Skip to main content
Log in

Sensitive detection of Escherichia coli in diverse foodstuffs by electrochemical aptasensor based on 2D porphyrin-based COF

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The two-dimensional porphyrin-based covalent organic framework (denoted by Tph-TDC-COF) was used as the sensitive layerto build an aptamer-based electrochemical sensor for the detection of Escherichia coli (E.coli). Tph-TDC-COF produced with 5,10,15,20-tetrakis(4-aminophenyl)-21H, 23H-porphine (Tph) and [2,2′-bithiophene]-2,5′-dicarbaldehyde (TDC) as building blocks exhibited a highly conjugated structure, outstanding conductivity, large specific surface area, and strong bioaffinity towards aptamers. The adoption of Tph-TDC-COF-modified electrode resulted in improved sensing performance and increased anchoring affinity toward the E.coli-targeted aptamer. Under optimal conditions, the Tph-TDC-COF-based electrochemical aptasensor demonstrated an extremely low detection limit of 0.17 CFU mL−1 for E.coli detection within a linear range of 10 to 1 × 108 CFU mL−1, accompanied by good stability, excellent reproducibility and regeneration ability, and wide practical applications. The current electrochemical aptasensing technique has the potential to be extended to detect different foodborne bacteria using specific aptamer, therefore widening the application of COFs in biosensing and food safety fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Kiranmayi B, Mallika N (2010) Escherichia coli O157:H7 - an emerging pathogen in foods of animal origin. Vet World 3(9):382. https://doi.org/10.5455/vetworld.2010.382-389

    Article  Google Scholar 

  2. Wang D, Chen J, Nugen SR (2017) Electrochemical detection of Escherichia coli from aqueous samples using engineered phages. Anal Chem 89:1650–1657. https://doi.org/10.1021/acs.analchem.6b03752

    Article  CAS  PubMed  Google Scholar 

  3. Bazsefidpar S, Serrano-Pertierra E, Gutiérrez G, Calvo AS, Matos M, Blanco-López MC (2023) Rapid and sensitive detection of E. coli O157:H7 by lateral flow immunoassay and silver enhancement. Microchim Acta 190:264. https://doi.org/10.1007/s00604-023-05834-8

    Article  CAS  Google Scholar 

  4. Liu Y, Cao Y, Wang T, Dong Q, Li J, Niu C (2019) Detection of 12 common food-borne bacterial pathogens by TaqMan real-time PCR using a single set of reaction conditions. Front Microbiol 10:222. https://doi.org/10.3389/fmicb.2019.00222

    Article  PubMed  PubMed Central  Google Scholar 

  5. Malekzad H, Jouyban A, Hasanzadeh M, Shadjou N, de la Guardia M (2017) Ensuring food safety using aptamer based assays: electroanalytical approach. TrAC, Trends Anal Chem 94:77–94. https://doi.org/10.1016/j.trac.2017.07.001

    Article  CAS  Google Scholar 

  6. Ambaye AD, Kefeni KK, Mishra SB, Nxumalo EN, Ntsendwana B (2021) Recent developments in nanotechnology-based printing electrode systems for electrochemical sensors. Talanta 225:121951. https://doi.org/10.1016/j.talanta.2020.121951

    Article  CAS  PubMed  Google Scholar 

  7. Vidic J, Manzano M (2021) Electrochemical biosensors for rapid pathogen detection. Curr Opin Electrochem 29:100750. https://doi.org/10.1016/j.coelec.2021.100750

    Article  CAS  Google Scholar 

  8. Zhang Z, Lou Y, Guo C, Jia Q, Song Y, Tian J-Y, Zhang S, Wang M, He L, Du M (2021) Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci Technol 118:569–588. https://doi.org/10.1016/j.tifs.2021.10.024

    Article  CAS  Google Scholar 

  9. Li Z, Zhang X, Qi H, Huang X, Shi J, Zou X (2022) A novel renewable electrochemical biosensor based on mussel-inspired adhesive protein for the detection of Escherichia coli O157:H7 in food. Sensors Actuators B Chem 372:132601. https://doi.org/10.1016/j.snb.2022.132601

