Skip to main content
Log in

Converting CO2 to ethanol on Ag nanowires with high selectivity investigated by operando Raman spectroscopy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical conversion of CO2 into liquid fuels provides an efficient way to store the renewable energy in the production of fuels and chemicals. However, effectively converting CO2 to ethanol remains extremely challenging due to the low activity and selectivity. Herein, we achieve a high ethanol Faradaic efficiency (FE) as high as 85% on Ag nanowires (NWs) for CO2 electroreduction at −0.95 V. X-ray photoelectron spectroscopy and electrochemical experiments prove that such Ag NWs are partially oxidized. Operando Raman spectroscopy finds the important CO intermediate adsorbed on partially oxidized Ag NWs, facilitating the ethanol formation. Density functional theory calculations prove that the reaction energy of CO coupling with the *CHO to *COCHO intermediate on the partially oxidized Ag NWs is smaller than that on the surface of Cu, which explains why the ethanol FE of such partially oxidized Ag NWs can exceed that of Cu, and therefore is the most favorable pathway for the formation of C2 products on partially oxidized Ag NWs. This study provides a new insight to design efficient catalysts and investigate the mechanisms to improve the selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y. Nature, 2016, 529: 68–71

    Article  CAS  PubMed  Google Scholar 

  2. Liu C, Gong J, Gao Z, Xiao L, Wang G, Lu J, Zhuang L. Sci China Chem, 2021, 64: 1660–1678

    Article  CAS  Google Scholar 

  3. Yang Y, Roh I, Louisia S, Chen C, Jin J, Yu S, Salmeron MB, Wang C, Yang P. J Am Chem Soc, 2022, 144: 8927–8931

    Article  CAS  PubMed  Google Scholar 

  4. Li S, Saranya G, Chen M, Zhu Y. Sci China Chem, 2020, 63: 722–730

    Article  CAS  Google Scholar 

  5. Chen F, Shen K, Chen L, Li Y. Sci China Chem, 2022, 65: 1411–1419

    Article  CAS  Google Scholar 

  6. Hoang TTH, Verma S, Ma S, Fister TT, Timoshenko J, Frenkel AI, Kenis PJA, Gewirth AA. J Am Chem Soc, 2018, 140: 5791–5797

    Article  CAS  PubMed  Google Scholar 

  7. Herzog A, Bergmann A, Jeon HS, Timoshenko J, Kühl S, Rettenmaier C, Lopez Luna M, Haase FT, Roldan Cuenya B. Angew Chem Int Ed, 2021, 60: 7426–7435

    Article  CAS  Google Scholar 

  8. Chernyshova IV, Somasundaran P, Ponnurangam S. Proc Natl Acad Sci USA, 2018, 115: E9261–E9270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang XG, Feng S, Zhan C, Wu DY, Zhao Y, Tian ZQ. J Phys Chem Lett, 2020, 11: 6593–6599

    Article  CAS  PubMed  Google Scholar 

  10. Hu F, Yang L, Jiang Y, Duan C, Wang X, Zeng L, Lv X, Duan D, Liu Q, Kong T, Jiang J, Long R, Xiong Y. Angew Chem Int Ed, 2021, 60: 26122–26127

    Article  CAS  Google Scholar 

  11. Kong X, Wang C, Zheng H, Geng Z, Bao J, Zeng J. Sci China Chem, 2021, 64: 1096–1102

    Article  CAS  Google Scholar 

  12. Hori Y, Wakebe H, Tsukamoto T, Koga O. Surf Sci, 1995, 335: 258–263

    Article  CAS  Google Scholar 

  13. Raciti D, Braun T, Tackett BM, Xu H, Cruz M, Wiley BJ, Moffat TP. ACS Catal, 2021, 11: 11945–11959

    Article  CAS  Google Scholar 

  14. Kong X, Zhao J, Ke J, Wang C, Li S, Si R, Liu B, Zeng J, Geng Z. Nano Lett, 2022, 22: 3801–3808

    Article  CAS  PubMed  Google Scholar 

  15. Wang QY, Li YH, Zhao Y, Chen YY, Geng BJ, Ye RK, Liu Q, Liu XQ, Tong YX, Zhang YJ, Cheng J, Fang PP, Hu JQ, Li JF, Tian ZQ. CCS Chem, 2022, 4: 1–10

    Article  Google Scholar 

  16. Favaro M, Xiao H, Cheng T, Goddard III WA, Yano J, Crumlin EJ. Proc Natl Acad Sci USA, 2017, 114: 6706–6711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Tan HY, Zhu Y, Chu H, Chen HM. Angew Chem Int Ed, 2021, 60: 17254–17267

