Skip to main content
Log in

(Parallel) kinetic resolution of 3,3-disubstituted indolines via organocatalyzed reactions with azodicarboxylates

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel kinetic resolution (KR) method has been developed for 3,3-disubstituted indolines, whose catalytic asymmetric synthesis remains a significant challenge in organic synthesis. The key to the success of this KR protocol lies in the utilization of chiral phosphoric acid-catalyzed triazane formation reaction with azodicarboxylates, which enables the enantioselective synthesis of various substituted indolines bearing C3-quaternary stereocenters with good to high enantioselectivities (with s-factors up to 70). Moreover, an intriguing parallel kinetic resolution (PKR) has been developed by combining triazane formation and dehydrogenation reactions using different azodicarboxylates. Experimental studies have provided insight into the mechanism of this PKR reaction, demonstrating stereoselectivity in both triazane formation and dehydrogenation steps, favoring the opposite enantiomers. The large-scale synthesis and diverse derivatizations of the products, particularly the imine group-containing 3H-indoles, demonstrate the value of these (P)KR methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sherman SI, Wirth LJ, Droz JP, Hofmann M, Bastholt L, Martins RG, Licitra L, Eschenberg MJ, Sun YN, Juan T, Stepan DE, Schlumberger MJ. N Engl J Med, 2008, 359: 31–42

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalez-Lopez de Turiso F, Shin Y, Brown M, Cardozo M, Chen Y, Fong D, Hao X, He X, Henne K, Hu YL, Johnson MG, Kohn T, Lohman J, McBride HJ, McGee LR, Medina JC, Metz D, Miner K, Mohn D, Pattaropong V, Seganish J, Simard JL, Wannberg S, Whittington DA, Yu G, Cushing TD. J Med Chem, 2012, 55: 7667–7685

    Article  CAS  PubMed  Google Scholar 

  3. Zhang W, Ma L, Li S, Liu Z, Chen Y, Zhang H, Zhang G, Zhang Q, Tian X, Yuan C, Zhang S, Zhang W, Zhang C. J Nat Prod, 2014, 77: 1887–1892

    Article  CAS  PubMed  Google Scholar 

  4. Wilson JE, Kurukulasuriya R, Reibarkh M, Reiter M, Zwicker A, Zhao K, Zhang F, Anand R, Colandrea VJ, Cumiskey AM, Crespo A, Duffy RA, Murphy BA, Mitra K, Johns DG, Duffy JL, Vachal P. ACS Med Chem Lett, 2016, 7: 261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li M, Woods PA, Smith MD. Chem Sci, 2013, 4: 2907–2911

    Article  CAS  Google Scholar 

  6. Torigoe T, Ohmura T, Suginome M. Angew Chem Int Ed, 2017, 56: 14272–14276

    Article  CAS  Google Scholar 

  7. Tian ZX, Qiao JB, Xu GL, Pang X, Qi L, Ma WY, Zhao ZZ, Duan J, Du YF, Su P, Liu XY, Shu XZ. J Am Chem Soc, 2019, 141: 7637–7643

    Article  CAS  PubMed  Google Scholar 

  8. Zhang ZM, Xu B, Wu L, Wu Y, Qian Y, Zhou L, Liu Y, Zhang J. Angew Chem Int Ed, 2019, 58: 14653–14659

    Article  CAS  Google Scholar 

  9. Zhang ZM, Xu B, Wu L, Zhou L, Ji D, Liu Y, Li Z, Zhang J. J Am Chem Soc, 2019, 141: 8110–8115

    Article  CAS  PubMed  Google Scholar 

  10. Cao M, Wang H, Ma Y, Tung CH, Liu L. J Am Chem Soc, 2022, 144: 15383–15390

    Article  CAS  PubMed  Google Scholar 

  11. Lackner AD, Samant AV, Toste FD. J Am Chem Soc, 2013, 135: 14090–14093

    Article  CAS  PubMed  Google Scholar 

  12. Vedejs E, Jure M. Angew Chem Int Ed, 2005, 44: 3974–4001

    Article  CAS  Google Scholar 

  13. Müller CE, Schreiner PR. Angew Chem IntEd, 2011, 50: 6012–6042

    Article  Google Scholar 

  14. Pellissier H. Adv Synth Catal, 2011, 353: 1613–1666

    Article  CAS  Google Scholar 

  15. Krasnov VP, Gruzdev DA, Levit GL. EurJ Org Chem, 2012, 2012: 1471–1493

    Article  CAS  Google Scholar 

  16. Kreituss I, Bode JW. Acc Chem Res, 2016, 49: 2807–2821

    Article  CAS  PubMed  Google Scholar 

  17. Petersen KS. Asian J Org Chem, 2016, 5: 308–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu W, Yang X. Asian J Org Chem, 2021, 10: 692–710