    Article  CAS  Google Scholar 

  10. Pourmadadi M, Shayeh JS, Omidi M, Yazdian F, Alebouyeh M, Tayebi L (2019) A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electrochemical aptasensing of lipopolysaccharides from Escherichia coli bacteria. Microchim Acta 186:787. https://doi.org/10.1007/s00604-019-3957-9

    Article  CAS  Google Scholar 

  11. Qiao F-Y, Liu J, Li F-R, Kong X-L, Zhang H-L, Zhou H-X (2008) Antibody and DNA dual-labeled gold nanoparticles: stability and reactivity. Appl Surf Sci 254:2941–2946. https://doi.org/10.1016/j.apsusc.2007.10.046

    Article  CAS  Google Scholar 

  12. Arul P, Huang S-T, Gowthaman NSK, Govindasamy M, Jeromiyas N (2020) Surfactant-free solvothermal synthesis of Cu-MOF via protonation-deprotonation approach: a morphological dependent electrocatalytic activity for therapeutic drugs. Microchim Acta 187:650. https://doi.org/10.1007/s00604-020-04631-x

    Article  CAS  Google Scholar 

  13. Chinnapaiyan S, Tanaya Das H, Govindasamy M, Alothman AA, Ouladsmane M, Huang C-H (2022) Heterogeneous bimetallic (La–Fe) metal-organic-frameworks as an efficient bifunctional catalyst for high-performance supercapacitors and electrochemical sensors. J Electrochem Soc 169:106521. https://doi.org/10.1149/1945-7111/ac9b9a

    Article  CAS  Google Scholar 

  14. Kou X, Tong L, Huang S, Chen G, Zhu F, Ouyang G (2021) Recent advances of covalent organic frameworks and their application in sample preparation of biological analysis. TrAC Trends Anal Chem 136:116182. https://doi.org/10.1016/j.trac.2021.116182

    Article  CAS  Google Scholar 

  15. Zhao Y, Hao L, Ning J, Zhu H, Vijayakumar A, Wang C, Wallace GG (2021) A versatile transition metal ion-binding motif derived from covalent organic framework for efficient CO2 electroreduction. Appl Catal B Environ 291:119915. https://doi.org/10.1016/j.apcatb.2021.119915

    Article  CAS  Google Scholar 

  16. Chinnapaiyan S, Rajaji U, Chen S-M, Liu T-Y, de Oliveira FJI, Chang Y-S (2022) Fabrication of thulium metal–organic frameworks based smartphone sensor towards arsenical feed additive drug detection: applicable in food safety analysis. Electrochim Acta 401:139487. https://doi.org/10.1016/j.electacta.2021.139487

    Article  CAS  Google Scholar 

  17. Lahcen AA, Surya SG, Beduk T, Vijjapu MT, Lamaoui A, Durmus C, Timur S, Shekhah O, Mani V, Amine A, Eddaoudi M, Salama KN (2022) Metal–organic frameworks meet molecularly imprinted polymers: insights and prospects for sensor applications. ACS Appl Mater Interfaces 14:49399–49424. https://doi.org/10.1021/acsami.2c12842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhunia S, Deo KA, Gaharwar AK (2020) 2D covalent organic frameworks for biomedical applications. Adv Func Mater 30:2002046. https://doi.org/10.1002/adfm.202002046

    Article  CAS  Google Scholar 

  19. Evans AM, Giri A, Sangwan VK, Xun S, Bartnof M, Torres-Castanedo CG, Balch HB, Rahn MS, Bradshaw NP, Vitaku E, Burke DW, Li H, Bedzyk MJ, Wang F, Brédas J-L, Malen JA, McGaughey AJH, Hersam MC, Dichtel WR, Hopkins PE (2021) Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nat Mater 20:1142–1148. https://doi.org/10.1038/s41563-021-00934-3

    Article  CAS  PubMed  Google Scholar 

  20. Zhu B, Zhu L, Deng S, Wan Y, Qin F, Han H, Luo J (2023) A fully π-conjugated covalent organic framework with dual binding sites for ultrasensitive detection and removal of divalent heavy metal ions. J Hazard Mater 459:132081. https://doi.org/10.1016/j.jhazmat.2023.132081