    Article  CAS  Google Scholar 

  18. Xiao H, Goddard III WA, Cheng T, Liu Y. Proc Natl Acad Sci USA, 2017, 114: 6685–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin SC, Chang CC, Chiu SY, Pai HT, Liao TY, Hsu CS, Chiang WH, Tsai MK, Chen HM. Nat Commun, 2020, 11: 3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang YH, Zheng S, Yang WM, Zhou RY, He QF, Radjenovic P, Dong JC, Li S, Zheng J, Yang ZL, Attard G, Pan F, Tian ZQ, Li JF. Nature, 2021, 600: 81–85

    Article  CAS  PubMed  Google Scholar 

  21. Savinova ER, Kraft P, Pettinger B, Doblhofer K. J Electroanal Chem, 1997, 430: 47–56

    Article  CAS  Google Scholar 

  22. Rosen J, Hutchings GS, Lu Q, Rivera S, Zhou Y, Vlachos DG, Jiao F. ACS Catal, 2015, 5: 4293–4299

    Article  CAS  Google Scholar 

  23. Yang B, Liu K, Li HJW, Liu C, Fu J, Li H, Huang JE, Ou P, Alkayyali T, Cai C, Duan Y, Liu H, An P, Zhang N, Li W, Qiu X, Jia C, Hu J, Chai L, Lin Z, Gao Y, Miyauchi M, Cortés E, Maier SA, Liu M. J Am Chem Soc, 2022, 144: 3039–3049

    Article  CAS  PubMed  Google Scholar 

  24. Zhang W, Huang C, Xiao Q, Yu L, Shuai L, An P, Zhang J, Qiu M, Ren Z, Yu Y. J Am Chem Soc, 2020, 142: 11417–11427

    Article  CAS  PubMed  Google Scholar 

  25. Xu H, Wiley BJ. Chem Mater, 2021, 33: 8301–8311

    Article  CAS  Google Scholar 

  26. Li L, Yang JC. Mater at High Temp, 2003, 20: 601–606

    Article  CAS  Google Scholar 

  27. Christopher P, Linic S. J Am Chem Soc, 2008, 130: 11264–11265

    Article  CAS  PubMed  Google Scholar 

  28. Gao J, Zhang H, Guo X, Luo J, Zakeeruddin SM, Ren D, Grätzel M. J Am Chem Soc, 2019, 141: 18704–18714

    Article  CAS  PubMed  Google Scholar 

  29. Verdaguer-Casadevall A, Li CW, Johansson TP, Scott SB, McKeown JT, Kumar M, Stephens IEL, Kanan MW, Chorkendorff I. J Am Chem Soc, 2015, 137: 9808–9811

    Article  CAS  PubMed  Google Scholar 

  30. Iyengar P, Kolb MJ, Pankhurst JR, Calle-Vallejo F, Buonsanti R. ACS Catal, 2021, 11: 4456–4463

    Article  CAS  Google Scholar 

  31. Koper MTM, van Santen RA, Wasileski SA, Weaver MJ. J Chem Phys, 2000, 113: 4392–4407

    Article  CAS  Google Scholar 

  32. Garza AJ, Bell AT, Head-Gordon M. ACS Catal, 2018, 8: 1490–1499

    Article  CAS  Google Scholar 

  33. Yoo JS, Christensen R, Vegge T, Nørskov JK, Studt F. ChemSusChem, 2016, 9: 358–363

    Article  CAS  PubMed  Google Scholar 

  34. Kortlever R, Shen J, Schouten KJP, Calle-Vallejo F, Koper MTM. J Phys Chem Lett, 2015, 6: 4073–4082

    Article  CAS  PubMed  Google Scholar 

  35. Wang Z, Fongarland P, Lu G, Essayem N. J Catal, 2014, 318: 108–118

    Article  CAS  Google Scholar 

  36. Hansen HA, Varley JB, Peterson AA, Nørskov JK. J Phys Chem Lett, 2013, 4: 388–392

    Article  CAS  PubMed  Google Scholar 

  37. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF. J Am Chem Soc, 2014, 136: 14107–14113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (22174165, 21925404, 22002036, and 21908253), the Natural Science Foundation of Guangdong Province (2019A1515011117), Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2017), and the Natural Science Foundation of Henan Province (202300410234).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping-Ping Fang or Jian-Feng Li.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhang, XG., Du, ZY. et al. Converting CO2 to ethanol on Ag nanowires with high selectivity investigated by operando Raman spectroscopy. Sci. China Chem. 66, 259–265 (2023). https://doi.org/10.1007/s11426-022-1460-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1460-7

Keywords

Navigation