Skip to main content
Log in

Cucurbit[n]urils (n = 7, 8) can strongly bind neutral hydrophilic molecules in water

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

It is challenging to recognize neutral hydrophilic molecules in water. Effective use of hydrogen bonds in water is generally accepted to be the key to success. In contrast, hydrophobic cavity is usually considered to play an insignificant role or only to provide a nonpolar microenvironment for hydrogen bonds. Herein, we report that hydrophobic cavity alone can also strongly bind neutral, highly hydrophilic molecules in water. We found that cucurbit[n]urils (n = 7, 8) bind 1,4-dioxane, crown ethers and monosaccharides in water with remarkable affinities. The best binding constant reaches 107 M−1 for cucurbit[8]uril, which is higher than its binding affinities to common organic cations. Density functional theory (DFT) calculations and control experiments reveal that the hydrophobic effect is the major contributor to the binding through releasing the cavity water and/or properly occupying the weakly hydrated cavity. However, hydrophobic cavity still prefers nonpolar guests over polar guests with similar size and shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oshovsky GV, Reinhoudt DN, Verboom W. Angew Chem Int Ed, 2007, 46: 2366–2393

    Article  CAS  Google Scholar 

  2. Kataev EA, Müller C. Tetrahedron, 2014, 70: 137–167

    Article  CAS  Google Scholar 

  3. Smith BD. Synthetic Receptors for Biomolecules: Design Principles and Applications. Cambridge: The Royal Society of Chemistry, 2015

    Book  Google Scholar 

  4. Kubik S. Supramolecular Chemistry in Water. Weinheim: Wiley-VCH, 2019

    Book  Google Scholar 

  5. Escobar L, Ballester P. Chem Rev, 2021, 121: 2445–2514

    Article  CAS  PubMed  Google Scholar 

  6. Dong J, Davis AP. Angew Chem Int Ed, 2021, 60: 8035–8048

    Article  CAS  Google Scholar 

  7. Ferguson Johns HP, Harrison EE, Stingley KJ, Waters ML. Chem Eur J, 2021, 27: 6620–6644

    Article  CAS  PubMed  Google Scholar 

  8. Anslyn EV, Dougherty DA. Modern Physical Organic Chemistry. Sausalito: University Science Books, 2006. 230–232

    Google Scholar 

  9. Davis AP, Kubik S, Dalla Cort A. Org Biomol Chem, 2015, 13: 2499–2500

    Article  CAS  PubMed  Google Scholar 

  10. Davis AP. Chem Soc Rev, 2020, 49: 2531–2545

    Article  CAS  PubMed  Google Scholar 

  11. Tromans RA, Carter TS, Chabanne L, Crump MP, Li H, Matlock JV, Orchard MG, Davis AP. Nat Chem, 2019, 11: 52–56

    Article  CAS  PubMed  Google Scholar 

  12. Crini G. Chem Rev, 2014, 114: 10940–10975

    Article  CAS  PubMed  Google Scholar 

  13. Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K. Acc Chem Res, 2003, 36: 621–630

    Article  CAS  PubMed  Google Scholar 

  14. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew Chem Int Ed, 2005, 44: 4844–4870

    Article  CAS  Google Scholar 

  15. Urbach AR, Ramalingam V. Isr J Chem, 2011, 51: 664–678

    Article  CAS  Google Scholar 

  16. Assaf KI, Nau WM. Chem Soc Rev, 2015, 44: 394–418

    Article  CAS  PubMed  Google Scholar 

  17. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Chem Rev, 2015, 115: 12320–12406

    Article  CAS  PubMed  Google Scholar 

  18. Ma YL, Quan M, Lin XL, Cheng Q, Yao H, Yang XR, Li MS, Liu WE, Bai LM, Wang R, Jiang W. CCS Chem, 2021, 3: 1078–1092

    Article  CAS  Google Scholar 

  19. Yang JM, Chen YQ, Yu Y, Ballester P, Rebek Jr J. J Am Chem Soc, 2021, 143: 19517–19524

    Article  CAS  PubMed  Google Scholar 

  20. Shetty D, Khedkar JK, Park KM, Kim K. Chem Soc Rev, 2015, 44: 8747–8761

    Article  CAS  PubMed  Google Scholar 

  21. Liu W, Samanta SK, Smith BD, Isaacs L. Chem Soc Rev, 2017, 46: 2391–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murray J, Kim K, Ogoshi T, Yao W, Gibb BC. Chem Soc Rev, 2017, 46: 2479–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mobley DL, Bayly CI, Cooper MD, Shirts MR, Dill KA. J Chem Theor Comput, 2009, 5: 350–358

