Skip to main content
Log in

Aromatic alcohols oxidation and hydrogen evolution over π-electron conjugated porous carbon nitride rods

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photocatalysis using polymeric carbon nitride (CN) materials is a constantly evolving field, where the variation of synthetic procedures allows the constant improvement of activity by tackling the intrinsic limitations of these materials (optical absorbance, specific surface area, charge migration, etc.). Amongst the possible photocatalytic reactions, the most popular application of CNs is the hydrogen evolution reaction (HER) from water. In this work, we design precisely-controlled carbon-doped porous CN rods with extended π-electron conjugation from supramolecular assemblies of melem and co-monomers, which partially substitute nitrogen for carbon atoms at the pyrimidine ring of the melem. Dense hydrogen bonds and good thermal stability of the melem-based supramolecular framework allow synthesizing a more ordered structure for improved charge migration; the control from the molecular level over the position of carbon-substituted nitrogen positions tailors the band alignment and photogenerated charge separation. The optimal photocatalyst shows an excellent HER rate (up to 10.16 mmol·h−1·g−1 under 100 W white light-emitting diode (LED) irradiation, with an apparent quantum efficiency of 20.0% at 405 nm, which is 23.2 times higher compared to a reference bulk CN). To fully harness the benefits of the developed metal-free CNs, selective oxidation reaction of aromatic alcohols is demonstrated with high conversion and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lau, V. W. H.; Lotsch, B. V. A tour-guide through carbon nitrideland: Structure- and dimensionality-dependent properties for photo(electro)chemical energy conversion and storage. Adv. Energy Mater. 2022, 12, 2101078.

    Article  CAS  Google Scholar 

  2. Lin, L. H.; Lin, Z. Y.; Zhang, J.; Cai, X.; Lin, W.; Yu, Z. Y.; Wang, X. C. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 2020, 3, 649–655.

    Article  CAS  Google Scholar 

  3. Liu, M. H.; Wei, C. G.; Zhuzhang, H. Y.; Zhou, J. M.; Pan, Z. M.; Lin, W.; Yu, Z. Y.; Zhang, G. G.; Wang, X. C. Fully condensed poly (triazine imide) crystals: Extended π-conjugation and structural defects for overall water splitting. Angew. Chem., Int. Ed. 2022, 61, e202113389.

    CAS  Google Scholar 

  4. Zhou, Z. Y.; Xie, Y. N.; Zhu, W. Z.; Zhao, H. Y.; Yang, N. J.; Zhao, G. H. Selective photoelectrocatalytic tuning of benzyl alcohol to benzaldehyde for enhanced hydrogen production. Appl. Catal. B 2021, 286, 119868.

    Article  CAS  Google Scholar 

  5. Yi, X. T.; Wang, T. L.; Wen, L. Z.; Xu, J.; Xue, B. Selective oxidation of benzyl alcohol with oxygen catalyzed by vanadia supported on nitrogen-containing ordered mesoporous carbon materials. Catal. Lett. 2022, 152, 962–971.

    Article  CAS  Google Scholar 

  6. Yang, J. J.; Wang, H.; Jiang, L. B.; Yu, H. B.; Zhao, Y. L.; Chen, H. Y.; Yuan, X. Z.; Liang, J.; Li, H.; Wu, Z. B. Defective polymeric carbon nitride: Fabrications, photocatalytic applications and perspectives. Chem. Eng. J. 2022, 427, 130991.

    Article  CAS  Google Scholar 

  7. Barrio, J.; Volokh, M.; Shalom, M. Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. J. Mater. Chem. A 2020, 8, 11075–11116.

    Article  CAS  Google Scholar 

  8. Pan, Z. M.; Liu, M. H.; Zhang, G. G.; Zhuzhang, H. Y.; Wang, X. C. Molecular triazine-heptazine junctions promoting exciton dissociation for overall water splitting with visible light. J. Phys. Chem. C 2021, 125, 9818–9826.

    Article  CAS  Google Scholar 

  9. Zhao, C. X.; Chen, Z. P.; Xu, J. S.; Liu, Q. Q.; Xu, H.; Tang, H.; Li, G. S.; Jiang, Y.; Qu, F. Q.; Lin, Z. X. et al. Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Appl. Catal. B 2019, 256, 117867.