    Article  CAS  PubMed  Google Scholar 

  21. Lin G, Ding H, Yuan D, Wang B, Wang C (2016) A pyrene-based, fluorescent three-dimensional covalent organic framework. J Am Chem Soc 138:3302–3305. https://doi.org/10.1021/jacs.6b00652

    Article  CAS  PubMed  Google Scholar 

  22. Das P, Mandal SK (2018) A dual-functionalized, luminescent and highly crystalline covalent organic framework: molecular decoding strategies for VOCs and ultrafast TNP sensing. J Mater Chem A 6:16246–16256. https://doi.org/10.1039/C8TA05070H

    Article  CAS  Google Scholar 

  23. Singh H, Tomer VK, Jena N, Bala I, Sharma N, Nepak D, De Sarkar A, Kailasam K, Pal SK (2017) A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing. J Mater Chem A 5:21820–21827. https://doi.org/10.1039/C7TA05043G

    Article  CAS  Google Scholar 

  24. Chen L, He L, Ma F, Liu W, Wang Y, Silver MA, Chen L, Zhu L, Gui D, Diwu J, Chai Z, Wang S (2018) Covalent organic framework functionalized with 8-hydroxyquinoline as a dual-mode fluorescent and colorimetric pH sensor. ACS Appl Mater Interfaces 10:15364–15368. https://doi.org/10.1021/acsami.8b05484

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Zhao Z, Li G, Yan Y, Hao C (2018) A 2D covalent organic framework as a sensor for detecting formaldehyde. J Mol Model 24:153. https://doi.org/10.1007/s00894-018-3676-x

    Article  CAS  PubMed  Google Scholar 

  26. Li W, Yang C-X, Yan X-P (2017) A versatile covalent organic framework-based platform for sensing biomolecules. Chem Commun 53:11469–11471. https://doi.org/10.1039/C7CC06244C

    Article  CAS  Google Scholar 

  27. Huang S, Chen K, Li T-T (2022) Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis. Coord Chem Rev 464:214563. https://doi.org/10.1016/j.ccr.2022.214563

    Article  CAS  Google Scholar 

  28. Wang M, Hu M, Liu J, Guo C, Peng D, Jia Q, He L, Zhang Z, Du M (2019) Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosens Bioelectron 132:8–16. https://doi.org/10.1016/j.bios.2019.02.040

    Article  CAS  PubMed  Google Scholar 

  29. Wang K, Qi D, Li Y, Wang T, Liu H, Jiang J (2019) Tetrapyrrole macrocycle based conjugated two-dimensional mesoporous polymers and covalent organic frameworks: from synthesis to material applications. Coord Chem Rev 378:188–206. https://doi.org/10.1016/j.ccr.2017.08.023

    Article  CAS  Google Scholar 

  30. Chen R, Kan L, Xu M, Zhang G, Wang M, Cui J, Zhou N, He L (2022) Impedimetric aptasensor based on porphyrin-based covalent-organic framework for determination of diethylstilbestrol. Microchim Acta 189:229. https://doi.org/10.1007/s00604-022-05310-9

    Article  CAS  Google Scholar 

  31. Zhang X, Chi K-N, Li D-L, Deng Y, Ma Y-C, Xu Q-Q, Hu R, Yang Y-H (2019) 2D-porphrinic covalent organic framework-based aptasensor with enhanced photoelectrochemical response for the detection of C-reactive protein. Biosens Bioelectron 129:64–71. https://doi.org/10.1016/j.bios.2019.01.009

    Article  CAS  PubMed  Google Scholar 

  32. She P, Qin Y, Wang X, Zhang Q (2022) Recent progress in external-stimulus-responsive 2D covalent organic frameworks. Adv Mater 34:2101175. https://doi.org/10.1002/adma.202101175

    Article  CAS  Google Scholar 

  33. Yan X, Song Y, Liu J, Zhou N, Zhang C, He L, Zhang Z, Liu Z (2019) Two-dimensional porphyrin-based covalent organic framework: a novel platform for sensitive epidermal growth factor receptor and living cancer cell detection. Biosens Bioelectron 126:734–742. https://doi.org/10.1016/j.bios.2018.11.047

