Skip to main content

Advertisement

Log in

Quaternary Ammonium Compounds: Simple in Structure, Complex in Application

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Quaternary ammonium compounds, referred to as QACs, are cationic substances with a structure on the edge of organic and inorganic chemistry and unique physicochemical properties. The purpose of the present work is to introduce QACs and their wide application potential. Fundamental properties, methods of preparation, and utilization in organic synthesis are reviewed. Modern applications and the use of QACs as reactive substrates, reagents, phase-transfer catalysts, ionic liquids, electrolytes, frameworks, surfactants, herbicides, and antimicrobials are further covered. A brief discussion of the health and environmental impact of QACs is also provided. The emphasis is largely on tetraalkylammonium compounds bearing linear alkyl chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Fig. 3
Scheme 9
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hofmann AW (1851) Beiträge zur Kenntniss der fluchtigen organischen Basen. Justus Liebigs Ann Chem 78:253–286

    Article  Google Scholar 

  2. Weston CW, Papcun JR, Dery M (2003) Ammonium compounds. In: Kirk–Othmer encyclopedia of chemical technology, vol 2. Wiley, NY, pp 711–762. https://doi.org/10.1002/0471238961.0113131523051920.a01.pub2

  3. OECD (2004) The 2004 OECD list of high production volume Chemicals. http://www.oecd.org/chemicalsafety/risk-assessment/33883530.pdf. Accessed 31 Jul 2018

  4. Solomons TWG (1976) Organic chemistry. Wiley, Oxford

    Google Scholar 

  5. Chiappe C, Pieraccini D (2003) Direct mono-N-alkylation of amines in ionic liquids: chemoselectivity and reactivity. Green Chem 5:193–197. https://doi.org/10.1039/b211340f

    Article  CAS  Google Scholar 

  6. Pham TH, Olsson JS, Jannasch P (2017) N-Spirocyclic quaternary ammonium ionenes for anion-exchange membranes. J Am Chem Soc 139:2888–2891. https://doi.org/10.1021/jacs.6b12944

    Article  CAS  PubMed  Google Scholar 

  7. Zagorodni AA (2007) Ion exchange materials. Elsevier, Oxford

    Book  Google Scholar 

  8. Dockx J (1973) Quaternary ammonium compounds in organic synthesis. Synthesis (Stuttg) 14:441–456. https://doi.org/10.1055/s-1973-22233

    Article  Google Scholar 

  9. Spettel M, Pollice R, Schnürch M (2017) Quaternary ammonium salts as alkylating reagents in C–H activation chemistry. Org Lett 19:4287–4290. https://doi.org/10.1021/acs.orglett.7b01946

    Article  CAS  PubMed  Google Scholar 

  10. Yu W, Yang S, Xiong F et al (2018) Palladium-catalyzed carbonylation of benzylic ammonium salts to amides and esters: via C–N bond activation. Org Biomol Chem 16:3099–3103. https://doi.org/10.1039/c8ob00488a

    Article  CAS  PubMed  Google Scholar 

  11. Pine SH (2011) The base-promoted rearrangements of quaternary ammonium salts. Organic reactions. Wiley, Oxford

    Google Scholar 

  12. Li JJ (2014) Name reactions, pp 580–581. https://doi.org/10.1007/978-3-319-03979-4

    Book  Google Scholar 

  13. Gonçalves-Farbos MH, Vial L, Lacour J (2008) Enantioselective [1,2]-Stevens rearrangement of quaternary ammonium salts. A mechanistic evaluation. Chem Commun. https://doi.org/10.1039/b716488b

    Article  Google Scholar 

  14. Orejarena Pacheco JC, Lahm G, Opatz T (2013) Synthesis of alkaloids by stevens rearrangement of nitrile-stabilized ammonium ylides: (±)-laudanosine, (±)-laudanidine, (±)-armepavine, (±)-7-methoxycryptopleurine, and (±)-xylopinine. J Org Chem 78:4985–4992. https://doi.org/10.1021/jo400659n

    Article  CAS  PubMed  Google Scholar 

  15. Bos ME (2001) Benzyltrimethylammonium hydroxide. Encycl Reagents Org Synth 1:1–3. https://doi.org/10.1002/047084289X.rb079