    Article  CAS  Google Scholar 

  19. Liu W, Wang D, Zhang D, Yang X. Synlett, 2022, 33: 1788–1812

    Article  CAS  Google Scholar 

  20. Li HH, Zhang JY, Li S, Wang YB, Cheng JK, Xiang SH, Tan B. Sci China Chem, 2022, 65: 1142–1148

    Article  CAS  Google Scholar 

  21. Hong X, Guo J, Liu J, Cao W, Wei C, Zhang Y, Zhang X, Fu Z. Sci China Chem, 2022, 65: 905–911

    Article  CAS  Google Scholar 

  22. Hang QQ, Wu SF, Yang S, Wang X, Zhong Z, Zhang YC, Shi F. Sci China Chem, 2022, 65: 1929–1937

    Article  CAS  Google Scholar 

  23. Arai S, Bellemin-Laponnaz S, Fu GC. Angew Chem Int Ed, 2001, 40: 234–236

    Article  CAS  Google Scholar 

  24. Birman VB, Jiang H, Li X, Guo L, Uffman EW. J Am Chem Soc, 2006, 128: 6536–6537

    Article  CAS  PubMed  Google Scholar 

  25. De CK, Klauber EG, Seidel D. J Am Chem Soc, 2009, 131: 17060–17061

    Article  CAS  PubMed  Google Scholar 

  26. Fowler BS, Mikochik PJ, Miller SJ. J Am Chem Soc, 2010, 132: 2870–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klauber EG, De CK, Shah TK, Seidel D. J Am Chem Soc, 2010, 132: 13624–13626

    Article  CAS  PubMed  Google Scholar 

  28. Binanzer M, Hsieh SY, Bode JW. J Am Chem Soc, 2011, 133: 19698–19701

    Article  CAS  PubMed  Google Scholar 

  29. Yang X, Bumbu VD, Liu P, Li X, Jiang H, Uffman EW, Guo L, Zhang W, Jiang X, Houk KN, Birman VB. J Am Chem Soc, 2012, 134: 17605–17612

    Article  CAS  PubMed  Google Scholar 

  30. Wanner B, Kreituss I, Gutierrez O, Kozlowski MC, Bode JW. J Am Chem Soc, 2015, 137: 11491–11497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arp FO, Fu GC. J Am Chem Soc, 2006, 128: 14264–14265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hou XL, Zheng BH. Org Lett, 2009, 11: 1789–1791

    Article  PubMed  Google Scholar 

  33. Murray JI, Flodén NJ, Bauer A, Fessner ND, Dunklemann DL, Bob-Egbe O, Rzepa HS, Bürgi T, Richardson J, Spivey AC. Angew Chem Int Ed, 2017, 56: 5760–5764

    Article  CAS  Google Scholar 

  34. Saito K, Shibata Y, Yamanaka M, Akiyama T. J Am Chem Soc, 2013, 135: 11740–11743

    Article  CAS  PubMed  Google Scholar 

  35. Saito K, Akiyama T. Angew Chem Int Ed, 2016, 55: 3148–3152

    Article  CAS  Google Scholar 

  36. Wang G, Lu R, He C, Liu L. Nat Commun, 2021, 12: 2512

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guan H, Tung CH, Liu L. J Am Chem Soc, 2022, 144: 5976–5984

    Article  CAS  PubMed  Google Scholar 

  38. Yang Z, Chen F, He Y, Yang N, Fan QH. Angew Chem Int Ed, 2016, 55: 13863–13866

    Article  CAS  Google Scholar 

  39. Liu C, Wang M, Xu Y, Li Y, Liu Q. Angew Chem Int Ed, 2022, 61: e202202814

    Article  ADS  CAS  Google Scholar 

  40. Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew Chem Int Ed, 2004, 43: 1566–1568

    Article  CAS  Google Scholar 

  41. Uraguchi D, Terada M. J Am Chem Soc, 2004, 126: 5356–5357

    Article  CAS  PubMed  Google Scholar 

  42. Akiyama T. Chem Rev, 2007, 107: 5744–5758

    Article  CAS  PubMed  Google Scholar 

  43. Terada M. Synthesis, 2010, 2010: 1929–1982

    Article  Google Scholar 

  44. Parmar D, Sugiono E, Raja S, Rueping M. Chem Rev, 2014, 114: 9047–9153

    Article  CAS  PubMed  Google Scholar 

  45. Li X, Song Q. Chin Chem Lett, 2018, 29: 1181–1192

    Article  CAS  Google Scholar 

  46. Rahman A, Lin X. Org Biomol Chem, 2018, 16: 4753–4777

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y, Zhu C, Guo Z, Liu W, Yang X. Angew Chem Int Ed, 2021, 60: 5268–5272