    Article  CAS  PubMed  Google Scholar 

  34. Cui J, Kan L, Cheng F, Liu J, He L, Xue Y, Fang S, Zhang Z (2022) Construction of bifunctional electrochemical biosensors for the sensitive detection of the SARS-CoV-2 N-gene based on porphyrin porous organic polymers. Dalton Trans 51:2094–2104. https://doi.org/10.1039/D1DT03869A

    Article  CAS  PubMed  Google Scholar 

  35. Cui J, Wu B, Li Z, Bai Y, Kan L, Wang M, He L, Du M (2023) Hierarchical CoCoPBA@PCN-221 nanostructure for the highly sensitive detection of deoxynivalenol in foodstuffs. Food Chem 403:134370. https://doi.org/10.1016/j.foodchem.2022.134370

    Article  CAS  PubMed  Google Scholar 

  36. Xiong M, Wang B, Wang H, Xu F, Zeng Y, Ren H, Zeng H (2022) Probing the adsorption behavior and mechanism of NO2 and NH2 functionalized covalent organic frameworks (COFs) for removal of bisphenol A. Microporous Mesoporous Mater 346:112299. https://doi.org/10.1016/j.micromeso.2022.112299

    Article  CAS  Google Scholar 

  37. Cui J, Kan L, Li Z, Yang L, Wang M, He L, Lou Y, Xue Y, Zhang Z (2021) Porphyrin-based covalent organic framework as bioplatfrom for detection of vascular endothelial growth factor 165 through fluorescence resonance energy transfer. Talanta 228:122060. https://doi.org/10.1016/j.talanta.2020.122060

    Article  CAS  PubMed  Google Scholar 

  38. Lohse MS, Stassin T, Naudin G, Wuttke S, Ameloot R, De Vos D, Medina DD, Bein T (2016) Sequential pore wall modification in a covalent organic framework for application in lactic acid adsorption. Chem Mater 28:626–631. https://doi.org/10.1021/acs.chemmater.5b04388

    Article  CAS  Google Scholar 

  39. Peng Y, Huang Y, Zhu Y, Chen B, Wang L, Lai Z, Zhang Z, Zhao M, Tan C, Yang N, Shao F, Han Y, Zhang H (2017) Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. J Am Chem Soc 139:8698–8704. https://doi.org/10.1021/jacs.7b04096

    Article  CAS  PubMed  Google Scholar 

  40. Xu M, Chen K, Zhu L, Zhang S, Wang M, He L, Zhang Z, Du M (2021) MOF@COF heterostructure hybrid for dual-mode photoelectrochemical–electrochemical HIV-1 DNA sensing. Langmuir 37:13479–13492. https://doi.org/10.1021/acs.langmuir.1c02253

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X, Gao Y, Li J, Yan J, Liu P, Fan X, Song W (2023) A novel TAPP-DHTA COF cathodic photoelectrochemical immunosensor based on CRISPR/Cas12a-induced nanozyme catalytic generation of heterojunction. Electrochim Acta 441:141771. https://doi.org/10.1016/j.electacta.2022.141771

    Article  CAS  Google Scholar 

  42. Ding S-Y, Dong M, Wang Y-W, Chen Y-T, Wang H-Z, Su C-Y, Wang W (2016) Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J Am Chem Soc 138:3031–3037. https://doi.org/10.1021/jacs.5b10754

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Y, Wang Q, Li Y, Hu R (2022) Bithiophene-based COFs for silver ions detection and removal. Microporous Mesoporous Mater 346:112289. https://doi.org/10.1016/j.micromeso.2022.112289

    Article  CAS  Google Scholar 

  44. Liu X, Hu M, Wang M, Song Y, Zhou N, He L, Zhang Z (2019) Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: Ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosens Bioelectron 123:59–68. https://doi.org/10.1016/j.bios.2018.09.089

    Article  CAS  PubMed  Google Scholar 

  45. Gupta A, Garg M, Singh S, Deep A, Sharma AL (2020) Highly sensitive optical detection of Escherichia coli using terbium-based metal–organic framework. ACS Appl Mater Interfaces 12:48198–48205. https://doi.org/10.1021/acsami.0c14312