    Article  CAS  Google Scholar 

  16. Bestmann HJ, Frey H (1980) Reationen mit Phosphinalkylenen, XXXIX. Neue Aufbaumöglichkeiten für 1-Bromacetylene und aromatische sowie konjugierte Enine. Liebigs Ann der Chem 1980:2061–2071. https://doi.org/10.1002/jlac.198019801216

    Article  Google Scholar 

  17. Kivala M, Diederich F (2009) Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores. Acc Chem Res 42:235–248. https://doi.org/10.1021/ar8001238

    Article  CAS  PubMed  Google Scholar 

  18. Klikar M, Solanke P, Tydlitát J, Bureš F (2016) Alphabet-inspired design of (hetero)aromatic push–pull chromophores. Chem Rec. https://doi.org/10.1002/tcr.201600032

    Article  PubMed  Google Scholar 

  19. Otaka H, Ikeda J, Tanaka D, Tobe M (2014) Construction of 3,5-substituted 1,2,4-oxadiazole rings triggered by tetrabutylammonium hydroxide: a highly efficient and fluoride-free ring closure reaction of O-acylamidoximes. Tetrahedron Lett 55:979–981. https://doi.org/10.1016/j.tetlet.2013.12.016

    Article  CAS  Google Scholar 

  20. Clark JH (1980) Fluoride ion as a base in organic synthesis. Chem Rev 80:429–452. https://doi.org/10.1021/cr60327a004

    Article  CAS  Google Scholar 

  21. Denmark SE, Sweis RF (2004) Organosilicon compounds in cross-coupling reactions. Metal-catalyzed cross-coupling reactions, second, completely revised and enlarged edition, vol 1. Wiley, Oxfod, pp 163–216

    Chapter  Google Scholar 

  22. Sharma RK, Fry JL (1983) Instability of anhydrous tetra-n-alkylammonium fluorides. J Org Chem 48:2112–2114. https://doi.org/10.1021/jo00160a041

    Article  CAS  Google Scholar 

  23. Greene TW et al (1999) Wuts PGM, protective groups in organic. Wiley, Oxfod

    Book  Google Scholar 

  24. Kulhánek J, Bureš F, Ludwig M (2009) Convenient methods for preparing p-conjugated linkers as building blocks for modular chemistry. Beilstein J Org Chem 5:1–5. https://doi.org/10.3762/bjoc.5.11

    Article  CAS  Google Scholar 

  25. Mukhopadhyay A, Maka VK, Moorthy JN (2016) Fluoride-triggered ring-opening of photochromic diarylpyrans into merocyanine dyes: naked-eye sensing in subppm levels. J Org Chem 81:7741–7750. https://doi.org/10.1021/acs.joc.6b01361

    Article  CAS  PubMed  Google Scholar 

  26. Sun H, DiMagno SG (2005) Anhydrous tetrabutylammonium fluoride. J Am Chem Soc 127:2050–2051. https://doi.org/10.1021/ja0440497

    Article  CAS  PubMed  Google Scholar 

  27. Starks CM, Liotta CL, Halpern ME (1994) Phase-transfer catalysis: fundamentals, applications, and industrial perspectives. Springer, Dordrecht

    Book  Google Scholar 

  28. Hashimoto T, Maruoka K (2007) Recent development and application of chiral phase-transfer catalysts. Chem Rev 107:5656–5682. https://doi.org/10.1021/cr068368n

    Article  CAS  PubMed  Google Scholar 

  29. Makosza M (2000) Phase-transfer catalysis. A general green methodology in organic synthesis. Pure Appl Chem 72:1399–1403. https://doi.org/10.1351/pac200072071399

    Article  CAS  Google Scholar 

  30. Selvi S, Nanthini S (2012) The basic principle of phase-transfer catalysis, some mechanistic aspects and important applications. Int J Sci Technol Res 1:61–63. https://doi.org/10.1002/9783527622627.ch1

    Article  Google Scholar 

  31. Yen YS, Ni JS, Lin TY et al (2015) Imidazole-based sensitizers containing double anchors for dye-sensitized solar cells. Eur J Org Chem 2015:7367–7377. https://doi.org/10.1002/ejoc.201501131

    Article  CAS  Google Scholar 

  32. Sankova N, Semeykina V, Selishchev D et al (2018) Influence of tetraalkylammonium compounds on photocatalytic and physical properties of TiO2. Catal Lett 148:2391–2407. https://doi.org/10.1007/s10562-018-2455-8

