Skip to main content
Log in

Liquid crystal-based optical aptasensor for the sensitive and selective detection of Gram-negative bacteria

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The sensitive and differential detection of Gram-negative bacteria is essential in food processing, environmental monitoring, and the daily chemical industry. Herein, we propose and validate a liquid crystal (LC)-based aptasensor for the ultrasensitive detection of Escherichia coli (E. coli), a model of Gram-negative bacteria. The nematic liquid crystal of 4-cyano-4′-pentylbiphenyl (5CB) molecules can be orderly or disorderly arranged at the LC-aqueous interface via different stimuli, causing changes in optical texture due to birefringence. Bright schlieren texture is observed when a mixture solution of aptamer and hexadecyl trimethyl ammonium bromide (CTAB) is dripped onto the segmented LC films on a copper mesh. The specific binding of aptamers with target bacteria biomarkers liberates the CTAB molecules, which then self-assemble at the LC-aqueous interface to induce the vertical alignment of LCs. An optical transition from bright to dark is therefore achieved via the LC molecular orientation and serves as an aptasensor. Given the prominent affinity and specificity of the aptamer, the established sensitive and selective E. coli assay shows an ultralow detection limit of 27 cfu/mL. The prepared aptasensor can also be applied for the sensitive and selective determination of E. coli in fruit juice, soft drink, and cosmetic products, and shows great promise for the on-site detection of Gram-negative bacteria with high sensitivity and specificity for environmental monitoring, food safety assessment, and household chemical inspection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neyen C, Lemaitre B. Curr Opin Immunol, 2016, 38: 8–17

    Article  CAS  Google Scholar 

  2. Durand-Reville TF, Miller AA, O’Donnell JP, Wu X, Sylvester MA, Guler S, Iyer R, Shapiro AB, Carter NM, Velez-Vega C, Moussa SH, McLeod SM, Chen A, Tanudra AM, Zhang J, Comita-Prevoir J, Romero JA, Huynh H, Ferguson AD, Horanyi PS, Mayclin SJ, Heine HS, Drusano GL, Cummings JE, Slayden RA, Tommasi RA. Nature, 2021, 597: 698–702

    Article  CAS  Google Scholar 

  3. Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Chem Rev, 2021, 121: 5193–5239

    Article  CAS  Google Scholar 

  4. Holmes CL, Anderson MT, Mobley HLT, Bachman MA. Clin Microbiol Rev, 2021, 34: e00234–20

    CAS  PubMed  PubMed Central  Google Scholar 

  5. He S, Hong X, Zhang M, Wu L, Yan X. Anal Chem, 2020, 92: 2393–2400

    Article  CAS  Google Scholar 

  6. Xu D, Ge K, Chen Y, Qi S, Tian Y, Wang S, Qiu J, Wang X, Dong Q, Liu Q. Microchem J, 2020, 154: 104591

    Article  CAS  Google Scholar 

  7. Jiang X, Jing W, Zheng L, Liu S, Wu W, Sui G. Lab Chip, 2014, 14: 671–676

    Article  CAS  Google Scholar 

  8. Majdinasab M, Hayat A, Marty JL. TrAC Trends Anal Chem, 2018, 107: 60–77

    Article  CAS  Google Scholar 

  9. Richter Ł, Janczuk-Richter M, Niedziółka-Jönsson J, Paczesny J, Hołyst R. Drug Discovery Today, 2018, 23: 448–455

    Article  CAS  Google Scholar 

  10. Zou D, Jin L, Wu B, Hu L, Chen X, Huang G, Zhang J. Int Dairy J, 2019, 91: 82–88

    Article  CAS  Google Scholar 

  11. Andrienko D. J Mol Liq, 2018, 267: 520–541

    Article  CAS  Google Scholar 

  12. Smalyukh II. Annu Rev Condens Matter Phys, 2018, 9: 207–226

    Article  Google Scholar 

  13. Xiang J, Varanytsia A, Minkowski F, Paterson DA, Storey JMD, Imrie CT, Lavrentovich OD, Palffy-Muhoray P. Proc Natl Acad Sci USA, 2016, 113: 12925–12928

