Skip to main content
Log in

Organocatalytic dynamic kinetic resolution of N-arylindole lactams: atroposelective construction of axially chiral amino acids bearing a C-N chiral axis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organocatalytic dynamic kinetic resolution of configurationally labile cyclic molecules represents one of the most efficient methods for the atroposelective construction of axially chiral molecules bearing a tetra-ortho-substituted chiral axis. Notably, this privileged strategy is limited to constructing a C-C chiral axis. Herein, organocatalytic dynamic kinetic resolution of configurationally labile N-arylindole lactams has been successfully achieved at the first time, allowing for access to a structurally diverse set of axially chiral N-arylindole amino esters with a tetra-ortho-substituted C-N chiral axis in excellent yields and atroposelectivities. In addition to the N-arylindole skeleton, N-aryl thieno[3,2-b]pyrrole, furo[3,2-b]pyrrole, and pyrrolo[2,3-b] pyridine skeletons are also compatible with this transformation. This transition-metal-free facile strategy features a broad substrate scope, mild reaction conditions, easy scale-up and excellent atom economy. Several potentially valuable molecules, such as axially chiral peptides, were efficiently generated from the resulting configurationally stable axially-chiral N-arylindole amino esters, demonstrating the power of this strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bringmann G, Gulder T, Gulder TAM, Breuning M. Chem Rev, 2011, 111: 563–639

    Article  CAS  Google Scholar 

  2. Clayden J, Moran WJ, Edwards PJ, LaPlante SR. Angew Chem Int Ed, 2009, 48: 6398–6401

    Article  CAS  Google Scholar 

  3. Fu W, Tang W. ACS Catal, 2016, 6: 4814–4858

    Article  CAS  Google Scholar 

  4. Xie JH, Zhou QL. Acc Chem Res, 2008, 41: 581–593

    Article  CAS  Google Scholar 

  5. Feuillastre S, Pauton M, Gao L, Desmarchelier A, Riives AJ, Prim D, Tondelier D, Geffroy B, Muller G, Clavier G, Pieters G. J Am Chem Soc, 2016, 138: 3990–3993

    Article  CAS  Google Scholar 

  6. Link A, Sparr C. Chem Soc Rev, 2018, 47: 3804–3815

    Article  CAS  Google Scholar 

  7. Cheng JK, Xiang SH, Li S, Ye L, Tan B. Chem Rev, 2021, 121: 4805–4902

    Article  CAS  Google Scholar 

  8. Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Chem Soc Rev, 2021, 50: 2968–2983

    Article  CAS  Google Scholar 

  9. Carmona JA, Rodríguez-Franco C, López-Serrano J, Ros A, Iglesias-Sigüenza J, Fernández R, Lassaletta JM, Hornillos V. ACS Catal, 2021, 11: 4117–4124

    Article  CAS  Google Scholar 

  10. Zhang JW, Jiang F, Chen YH, Xiang SH, Tan B. Sci China Chem, 2021, 64: 1515–1521

    Article  CAS  Google Scholar 

  11. Xu MM, You XY, Zhang YZ, Lu Y, Tan K, Yang L, Cai Q. J Am Chem Soc, 2021, 143: 8993–9001

    Article  CAS  Google Scholar 

  12. Yang H, Sun J, Gu W, Tang W. J Am Chem Soc, 2020, 142: 8036–8043

    Article  CAS  Google Scholar 

  13. Witzig RM, Fäseke VC, Häussinger D, Sparr C. Nat Catal, 2019, 2: 925–930

    Article  CAS  Google Scholar 

  14. Shen D, Xu Y, Shi SL. J Am Chem Soc, 2019, 141: 14938–14945

    Article  CAS  Google Scholar 

  15. Patel ND, Sieber JD, Tcyrulnikov S, Simmons BJ, Rivalti D, Duvvuri K, Zhang Y, Gao DA, Fandrick KR, Haddad N, Lao KS, Mangunuru HPR, Biswas S, Qu B, Grinberg N, Pennino S, Lee H, Song JJ, Gupton BF, Garg NK, Kozlowski MC, Senanayake CH. ACS Catal, 2018, 8: 10190–10209