    Article  CAS  Google Scholar 

  33. Payagala T, Armstrong DW (2012) Chiral ionic liquids: a compendium of syntheses and applications (2005–2012). Chirality 24:17–53. https://doi.org/10.1002/chir.21975

    Article  CAS  PubMed  Google Scholar 

  34. Special Issue on Ionic liquids (2017). Chem Rev 117:6633–7240. https://pubs.acs.org/toc/chreay/117/10

  35. Bin ZZ, Matsumoto H, Tatsumi K (2005) Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem A Eur J 11:752–766. https://doi.org/10.1002/chem.200400817

    Article  CAS  Google Scholar 

  36. Lethesh KC, Dehaen W, Binnemans K (2014) Base stable quaternary ammonium ionic liquids. RSC Adv 4:4472–4477. https://doi.org/10.1039/c3ra45126g

    Article  CAS  Google Scholar 

  37. Pernak J, Świerczyńska A, Walkiewicz F et al (2009) Long alkyl chain bis-quaternary ammonium-based ionic liquids as biologically active xanthenes dyes. J Braz Chem Soc 20:839–845

    CAS  Google Scholar 

  38. Pernak J, Smiglak M, Griffin ST et al (2006) Long alkyl chain quaternary ammonium-based ionic liquids and potential applications. Green Chem 8:798–806. https://doi.org/10.1039/b604353d

    Article  CAS  Google Scholar 

  39. Metcalfe LD, Martin RJ, Schmitz AA (1966) Titration of long-chain quaternary ammonium compounds using tetraphenylboron. J Am Oil Chem Soc 43:355–357. https://doi.org/10.1007/BF02646787

    Article  CAS  Google Scholar 

  40. Elgrishi N, Rountree KJ, McCarthy BD et al (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95:197–206. https://doi.org/10.1021/acs.jchemed.7b00361

    Article  CAS  Google Scholar 

  41. Elgrishi N, Rountree KJ, McCarthy BD et al (1996) Recycling of the supporting electrolyte tetra (n-butyl) ammonium hexafluorophosphate from used electrolyte solutions. Curr Sep 2:53–56

    Google Scholar 

  42. Watanabe M, Thomas ML, Zhang S et al (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117:7190–7239. https://doi.org/10.1021/acs.chemrev.6b00504

    Article  CAS  PubMed  Google Scholar 

  43. Selvamani V, Suryanarayanan V, Velayutham D, Gopukumar S (2016) Asymmetric tetraalkyl ammonium cation-based ionic liquid as an electrolyte for lithium-ion battery applications. J Solid State Electrochem 20:2283–2293. https://doi.org/10.1007/s10008-016-3248-x

    Article  CAS  Google Scholar 

  44. Bai R, Sun Q, Wang N et al (2016) Simple quaternary ammonium cations-templated syntheses of extra-large pore germanosilicate zeolites. Chem Mater 28:6455–6458. https://doi.org/10.1021/acs.chemmater.6b03179

    Article  CAS  Google Scholar 

  45. Shen X, Mao W, Ma Y et al (2018) Mesoporous MFI zeolite with a 2D square structure directed by surfactants with an azobenzene tail group. Chem A Eur J 24:8615–8623. https://doi.org/10.1002/chem.201800307

    Article  CAS  Google Scholar 

  46. Zones SI, Olmstead MM, Santilli DS (1992) Guest/host relationships in the synthesis of large pore zeolite SSZ-26 from a propellane quaternary ammonium compound. J Am Chem Soc 114:4195–4201. https://doi.org/10.1021/ja00037a023

    Article  CAS  Google Scholar 

  47. Chapoy A, Anderson R, Tohidi B (2007) Low-pressure molecular hydrogen storage in semi-clathrate hydrates of quaternary ammonium compounds. J Am Chem Soc 129:746–747. https://doi.org/10.1021/ja066883x

    Article  CAS  PubMed  Google Scholar 

  48. Shishatskiy S, Pauls JR, Nunes SP, Peinemann KV (2010) Quaternary ammonium membrane materials for CO2 separation. J Memb Sci 359:44–53. https://doi.org/10.1016/j.memsci.2009.09.006

