Outstanding Innovative Talents Cultivation Funded Programs for Doctoral Students of Jinan University (2022CXB007), and the Fundamental Research Funds for the Central Universities and Jinan University (21621035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weigang Lu or Dan Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

11426_2023_1820_MOESM1_ESM.pdf

Polarization engineering in porous organic polymers for charge separation efficiency and its applications in photocatalytic aerobic oxidations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Cheng, PW., Liu, XY. et al. Polarization engineering in porous organic polymers for charge separation efficiency and its applications in photocatalytic aerobic oxidations. Sci. China Chem. 67, 1000–1007 (2024). https://doi.org/10.1007/s11426-023-1820-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1820-5

Navigation