    Article  CAS  Google Scholar 

  10. Zhou, M.; Yang, P. J.; Yuan, R. S.; Asiri, A. M.; Wakeel, M.; Wang, X. C. Modulating crystallinity of graphitic carbon nitride for photocatalytic oxidation of alcohols. ChemSusChem 2017, 10, 4451–4456.

    Article  CAS  Google Scholar 

  11. Pahari, S. K.; Doong, R. A. Few-layered phosphorene-graphitic carbon nitride nanoheterostructure as a metal-free photocatalyst for aerobic oxidation of benzyl alcohol and toluene. ACS Sustainable Chem. Eng. 2020, 8, 13342–13351.

    Article  CAS  Google Scholar 

  12. Xia, J. W.; Karjule, N.; Mondal, B.; Qin, J. N.; Volokh, M.; Xing, L. D.; Shalom, M. Design of melem-based supramolecular assemblies for the synthesis of polymeric carbon nitrides with enhanced photocatalytic activity. J. Mater. Chem. A 2021, 9, 17855–17864.

    Article  CAS  Google Scholar 

  13. Majdoub, M.; Anfar, Z.; Amedlous, A. Emerging chemical functionalization of g-C3N4: Covalent/noncovalent modifications and applications. ACS Nano 2020, 14, 12390–12469.

    Article  CAS  Google Scholar 

  14. Barrio, J.; Shalom, M. Rational design of carbon nitride materials by supramolecular preorganization of monomers. ChemCatChem 2018, 10, 5573–5586.

    Article  CAS  Google Scholar 

  15. Liang, Q. H.; Shao, B. B.; Tong, S. H.; Liu, Z. F.; Tang, L.; Liu, Y.; Cheng, M.; He, Q. Y.; Wu, T.; Pan, Y. et al. Recent advances of melamine self-assembled graphitic carbon nitride-based materials: Design, synthesis and application in energy and environment. Chem. Eng. J. 2021, 405, 126951.

    Article  CAS  Google Scholar 

  16. Mo, Z.; Zhu, X. W.; Jiang, Z. F.; Song, Y. H.; Liu, D. B.; Li, H. P.; Yang, X. F.; She, Y. B.; Lei, Y. C.; Yuan, S. Q. et al. Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction. Appl. Catal. B. 2019, 256, 117854.

    Article  CAS  Google Scholar 

  17. Schwarzer, A.; Saplinova, T.; Kroke, E. Tri-s-triazines (s-heptazines) —From a “mystery molecule” to industrially relevant carbon nitride materials. Coord. Chem. Rev. 2013, 257, 2032–2062.

    Article  CAS  Google Scholar 

  18. Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. J. Am. Chem. Soc. 2003, 125, 10288–10300.

    Article  Google Scholar 

  19. Xia, J. W.; Mark, G.; Volokh, M.; Fang, Y. X.; Chen, H. Q.; Wang, X. C.; Shalom, M. Supramolecular organization of melem for the synthesis of photoactive porous carbon nitride rods. Nanoscale 2021, 13, 19511–19517.

    Article  CAS  Google Scholar 

  20. Sattler, A.; Pagano, S.; Zeuner, M.; Zurawski, A.; Gunzelmann, D.; Senker, J.; Müller-Buschbaum, K.; Schnick, W. Melamine-melem adduct phases: Investigating the thermal condensation of melamine. Chem.—Eur. J. 2009, 15, 13161–13170.

    Article  CAS  Google Scholar 

  21. Sattler, A.; Schnick, W. Melemium hydrogensulfate H3C6N7(NH2)3(HSO4)3—The first triple protonation of melem. Z. Anorg. Allg. Chem. 2010, 636, 2589–2594.

    Article  CAS  Google Scholar 

  22. Xia, J. W.; Karjule, N.; Abisdris, L.; Volokh, M.; Shalom, M. Controllable synthesis of carbon nitride films with type-II heterojunction for efficient photoelectrochemical cells. Chem. Mater. 2020, 32, 5845–5853.