    Article  CAS  Google Scholar 

  49. Ramanathan M, Shrestha LK, Mori T et al (2013) Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. Phys Chem Chem Phys 15:10580–10611. https://doi.org/10.1039/c3cp50620g

    Article  CAS  PubMed  Google Scholar 

  50. Haq ZU, Rehman N, Ali F et al (2017) Physico-chemical properties of cationic surfactant cetyltrimethylammonium bromide in the presence of electrolyte. J Mater Environ Sci 8:1029–1038

    Google Scholar 

  51. Mehan S, Aswal VK, Kohlbrecher J (2014) Cationic versus anionic surfactant in tuning the structure and interaction of nanoparticle, protein, and surfactant complexes. Langmuir 30:9941–9950. https://doi.org/10.1021/la502410v

    Article  CAS  PubMed  Google Scholar 

  52. Evonik Nutrition & Care GmbH (2018) Metal protection though corrosion inhibition. https://www.metal-working-fluids.com/product/mwf/en/products/corrosion-inhibitors/. Accessed 30 Aug 2018

  53. Mishra S, Tyagi VK (2007) Ester Quats: the novel class of cationic fabric softeners. J Oleo Sci 56:269–276. https://doi.org/10.5650/jos.56.269

    Article  CAS  PubMed  Google Scholar 

  54. Grand View Research (2018) Esterquats market analysis by application. https://www.grandviewresearch.com/industry-analysis/esterquats-market. Accessed 30 Aug 2018

  55. Pritchard G (1998) Antistatic Agents. Plastic additives: an A–Z reference. Chapman & Hall, London, pp 108–114

    Chapter  Google Scholar 

  56. Wahle B, Falkowski J (2002) Softeners in textile processing. Part 1: an overview. Rev Prog Color Relat Top 32:118–124. https://doi.org/10.1111/j.1478-4408.2002.tb00255.x

    Article  CAS  Google Scholar 

  57. Maity NC, Kartha KPR, Srivastava HC (1984) Synthetic durable antistatic agent for polyester fabrics. Colourage 31:11–12

    CAS  Google Scholar 

  58. (2018) Pesticide action network. http://www.panna.org/. Accessed 31 Aug 2018

  59. Pateiro-Moure M, Arias-Estévez M, Simal-Gándara J (2013) Critical review on the environmental fate of quaternary ammonium herbicides in soils devoted to vineyards. Environ Sci Technol 47:4984–4998. https://doi.org/10.1021/es400755h

    Article  CAS  PubMed  Google Scholar 

  60. Winsberg J, Hagemann T, Janoschka T et al (2017) Redox-flow batteries: from metals to organic redox-active materials. Angew Chemie Int Ed 56:686–711. https://doi.org/10.1002/anie.201604925

    Article  CAS  Google Scholar 

  61. Beh ES, De Porcellinis D, Gracia RL et al (2017) A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett 2:639–644. https://doi.org/10.1021/acsenergylett.7b00019

    Article  CAS  Google Scholar 

  62. Picó Y, Font G, Moltó JC, Mañes J (2000) Solid-phase extraction of quaternary ammonium herbicides. J Chromatogr A 885:251–271. https://doi.org/10.1016/S0021-9673(99)01145-0

    Article  PubMed  Google Scholar 

  63. Castro R, Moyano E, Galceran MT (2001) Determination of quaternary ammonium pesticides by liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A 914:111–121. https://doi.org/10.1016/S0021-9673(01)00523-4

    Article  CAS  PubMed  Google Scholar 

  64. Galceran MT, Carneiro MC, Diez M, Puignou L (1997) Separation of quaternary ammonium herbicides by capillary electrophoresis with indirect UV detection. J Chromatogr A 782:289–295. https://doi.org/10.1016/S0021-9673(97)00507-4

    Article  CAS  Google Scholar 

  65. Chen Z, Álvarez-Pérez M, Navarro-Villoslada F et al (2014) Fluorescent sensing of “quat” herbicides with a multifunctional pyrene-labeled monomer and molecular imprinting. Sens Actuators B Chem 191:137–142. https://doi.org/10.1016/j.snb.2013.09.097

    Article  CAS  Google Scholar 

  66. Gerba CP (2015) Quaternary ammonium biocides: efficacy in application. Appl Environ Microbiol 81:464–469. https://doi.org/10.1128/AEM.02633-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dixon RE, Kaslow RA, Mackel DC et al (1976) Aqueous quaternary ammonium antiseptics and disinfectants: use and misuse. JJ Am Med Assoc 236:2415–2417. https://doi.org/10.1001/jama.1976.03270220035031