    Article  CAS  Google Scholar 

  48. Pan Y, Wang D, Chen Y, Zhang DK, Liu W, Yang X. ACS Catal, 2021, 11: 8443–8448

    Article  CAS  Google Scholar 

  49. Xie J, Guo Z, Liu W, Zhang D, He YP, Yang X. Chin J Chem, 2022, 40: 1674–1680

    Article  CAS  Google Scholar 

  50. Jiang Q, Xie W, Yang X. Chem Commun, 2023, 59: 4762–4765

    Article  CAS  Google Scholar 

  51. Egger N, Hoesch L, Dreiding AS. Helv Chim Acta, 1983, 66: 1599–1607

    Article  CAS  Google Scholar 

  52. Kanzian T, Mayr H. Chem Eur J, 2010, 16: 11670–11677

    Article  CAS  PubMed  Google Scholar 

  53. Tang R-J, Milcent T, Crousse B. Eur J Org Chem, 2017, 2017: 4753–4757

    Article  CAS  Google Scholar 

  54. Liu W, Jiang Q, Yang X. Angew Chem Int Ed, 2020, 59: 23598–23602

    Article  CAS  Google Scholar 

  55. Yu S, Bao H, Zhang D, Yang X. Nat Commun, 2023, 14: 5239

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vedejs E, Chen X. J Am Chem Soc, 1997, 119: 2584–2585

    Article  CAS  Google Scholar 

  57. Eames J. Angew Chem Int Ed, 2000, 39: 885–888

    Article  CAS  Google Scholar 

  58. Russell TA, Vedejs E. Enantiodivergent reactions: divergent reactions on a racemic mixture and parallel kinetic resolution. In: Todd M, Ed. Separation of Enantiomers: Synthetic Methods. Weinheim: Wiley-VCH, 2014. 217–266.

    Chapter  Google Scholar 

  59. Kagna HB, Fiaud JC. Topics in stereochemistry. In: Eliel EL, Ed. Kinetic Resolution. New York: Wiley, 1988. 249–330

    Google Scholar 

  60. Yin L, Xing J, Wang Y, Shen Y, Lu T, Hayashi T, Dou X. Angew Chem Int Ed, 2019, 58: 2474–2478

    Article  CAS  Google Scholar 

  61. Zhang D, Shao YB, Xie W, Chen Y, Liu W, Bao H, He F, Xue XS, Yang X. ACS Catal, 2022, 12: 14609–14618

    Article  CAS  Google Scholar 

  62. Bariwal J, Voskressensky LG, Van der Eycken EV. Chem Soc Rev, 2018, 47: 3831–3848

    Article  PubMed  Google Scholar 

  63. James MJ, O’Brien P, Taylor RJK, Unsworth WP. Chem Eur J, 2016, 22: 2856–2881

    Article  CAS  PubMed  Google Scholar 

  64. See Supporting Informations for details

  65. Nandi RK, Guillot R, Kouklovsky C, Vincent G. Org Lett, 2016, 18: 1716–1719

    Article  CAS  PubMed  Google Scholar 

  66. Sabat N, Zhou W, Gandon V, Guinchard X, Vincent G. Angew Chem Int Ed, 2022, 61: e202204400

    Article  ADS  CAS  Google Scholar 

  67. Wu KJ, Dai LX, You SL. Org Lett, 2012, 14: 3772–3775

    Article  CAS  PubMed  Google Scholar 

  68. Wang G, Piva de Silva G, Wiebe NE, Fehr GM, Davis RL. RSC Adv, 2017, 7: 48848–48852

    Article  ADS  CAS  Google Scholar 

  69. Ertugrul B, Kilic H, Lafzi F, Saracoglu N. J Org Chem, 2018, 83: 9018–9038

    Article  CAS  PubMed  Google Scholar 

  70. Singh P, Mritunjay P. Asian J Org Chem, 2021, 10: 964–979

    Article  CAS  Google Scholar 

  71. Jackson AH, Smith AE. Tetrahedron, 1965, 21: 989–1000

    Article  CAS  Google Scholar 

  72. Ibaceta-Lizana JSL, Jackson AH, Prasitpan N, Shannon PVR. J Chem Soc Perkin Trans 2, 1987, 1221–1226

  73. Fedoseev P, Coppola G, Ojeda GM, Van der Eycken EV. Chem Commun, 2018, 54: 3625–3628

    Article  CAS  Google Scholar 

  74. Deposition Numbers 2285455 (for 4a′) contains the supplementary crystallographic data for this paper These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22171186, 22222107), ShanghaiTech University Start-up Funding, and Analytical Instrumentation Center (# SPSTAIC10112914), SPST, ShanghaiTech University. The authors thank Mr. Huanchao Gu for the assistance with X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Yang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Zhang, D., Tang, M. et al. (Parallel) kinetic resolution of 3,3-disubstituted indolines via organocatalyzed reactions with azodicarboxylates. Sci. China Chem. 67, 973–980 (2024). https://doi.org/10.1007/s11426-023-1810-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1810-9

Navigation