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Yang L, Wang H, Huang J, Lin Y, Chen S, Guan X, Yi M, Li S, Zhang L (2021) Bioinspired metal–organic frameworks mediated efficient delivery of siRNA for cancer therapy. Chem Eng J 426:131926. https://doi.org/10.1016/j.cej.2021.131926

    Article  CAS  Google Scholar 

  47. Adachi T, Nakamura Y (2019) Aptamers: a review of their chemical properties and modifications for therapeutic application. Molecules 24:4229. https://doi.org/10.3390/molecules24234229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo W, Sun N, Qin X, Pei M, Wang L (2015) A novel electrochemical aptasensor for ultrasensitive detection of kanamycin based on MWCNTs–HMIMPF6 and nanoporous PtTi alloy. Biosens Bioelectron 74:691–697. https://doi.org/10.1016/j.bios.2015.06.081

    Article  CAS  PubMed  Google Scholar 

  49. Inam AKMS, Angeli MAC, Douaki A, Shkodra B, Lugli P, Petti L (2022) An aptasensor based on a flexible screen-printed silver electrode for the rapid detection of chlorpyrifos. Sensors 22:2754. https://doi.org/10.3390/s22072754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hiremath SD, Bhosle AA, Nayse A, Biswas S, Biswas M, Bhasikuttan AC, Banerjee M, Chatterjee A (2021) A redox-coupled carbon dots-MnO2 nanosheets based sensory platform for label-free and sensitive detection of E. coli. Sensors Actuators B Chem 339:129918. https://doi.org/10.1016/j.snb.2021.129918

    Article  CAS  Google Scholar 

  51. Wang B, Huang X, Ma M, Shi Q, Cai Z (2014) A simple quantum dot-based fluoroimmunoassay method for selective capturing and rapid detection of Salmonella Enteritidis on eggs. Food Control 35:26–32. https://doi.org/10.1016/j.foodcont.2013.06.025

    Article  CAS  Google Scholar 

  52. Zhao W, Xing Y, Lin Y, Gao Y, Wu M, Xu J (2020) Monolayer graphene chemiresistive biosensor for rapid bacteria detection in a microchannel. Sens Actuators Rep 2:100004. https://doi.org/10.1016/j.snr.2020.100004

    Article  Google Scholar 

  53. Díaz-Amaya S, Lin L-K, Deering AJ, Stanciu LA (2019) Aptamer-based SERS biosensor for whole cell analytical detection of E. coli O157:H7. Anal Chim Acta 1081:146–156. https://doi.org/10.1016/j.aca.2019.07.028

    Article  CAS  PubMed  Google Scholar 

  54. Wang P, Wang A, Hassan MM, Ouyang Q, Li H, Chen Q (2020) A highly sensitive upconversion nanoparticles-WS2 nanosheet sensing platform for Escherichia coli detection. Sensors Actuators B Chem 320:128434. https://doi.org/10.1016/j.snb.2020.128434

    Article  CAS  Google Scholar 

  55. Jijie R, Kahlouche K, Barras A, Yamakawa N, Bouckaert J, Gharbi T, Szunerits S, Boukherroub R (2018) Reduced graphene oxide/polyethylenimine based immunosensor for the selective and sensitive electrochemical detection of uropathogenic Escherichia coli. Sens Actuators, B Chem 260:255–263. https://doi.org/10.1016/j.snb.2017.12.169

    Article  CAS  Google Scholar 

  56. Zhong M, Yang L, Yang H, Cheng C, Deng W, Tan Y, Xie Q, Yao S (2019) An electrochemical immunobiosensor for ultrasensitive detection of Escherichia coli O157:H7 using CdS quantum dots-encapsulated metal-organic frameworks as signal-amplifying tags. Biosens Bioelectron 126:493–500. https://doi.org/10.1016/j.bios.2018.11.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51903224), the Excellent Youth Science Foundation (202300410494) and the Scientific and Technological Project (No. 222102220086) of Henan Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoming Fang, Zhihong Zhang or Liming Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 708 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Zhang, Y., Lun, K. et al. Sensitive detection of Escherichia coli in diverse foodstuffs by electrochemical aptasensor based on 2D porphyrin-based COF. Microchim Acta 190, 421 (2023). https://doi.org/10.1007/s00604-023-05978-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05978-7

Keywords

Navigation