    Article  CAS  Google Scholar 

  68. Zhu P, Sun G (2004) Antimicrobial finishing of wool fabrics using quaternary ammonium salts. J Appl Polym Sci 93:1037–1041. https://doi.org/10.1002/app.20563

    Article  CAS  Google Scholar 

  69. Domagk G (1935) Eine neue Klasse von Desinfektionsmitteln. Dtsch Medizinische Wochenschrift 61:829–832. https://doi.org/10.1055/s-0028-1129654

    Article  CAS  Google Scholar 

  70. Ioannou CJ, Hanlon GW, Denyer SP (2007) Action of disinfectant quaternary ammonium compounds against Staphylococcus aureus. Antimicrob Agents Chemother 51:296–306. https://doi.org/10.1128/AAC.00375-06

    Article  CAS  PubMed  Google Scholar 

  71. Minbiole KPC, Jennings MC, Ator LE et al (2016) From antimicrobial activity to mechanism of resistance: the multifaceted role of simple quaternary ammonium compounds in bacterial eradication. Tetrahedron 72:3559–3566. https://doi.org/10.1016/j.tet.2016.01.014

    Article  CAS  Google Scholar 

  72. Kourai H, Yabuhara T, Shirai A et al (2006) Syntheses and antimicrobial activities of a series of new bis-quaternary ammonium compounds. Eur J Med Chem 41:437–444. https://doi.org/10.1016/j.ejmech.2005.10.021

    Article  CAS  PubMed  Google Scholar 

  73. Thorsteinsson T, Másson M, Kristinsson KG et al (2003) Soft antimicrobial agents: synthesis and activity of labile environmentally friendly long chain quaternary ammonium compounds. J Med Chem 46:4173–4181. https://doi.org/10.1021/jm030829z

    Article  CAS  PubMed  Google Scholar 

  74. Mukherjee M, De S (2018) Antibacterial polymeric membranes: a short review. Environ Sci Water Res Technol 4:1078–1104. https://doi.org/10.1039/c8ew00206a

    Article  CAS  Google Scholar 

  75. Yudovin-Farber I, Beyth N, Weiss EI, Domb AJ (2010) Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles. J Nanoparticle Res 12:591–603. https://doi.org/10.1007/s11051-009-9628-8

    Article  CAS  Google Scholar 

  76. Lu G, Wu D, Fu R (2007) Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate. React Funct Polym 67:355–366. https://doi.org/10.1016/j.reactfunctpolym.2007.01.008

    Article  CAS  Google Scholar 

  77. Dizman B, Elasri MO, Mathias LJ (2004) Synthesis and antimicrobial activities of new water-soluble bis-quaternary ammonium methacrylate polymers. J Appl Polym Sci 94:635–642. https://doi.org/10.1002/app.20872

    Article  CAS  Google Scholar 

  78. Antonucci JM, Zeiger DN, Tang K et al (2012) Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental applications. Dent Mater 28:219–228. https://doi.org/10.1016/j.dental.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  79. Asri LATW, Crismaru M, Roest S et al (2014) A shape-adaptive, antibacterial-coating of immobilized Quaternary-ammonium compounds tethered on hyperbranched polyurea and its mechanism of action. Adv Funct Mater 24:346–355. https://doi.org/10.1002/adfm.201301686

    Article  CAS  Google Scholar 

  80. Saif MJ, Anwar J, Munawar MA (2009) A novel application of quaternary ammonium compounds as antibacterial hybrid coating on glass surfaces. Langmuir 25:377–379. https://doi.org/10.1021/la802878p

    Article  CAS  PubMed  Google Scholar 

  81. Anthoni U, Christophersen C, Hougaard L, Nielsen PH (1991) Quaternary ammonium compounds in the biosphere—an example of a versatile adaptive strategy. Comp Biochem Physiol Part B Biochem 99B:1–18. https://doi.org/10.1016/0305-0491(91)90002-U

    Article  CAS  Google Scholar 

  82. Cooper JC (1988) Review of the environmental ammonium toxicity of quaternary halides. Ecotoxicol Environ Saf 16:65–71. https://doi.org/10.1016/0147-6513(88)90017-6