    Article  CAS  Google Scholar 

  24. Zhang YM, Yang ZX, Chen Y, Ding F, Liu Y. Cryst Growth Des, 2012, 12: 1370–1377

    Article  CAS  Google Scholar 

  25. Smulders MMJ, Zarra S, Nitschke JR. J Am Chem Soc, 2013, 135: 7039–7046

    Article  CAS  PubMed  Google Scholar 

  26. Corinne LD, Gibb BC. Tetrahedron, 2009, 65: 7240–7248

    Article  Google Scholar 

  27. Buschmann HJ, Jansen K, Schollmeyer E. Thermochim Acta, 2000, 346: 33–36

    Article  CAS  Google Scholar 

  28. Wyman IW, Macartney DH. Org Biomol Chem, 2008, 6: 1796–1801

    Article  CAS  PubMed  Google Scholar 

  29. Haouaj ME, Ho Ko Y, Luhmer M, Kim K, Bartik K. J Chem Soc Perkin Trans 2, 2001, 2: 2104–2107

    Article  Google Scholar 

  30. Biedermann F, Uzunova VD, Scherman OA, Nau WM, De Simone A. J Am Chem Soc, 2012, 134: 15318–15323

    Article  CAS  PubMed  Google Scholar 

  31. Day A, Arnold AP, Blanch RJ, Snushall B. J Org Chem, 2001, 66: 8094–8100

    Article  CAS  PubMed  Google Scholar 

  32. Jang Y, Natarajan R, Ko YH, Kim K. Angew Chem Int Ed, 2014, 53: 1003–1007

    Article  CAS  Google Scholar 

  33. Lee HHL, Lee JW, Jang Y, Ko YH, Kim K, Kim HI. Angew Chem Int Ed, 2016, 55: 8249–8253

    Article  CAS  Google Scholar 

  34. Yamashina M, Kusaba S, Akita M, Kikuchi T, Yoshizawa M. Nat Commun, 2018, 9: 4227

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yamashina M, Akita M, Hasegawa T, Hayashi S, Yoshizawa M. Sci Adv, 2017, 3: e1701126

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kusaba S, Yamashina M, Akita M, Kikuchi T, Yoshizawa M. Angew Chem Int Ed, 2018, 57: 3706–3710

    Article  CAS  Google Scholar 

  37. Carcanague DR, Knobler CB, Diederich F. J Am Chem Soc, 1992, 114: 1515–1517

    Article  CAS  Google Scholar 

  38. Kato Y, Conn MM, Rebek JJ. J Am Chem Soc, 1994, 116: 3279–3284

    Article  CAS  Google Scholar 

  39. Torneiro M, Still WC. J Am Chem Soc, 1995, 117: 5887–5888

    Article  CAS  Google Scholar 

  40. Allott C, Adams H, Hunter CA, Thomas JA, Bernad Jr. PL, Rotger C. Chem Commun, 1998, 1: 2449–2450

    Article  Google Scholar 

  41. Butterfield SM, Rebek J. J Am Chem Soc, 2006, 128: 15366–15367

    Article  CAS  PubMed  Google Scholar 

  42. Verdejo B, Gil-Ramírez G, Ballester P. J Am Chem Soc, 2009, 131: 3178–3179

    Article  CAS  PubMed  Google Scholar 

  43. Peñuelas-Haro G, Ballester P. Chem Sci, 2019, 10: 2413–2423

    Article  PubMed  Google Scholar 

  44. Escobar L, Ballester P. Org Chem Front, 2019, 6: 1738–1748

    Article  CAS  Google Scholar 

  45. Peck EM, Liu W, Spence GT, Shaw SK, Davis AP, Destecroix H, Smith BD. J Am Chem Soc, 2015, 137: 8668–8671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu W, Gómez-Durán CFA, Smith BD. J Am Chem Soc, 2017, 139: 6390–6395