    Article  CAS  Google Scholar 

  16. Yu C, Huang H, Li X, Zhang Y, Wang W. J Am Chem Soc, 2016, 138: 6956–6959

    Article  CAS  Google Scholar 

  17. Chen GQ, Lin BJ, Huang JM, Zhao LY, Chen QS, Jia SP, Yin Q, Zhang X. J Am Chem Soc, 2018, 140: 8064–8068

    Article  CAS  Google Scholar 

  18. Beleh OM, Miller E, Toste FD, Miller SJ. J Am Chem Soc, 2020, 142: 16461–16470

    Article  CAS  Google Scholar 

  19. Wang G, Shi Q, Hu W, Chen T, Guo Y, Hu Z, Gong M, Guo J, Wei D, Fu Z, Huang W. Nat Commun, 2020, 11: 946

    Article  CAS  Google Scholar 

  20. Zhao K, Duan L, Xu S, Jiang J, Fu Y, Gu Z. Chem, 2018, 4: 599–612

    Article  CAS  Google Scholar 

  21. Zhang X, Zhao K, Li N, Yu J, Gong LZ, Gu Z. Angew Chem Int Ed, 2020, 59: 19899–19904

    Article  CAS  Google Scholar 

  22. Zhao K, Yang S, Gong Q, Duan L, Gu Z. Angew Chem Int Ed, 2021, 60: 5788–5793

    Article  CAS  Google Scholar 

  23. Shimada T, Cho YH, Hayashi T. J Am Chem Soc, 2002, 124: 13396–13397

    Article  CAS  Google Scholar 

  24. Zhang J, Sun T, Zhang Z, Cao H, Bai Z, Cao ZC. J Am Chem Soc, 2021, 143: 18380–18387

    Article  CAS  Google Scholar 

  25. Feng J, Bi X, Xue X, Li N, Shi L, Gu Z. Nat Commun, 2020, 11: 4449

    Article  CAS  Google Scholar 

  26. Bi X, Feng J, Xue X, Gu Z. Org Lett, 2021, 23: 3201–3206

    Article  CAS  Google Scholar 

  27. Deng R, Zhan S, Li C, Gu Z. Angew Chem Int Ed, 2020, 59: 3093–3098

    Article  CAS  Google Scholar 

  28. Deng R, Xi J, Li Q, Gu Z. Chem, 2019, 5: 1834–1846

    Article  CAS  Google Scholar 

  29. Kamikawa K, Kinoshita S, Matsuzaka H, Uemura M. Org Lett, 2006, 8: 1097–1100

    Article  CAS  Google Scholar 

  30. Ototake N, Morimoto Y, Mokuya A, Fukaya H, Shida Y, Kitagawa O. Chem Eur J, 2010, 16: 6752–6755

    Article  CAS  Google Scholar 

  31. Zhao Q, Peng C, Wang YT, Zhan G, Han B. Org Chem Front, 2021, 8: 2772–2785

    Article  CAS  Google Scholar 

  32. Shang Q, Tang H, Liu Y, Yin MM, Su L, Xie S, Liu L, Yang W, Chen Y, Dong J, Zhou Y, Yin SF. Chem Sci, 2022, 13: 263–273