    Article  CAS  Google Scholar 

  14. Wani OM, Zeng H, Priimagi A. Nat Commun, 2017, 8: 15546

    Article  CAS  Google Scholar 

  15. Zou C, Yanahashi N, Wu Y, Wang J, Zhang C, Xiong G, Yang H, Jiang L, Ikeda T. Adv Funct Mater, 2019, 29: 1804838

    Article  Google Scholar 

  16. Carlton RJ, Hunter JT, Miller DS, Abbasi R, Mushenheim PC, Tan LN, Abbott NL. Liquid Crysts Rev, 2013, 1: 29–51

    Article  CAS  Google Scholar 

  17. Wu W, Wang W, Qi L, Wang Q, Yu L, Lin JM, Hu Q. Anal Chem, 2021, 93: 6151–6157

    Article  CAS  Google Scholar 

  18. Ding HZ, Liao SZ, Xiao FB, Shen GL, Yu RQ, Wu ZY. Sci China Chem, 2014, 57: 1589–1595

    Article  CAS  Google Scholar 

  19. Oladepo SA. Molecules, 2022, 27: 1453

    Article  CAS  Google Scholar 

  20. Khan M, Khan AR, Shin JH, Park SY. Sci Rep, 2016, 6: 22676

    Article  CAS  Google Scholar 

  21. Tan H, Li X, Liao S, Yu R, Wu Z. Biosens Bioelectron, 2014, 62: 84–89

    Article  CAS  Google Scholar 

  22. Du X, Liu Y, Wang F, Zhao D, Gleeson HF, Luo D. ACS Appl Mater Interfaces, 2021, 13: 22361–22367

    Article  CAS  Google Scholar 

  23. Ping J, Qi L, Wang Q, Liu S, Jiang Y, Yu L, Lin JM, Hu Q. Biosens Bioelectron, 2021, 187: 113313

    Article  CAS  Google Scholar 

  24. Liao S, Ding H, Wu Y, Wu Z, Shen G, Yu R. Biosens Bioelectron, 2016, 79: 650–655

    Article  CAS  Google Scholar 

  25. Zhang M, Jang CH. ChemPhysChem, 2014, 15: 2569–2574

    Article  CAS  Google Scholar 

  26. Sivakumar S, Wark KL, Gupta JK, Abbott NL, Caruso F. Adv Funct Mater, 2009, 19: 2260–2265

    Article  CAS  Google Scholar 

  27. Chin CY, Zhao J, Llewellyn AC, Golovliov I, Sjöstedt A, Zhou P, Weiss DS. Cell Rep, 2021, 35: 109247

    Article  CAS  Google Scholar 

  28. Kim SE, Su W, Cho MS, Lee Y, Choe WS. Anal Biochem, 2012, 424: 12–20

    Article  CAS  Google Scholar 

  29. Ho TY, Huang JW, Peng BC, Tsao WC, Chen CH. Microchem J, 2020, 158: 105235

    Article  CAS  Google Scholar 

  30. Hao Z, Lin X, Li J, Yin Y, Gao X, Wang S, Liu Y. Biosens Bioelectron, 2021, 173: 112789

    Article  CAS  Google Scholar 

  31. Zhang Z, Yang J, Pang W, Yan G. RSC Adv, 2017, 7: 54920–54926

    Article  CAS  Google Scholar 

  32. Berezovski M, Drabovich A, Krylova SM, Musheev M, Okhonin V, Petrov A, Krylov SN. J Am Chem Soc, 2005, 127: 3165–3171

    Article  CAS  Google Scholar 

  33. Brosel-Oliu S, Ferreira R, Uria N, Abramova N, Gargallo R, Muñoz-Pascual FX, Bratov A. Sens Actuat B-Chem, 2018, 255: 2988–2995

    Article  CAS  Google Scholar 

  34. Yu X, Chen F, Wang R, Li Y. J Biotechnol, 2018, 266: 39–49

    Article  CAS  Google Scholar 

  35. Luo C, Lei Y, Yan L, Yu T, Li Q, Zhang D, Ding S, Ju H. Electroanalysis, 2012, 24: 1186–1191

    Article  CAS  Google Scholar 

  36. Lu J, Gerke TL, Buse HY, Ashbolt NJ. J Water Health, 2014, 12: 763–771

    Article  Google Scholar 

  37. Li T, Ou G, Chen X, Li Z, Hu R, Li Y, Yang Y, Liu M. Anal Chim Acta, 2020, 1130: 20–28

    Article  CAS  Google Scholar 

  38. Ajish JK, Ajish Kumar KS, Ruhela A, Subramanian M, Ballal AD, Kumar M. Sens Actuat B-Chem, 2018, 255: 1726–1734

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Province Basic and Applied Basic Research Foundation (2021A1515110236), the National Natural Science Foundation of China (62004070), the Science and Technology Program of Guangzhou (2019050001, 202201010248), the Youth Innovation Project of Guangdong Education Department (2020KQNCX018), the Young Scholar Foundation of South China Normal University (21KJ08), and the “Climbing Program” Special Funds of Guangdong Province (pdjh2022b0133). This project was also partially supported by the Science and Technology Planning Project of Guangdong Province (2020B1212060067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minmin Zhang or Lingling Shui.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zhang, M., Chen, J. et al. Liquid crystal-based optical aptasensor for the sensitive and selective detection of Gram-negative bacteria. Sci. China Chem. 65, 2023–2030 (2022). https://doi.org/10.1007/s11426-022-1336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1336-x

Keywords

Navigation