    Article  CAS  Google Scholar 

  23. Bellamkonda, S.; Shanmugam, R.; Gangavarapu, R. R. Extending the π-electron conjugation in 2D planar graphitic carbon nitride: Efficient charge separation for overall water splitting. J. Mater. Chem. A 2019, 7, 3757–3771.

    Article  CAS  Google Scholar 

  24. Wu, K.; Chen, D. D.; Lu, S. Y.; Fang, J. Z.; Zhu, X. M.; Yang, F.; Pan, T.; Fang, Z. Q. Supramolecular self-assembly synthesis of noble-metal-free (C, Ce) co-doped g-C3N4 with porous structure for highly efficient photocatalytic degradation of organic pollutants. J. Hazard. Mater. 2020, 382, 121027.

    Article  CAS  Google Scholar 

  25. Wang, X. S.; Zhou, C.; Shi, R.; Liu, Q. Q.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Res. 2019, 12, 2385–2389.

    Article  CAS  Google Scholar 

  26. Guo, F. S.; Hu, B.; Yang, C.; Zhang, J. S.; Hou, Y. D.; Wang, X. C. On-surface polymerization of in-plane highly ordered carbon nitride nanosheets toward photocatalytic mineralization of mercaptan gas. Adv. Mater. 2021, 33, 2101466.

    Article  CAS  Google Scholar 

  27. Sun, J. W.; Yao, F. L.; Dai, L. M.; Deng, J. Y.; Zhao, H. A.; Zhang, L. T.; Huang, Y.; Zou, Z. H.; Fu, Y. S.; Zhu, J. W. Task-specific synthesis of 3D porous carbon nitrides from the cycloaddition reaction and sequential self-assembly strategy toward photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 40433–40442.

    Article  CAS  Google Scholar 

  28. Liu, Q.; Chen, C. C.; Yuan, K. J.; Sewell, C. D.; Zhang, Z. G.; Fang, X. M.; Lin, Z. Q. Robust route to highly porous graphitic carbon nitride microtubes with preferred adsorption ability via rational design of one-dimension supramolecular precursors for efficient photocatalytic CO2 conversion. Nano Energy 2020, 77, 105104.

    Article  CAS  Google Scholar 

  29. Pan, Z. M.; Niu, P. P.; Liu, M. H.; Zhang, G. G.; Zhu, Z. H. Y.; Wang, X. C. Molecular junctions on polymeric carbon nitrides with enhanced photocatalytic performance. ChemSusChem 2020, 13, 888–892.

    Article  CAS  Google Scholar 

  30. Huang, Z. J.; Yan, F. W.; Yuan, G. Q. Ultrasound-assisted fabrication of hierarchical rodlike graphitic carbon nitride with fewer defects and enhanced visible-light photocatalytic activity. ACS Sustainable Chem. Eng. 2018, 6, 3187–3195.

    Article  CAS  Google Scholar 

  31. Mo, Z.; Xu, H.; Chen, Z. G.; She, X. J.; Song, Y. H.; Wu, J. J.; Yan, P. C.; Xu, L.; Lei, Y. C.; Yuan, S. Q. et al. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Appl. Catal. B 2018, 225, 154–161.

    Article  CAS  Google Scholar 

  32. Wang, C. L.; Liu, G. G.; Song, K.; Wang, X. Q.; Wang, H.; Zhao, N. Q.; He, F. Three-dimensional hierarchical porous carbon/graphitic carbon nitride composites for efficient photocatalytic hydrogen production. ChemCatChem 2019, 11, 6364–6371.

    Article  CAS  Google Scholar 

  33. Li, A.; Cao, Q.; Zhou, G. Y.; Schmidt, B. V. K. J.; Zhu, W. J.; Yuan, X. T.; Huo, H. L.; Gong, J. L.; Antonietti, M. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface. Angew. Chem., Int. Ed. 2019, 58, 14549–14555.

    Article  CAS  Google Scholar 

  34. Tong, Z. M.; Huang, L.; Liu, H. P.; Lei, W.; Zhang, H. J.; Zhang, S. W.; Jia, Q. L. Defective graphitic carbon nitride modified separators with efficient polysulfide traps and catalytic sites for fast and reliable sulfur electrochemistry. Adv. Funct. Mater. 2021, 31, 2010455.