    Article  CAS  Google Scholar 

  33. Xu WL, Zhao WM, Zhang RX, Chen J, Zhou L. Chem Sci, 2021, 12: 14920–14926

    Article  CAS  Google Scholar 

  34. Gu XW, Sun YL, Xie JL, Wang XB, Xu Z, Yin GW, Li L, Yang KF, Xu LW. Nat Commun, 2020, 11: 2904

    Article  CAS  Google Scholar 

  35. Wang L, Zhong J, Lin X. Angew Chem Int Ed, 2019, 58: 15824–15828

    Article  CAS  Google Scholar 

  36. Lu S, Ng SVH, Lovato K, Ong JY, Poh SB, Ng XQ, Kürti L, Zhao Y. Nat Commun, 2019, 10: 3061

    Article  Google Scholar 

  37. Li SL, Yang C, Wu Q, Zheng HL, Li X, Cheng JP. J Am Chem Soc, 2018, 140: 12836–12843

    Article  CAS  Google Scholar 

  38. Kumarasamy E, Raghunathan R, Sibi MP, Sivaguru J. Chem Rev, 2015, 115: 11239–11300

    Article  CAS  Google Scholar 

  39. Clayden J, Senior J, Helliwell M. Angew Chem Int Ed, 2009, 48: 6270–6273

    Article  CAS  Google Scholar 

  40. Brückner H, Fujii N. D-Amino Acids in Chemistry, Life Sciences, and Biotechnology. Weinheim: Wiley, 2010

    Google Scholar 

  41. Saghyan AS, & Langer P. Asymmetric Synthesis of Non-Proteinogenic Amino Acids. Weinheim: Wiley, 2016

    Book  Google Scholar 

  42. Hughes AB. Amino Acids, Peptides and Proteins in Organic Chemistry. Vol 5. Analysis and Function of Amino Acids and Peptides. Weinheim: Wiley, 2016

    Google Scholar 

  43. Zhang Y, Huang J, Guo Y, Li L, Fu Z, Huang W. Angew Chem Int Ed, 2018, 57: 4594–4598

    Article  CAS  Google Scholar 

  44. Wang G, Zhang QC, Wei C, Zhang Y, Zhang L, Huang J, Wei D, Fu Z, Huang W. Angew Chem Int Ed, 2021, 60: 7913–7919

    Article  CAS  Google Scholar 

  45. Bringmann G, Tasler S, Endress H, Kraus J, Messer K, Wohlfarth M, Lobin W. J Am Chem Soc, 2001, 123: 2703–2711

    Article  CAS  Google Scholar 

  46. Zhang MZ, Chen Q, Yang GF. Eur J Medicinal Chem, 2015, 89: 421–441

    Article  CAS  Google Scholar 

  47. Baumann T, Brückner R. Angew Chem Int Ed, 2019, 58: 4714–4719

    Article  CAS  Google Scholar 

  48. Sindac JA, Yestrepsky BD, Barraza SJ, Bolduc KL, Blakely PK, Keep RF, Irani DN, Miller DJ, Larsen SD. J Med Chem, 2012, 55: 3535–3545

    Article  CAS  Google Scholar 

  49. Wang R, Shi HF, Zhao JF, He YP, Zhang HB, Liu JP. Bioorg Med Chem Lett, 2013, 23: 1760–1762

    Article  CAS  Google Scholar 

  50. Kessler A, Faure H, Petrel C, Ruat M, Dauban P, Dodd RH. Bioorg Med Chem Lett, 2004, 14: 3345–3349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was support by the National Key Research and Development Program of China (2017YFA0204704), the General Program of Chongqing Natural Science Foundation Project (cstc2020jcyj-msxmX0712), Ningbo Natural Science Foundation (202003N4063), the National Natural Science Foundation of China (21602105, 22174065), and the Natural Science Foundation of Jiangsu Province (BK20171460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenqian Fu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

11426_2021_1209_MOESM1_ESM.pdf

Organocatalytic Dynamic Kinetic Resolution of N-Arylindole Lactams: Atroposelective Construction of Axially Chiral Amino Acids Bearing a C-N Chiral Axis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, X., Guo, J., Liu, J. et al. Organocatalytic dynamic kinetic resolution of N-arylindole lactams: atroposelective construction of axially chiral amino acids bearing a C-N chiral axis. Sci. China Chem. 65, 905–911 (2022). https://doi.org/10.1007/s11426-021-1209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1209-2

Keywords

Navigation