    Article  CAS  PubMed  Google Scholar 

  83. Zhang C, Cui F, Zeng GM et al (2015) Quaternary ammonium compounds (QACs): a review on occurrence, fate and toxicity in the environment. Sci Total Environ 518–519:352–362. https://doi.org/10.1016/j.scitotenv.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  84. Warren CR (2013) Quaternary ammonium compounds can be abundant in some soils and are taken up as intact molecules by plants. New Phytol 198:476–485. https://doi.org/10.1111/nph.12171

    Article  CAS  PubMed  Google Scholar 

  85. Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, Jolivet-Gougeon A (2012) Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review. Int J Antimicrob Agents 39:381–389. https://doi.org/10.1016/j.ijantimicag.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  86. Hegstad K, Langsrud S, Lunestad BT et al (2010) Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist 16:91–104. https://doi.org/10.1089/mdr.2009.0120

    Article  CAS  PubMed  Google Scholar 

  87. Gonzalez M, Jégu J, Kopferschmitt MC et al (2014) Asthma among workers in healthcare settings: role of disinfection with quaternary ammonium compounds. Clin Exp Allergy 44:393–406. https://doi.org/10.1111/cea.12215

    Article  CAS  PubMed  Google Scholar 

  88. Purohit A, Kopferschmitt-Kubler MC, Moreau C et al (2000) Quaternary ammonium compounds and occupational asthma. Int Arch Occup Environ Health 73:423–427. https://doi.org/10.1007/s004200000162

    Article  CAS  PubMed  Google Scholar 

  89. Jing G, Zhou Z, Zhuo J (2012) Quantitative structure-activity relationship (QSAR) study of toxicity of quaternary ammonium compounds on Chlorella pyrenoidosa and Scenedesmus quadricauda. Chemosphere 86:76–82. https://doi.org/10.1016/j.chemosphere.2011.09.021

    Article  CAS  PubMed  Google Scholar 

  90. Ismail ZZ, Tezel U, Pavlostathis SG (2010) Sorption of quaternary ammonium compounds to municipal sludge. Water Res 44:2303–2313. https://doi.org/10.1016/j.watres.2009.12.029

    Article  CAS  PubMed  Google Scholar 

  91. Ruan T, Song S, Wang T et al (2014) Identification and composition of emerging quaternary ammonium compounds in municipal sewage sludge in China. Environ Sci Technol 48:4289–4297. https://doi.org/10.1021/es4050314

    Article  CAS  PubMed  Google Scholar 

  92. Li X, Luo X, Mai B et al (2014) Occurrence of quaternary ammonium compounds (QACs) and their application as a tracer for sewage derived pollution in urban estuarine sediments. Environ Pollut 185:127–133. https://doi.org/10.1016/j.envpol.2013.10.028

    Article  CAS  PubMed  Google Scholar 

  93. Vincent G, Kopferschmitt-Kubler MC, Mirabel P et al (2007) Sampling and analysis of quaternary ammonium compounds (QACs) traces in indoor atmosphere. Environ Monit Assess 133:25–30. https://doi.org/10.1007/s10661-006-9556-3

    Article  CAS  PubMed  Google Scholar 

  94. Forman ME, Jennings MC, Wuest WM, Minbiole KPC (2016) Building a better quaternary ammonium compound (QAC): branched tetracationic antiseptic amphiphiles. Chem Med Chem 11:1401–1405. https://doi.org/10.1002/cmdc.201600176

    Article  CAS  PubMed  Google Scholar 

  95. Jaglic Z, Cervinkova D (2012) Genetic basis of resistance to quaternary ammonium compounds—the qac genes and their role: a review. Vet Med (Praha) 57:275–281. https://doi.org/10.17221/6013-VETMED

    Article  CAS  Google Scholar 

  96. Forman ME, Fletcher MH, Jennings MC et al (2016) Structure-resistance relationships: interrogating antiseptic resistance in bacteria with multicationic quaternary ammonium dyes. ChemMedChem 11:958–962. https://doi.org/10.1002/cmdc.201600095

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Bureš.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bureš, F. Quaternary Ammonium Compounds: Simple in Structure, Complex in Application. Top Curr Chem (Z) 377, 14 (2019). https://doi.org/10.1007/s41061-019-0239-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-019-0239-2

Keywords

Navigation