    Article  CAS  Google Scholar 

  35. Huang, J. N.; Wang, H. J.; Yu, H.; Zhang, Q.; Cao, Y. H.; Peng, F. Oxygen doping in graphitic carbon nitride for enhanced photocatalytic hydrogen evolution. ChemSusChem 2020, 13, 5041–5049.

    Article  CAS  Google Scholar 

  36. Zhang, G. G.; Li, G. S.; Heil, T.; Zafeiratos, S.; Lai, F. L.; Savateev, A.; Antonietti, M.; Wang, X. C. Tailoring the grain boundary chemistry of polymeric carbon nitride for enhanced solar hydrogen production and CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 3433–3437.

    Article  CAS  Google Scholar 

  37. Zhang, G. G.; Lin, L. H.; Li, G. S.; Zhang, Y. F.; Savateev, A.; Zafeiratos, S.; Wang, X. C.; Antonietti, M. Ionothermal synthesis of triazine-heptazine-based copolymers with apparent quantum yields of 60% at 420 nm for solar hydrogen production from “sea water”. Angew. Chem., Int. Ed. 2018, 57, 9372–9376.

    Article  CAS  Google Scholar 

  38. Zhang, J. H.; Wei, M. J.; Wei, Z. W.; Pan, M.; Su, C. Y. Ultrathin graphitic carbon nitride nanosheets for photocatalytic hydrogen evolution. ACS Appl. Nano Mater. 2020, 3, 1010–1018.

    Article  CAS  Google Scholar 

  39. Mishra, A.; Mehta, A.; Basu, S.; Shetti, N. P.; Reddy, K. R.; Aminabhavi, T. M. Graphitic carbon nitride (g-C3N4)-based metalfree photocatalysts for water splitting: A review. Carbon 2019, 149, 693–721.

    Article  CAS  Google Scholar 

  40. Bohm, S.; Exner, O. Interaction of two functional groups through the benzene ring: Theory and experiment. J. Comput. Chem. 2009, 30, 1069–1074.

    Article  CAS  Google Scholar 

  41. Zhou, M.; Yang, P. J.; Wang, S. B.; Luo, Z. S.; Huang, C. J.; Wang, X. C. Structure-mediated charge separation in boron carbon nitride for enhanced photocatalytic oxidation of alcohol. ChemSusChem 2018, 11, 3949–3955.

    Article  CAS  Google Scholar 

  42. Karjule, N.; Phatake, R.; Volokh, M.; Hod, I.; Shalom, M. Solution-processable carbon nitride polymers for photoelectrochemical applications. Small Methods 2019, 3, 1900401.

    Article  CAS  Google Scholar 

  43. Gu, Q.; Gong, X. Z.; Jia, Q. H.; Liu, J. N.; Gao, Z. W.; Wang, X. X.; Long, J. L.; Xue, C. Compact carbon nitride based copolymer films with controllable thickness for photoelectrochemical water splitting. J. Mater. Chem. A 2017, 5, 19062–19071.

    Article  CAS  Google Scholar 

  44. Teng, Z. Y.; Cai, W. A.; Liu, S. X.; Wang, C. Y.; Zhang, Q. T.; Su, C. L.; Ohno, T. Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-s-triazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production. Appl. Catal. B 2020, 271, 118917.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 22078028 and 21978026), the Special Program for Introducing Foreign Talents of Changzhou (No. CQ20214032), the joint Israel Science Foundation-National Science Foundation of China (ISF-NSFC) (No. 2969/19 and the ISF No. 601/21). The authors thank Jonathan Tzadikov, Rotem Geva, Liel Abisdris, Junyi Li, and Ayelet Tashakory (Ben-Gurion University of the Negev) for technical support and Dr. Laurent Chabanne for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menny Shalom.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Karjule, N., Mark, G. et al. Aromatic alcohols oxidation and hydrogen evolution over π-electron conjugated porous carbon nitride rods. Nano Res. 15, 10148–10157 (2022). https://doi.org/10.1007/s12274-022-4717-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4717-4

Keywords

Navigation