    Article  CAS  PubMed  Google Scholar 

  47. Li DH, Smith BD. Beilstein J Org Chem, 2019, 15: 1086–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang LL, Tu YK, Yao H, Jiang W. Beilstein J Org Chem, 2019, 15: 1460–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang L, Tu Y, Valkonen A, Rissanen K, Jiang W. Chin J Chem, 2019, 37: 892–896

    Article  CAS  Google Scholar 

  50. Zhang H, Wang LL, Pang XY, Yang LP, Jiang W. Chem Commun, 2021, 57: 13724–13727

    Article  CAS  Google Scholar 

  51. Huang GB, Wang SH, Ke H, Yang LP, Jiang W. J Am Chem Soc, 2016, 138: 14550–14553

    Article  CAS  PubMed  Google Scholar 

  52. Yao H, Ke H, Zhang X, Pan SJ, Li MS, Yang LP, Schreckenbach G, Jiang W. J Am Chem Soc, 2018, 140: 13466–13477

    Article  CAS  PubMed  Google Scholar 

  53. Ke H, Yang LP, Xie M, Chen Z, Yao H, Jiang W. Nat Chem, 2019, 11: 470–477

    Article  CAS  PubMed  Google Scholar 

  54. Chai H, Chen Z, Wang SH, Quan M, Yang LP, Ke H, Jiang W. CCS Chem, 2020, 2: 440–452

    Article  CAS  Google Scholar 

  55. Zhou H, Pang XY, Wang X, Yao H, Yang LP, Jiang W. Angew Chem Intl Edit, 2021, 60: 25981–25987

    Article  CAS  Google Scholar 

  56. Wang X, Quan M, Yao H, Pang XY, Ke H, Jiang W. Nat Commun, 2022, 13: 2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kubik S. ChemistryOpen, 2022, 11: e202200028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cao L, Śekutor M, Zavalij PY, Mlinarić-Majerski K, Glaser R, Isaacs L. Angew Chem Int Ed, 2014, 53: 988–993

    Article  CAS  Google Scholar 

  59. Jeon WS, Kim HJ, Lee C, Kim K. Chem Commun, 2002, 1828–1829

  60. Ko YH, Kim Y, Kim H, Kim K. Chem Asian J, 2011, 6: 652–657

    Article  CAS  PubMed  Google Scholar 

  61. Jeon YM, Kim J, Whang D, Kim K. J Am Chem Soc, 1996, 118: 9790–9791

    Article  CAS  Google Scholar 

  62. Whang D, Heo J, Park JH, Kim K. Angew Chem Int Ed, 1998, 37: 78–80

    Article  CAS  Google Scholar 

  63. Chandramouli N, Ferrand Y, Lautrette G, Kauffmann B, Mackereth CD, Laguerre M, Dubreuil D, Huc I. Nat Chem, 2015, 7: 334–341

    Article  CAS  PubMed  Google Scholar 

  64. Lefebvre C, Rubez G, Khartabil H, Boisson JC, Contreras-García J, Hénon E. Phys Chem Chem Phys, 2017, 19: 17928–17936

    Article  CAS  PubMed  Google Scholar 

  65. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

  66. Nau WM, Florea M, Assaf KI. Isr J Chem, 2011, 51: 559–577

    Article  CAS  Google Scholar 

  67. Assaf KI, Florea M, Antony J, Henriksen NM, Yin J, Hansen A, Qu ZW, Sure R, Klapstein D, Gilson MK, Grimme S, Nau WM. J Phys Chem B, 2017, 121: 11144–11162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rodriguez-Docampo Z, Pascu SI, Kubik S, Otto S. J Am Chem Soc, 2006, 128: 11206–11210

    Article  CAS  PubMed  Google Scholar 

  69. Sommer F, Kubik S. Org Biomol Chem, 2014, 12: 8851–8860

    Article  CAS  PubMed  Google Scholar 

  70. Schneider HJ. New J Chem, 2019, 43: 15498–15512

    Article  CAS  Google Scholar 

  71. Harrison JC, Eftink MR. Biopolymers, 1982, 21: 1153–1166

    Article  CAS  Google Scholar 

  72. Stauffer DA, Barrans Jr. RE, Dougherty DA. J Org Chem, 1990, 55: 2762–2767

    Article  CAS  Google Scholar 

  73. Smithrud DB, Wyman TB, Diederich F. J Am Chem Soc, 1991, 113: 5420–5426

    Article  CAS  Google Scholar 

  74. Prabhu NV, Sharp KA. Annu Rev Phys Chem, 2005, 56: 521–548

    Article  CAS  PubMed  Google Scholar 

  75. Chodera JD, Mobley DL. Annu Rev Biophys, 2013, 42: 121–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Snyder PW, Mecinović J, Moustakas DT, Thomas III SW, Harder M, Mack ET, Lockett MR, Héroux A, Sherman W, Whitesides GM. Proc Natl Acad Sci USA, 2011, 108: 17889–17894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Blokzijl W, Engberts JBFN. Angew Chem Int Ed, 1993, 32: 1545–1579

    Article  Google Scholar 

  78. Bakker HJ. Nature, 2012, 491: 533–535

    Article  CAS  PubMed  Google Scholar 

  79. Chandler D. Nature, 2005, 437: 640–647

    Article  CAS  PubMed  Google Scholar 

  80. Meyer EE, Rosenberg KJ, Israelachvili J. Proc Natl Acad Sci USA, 2006, 103: 15739–15746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ben-Amotz D. Annu Rev Phys Chem, 2016, 67: 617–638

    Article  CAS  PubMed  Google Scholar 

  82. Ernst NE, Gibb BC. Water runs deep. In: Kubik S, Ed. Supramolecular Chemistry in Water. Weihheim: Wiley-VCH, 2019. 1–33

    Book  Google Scholar 

  83. Cremer PS, Flood AH, Gibb BC, Mobley DL. Nat Chem, 2018, 10: 8–16

    Article  CAS  Google Scholar 

  84. Hillyer MB, Gibb BC. Annu Rev Phys Chem, 2016, 67: 307–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Biedermann F, Nau WM, Schneider HJ. Angew Chem Int Ed, 2014, 53: 11158–11171

    Article  CAS  Google Scholar 

  86. Snyder PW, Lockett MR, Moustakas DT, Whitesides GM. Eur Phys J Spec Top, 2014, 223: 853–891

    Article  Google Scholar 

  87. Vaitheeswaran S, Yin H, Rasaiah JC, Hummer G. Proc Natl Acad Sci USA, 2004, 101: 17002–17005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. He S, Biedermann F, Vankova N, Zhechkov L, Heine T, Hoffman RE, De Simone A, Duignan TT, Nau WM. Nat Chem, 2018, 10: 1252–1257

    Article  CAS  PubMed  Google Scholar 

  89. Barnett JW, Sullivan MR, Long JA, Tang D, Nguyen T, Ben-Amotz D, Gibb BC, Ashbaugh HS. Nat Chem, 2020, 12: 589–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mecozzi S, Rebek, Jr J. Chem Eur J, 1998, 4: 1016–1022

    Article  CAS  Google Scholar 

  91. Trembleau L, Rebek Jr J. Science, 2003, 301: 1219–1220

    Article  CAS  PubMed  Google Scholar 

  92. Toone EJ. Curr Opin Struct Biol, 1994, 4: 719–728

    Article  CAS  Google Scholar 

  93. Liu W, Tan Y, Jones LO, Song B, Guo QH, Zhang L, Qiu Y, Feng Y, Chen XY, Schatz GC, Stoddart JF. J Am Chem Soc, 2021, 143: 15688–15700

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22101125), Shenzhen Science and Technology Innovation Committee (JCYJ20180504165810828), Shenzhen “Pengcheng Scholar”, Guangdong High-Level Personnel of Special Support Program (2019TX05C157), and Guangdong Provincial Key Laboratory of Catalysis (2020B121201002). We are grateful to the technical support from SUSTech-CRF and the Center for Computational Science and Engineering of SUSTech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Jiang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MS., Quan, M., Yang, XR. et al. Cucurbit[n]urils (n = 7, 8) can strongly bind neutral hydrophilic molecules in water. Sci. China Chem. 65, 1733–1740 (2022). https://doi.org/10.1007/s11426-022-1312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1312-5

Keywords

Navigation