Skip to main content
Log in

Phase-boundary regulation boosting electrochemical reactivity of tin-based anodes for magnesium-ion batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2022

This article has been updated

Abstract

Tin (Sn)-based materials are promising anodes for magnesium-ion batteries (MIBs) owing to their low reaction voltages, high theoretical specific capacities and good compatibility with conventional electrolytes. However, relatively arduous alloying reaction and sluggish diffusion kinetics limit their practical applications. Herein, we proposed a general strategy to regulate the electrochemical reactivity and performance of Sn-based anodes for Mg storage through the introduction of the second phase and phase boundary. The biphase Sn—Al, Sn—Pb and Sn—ZnO films were further fabricated via magnetron co-sputtering. Taking Sn—Al as an example, it has been revealed that the introduction of Al can effectively stimulate the electrochemical reaction of Sn with Mg in either nanoscale or bulk through combining experiments with density-functional theory calculations. Specially, the rolled Sn—Al electrode exhibits superior long-term stability over 5,000 cycles. Additionally, the Mg-storage mechanism of the Sn—Al electrode was investigated by operando X-ray diffraction. The Sn—Al anodes also demonstrate good compatibility with simple Mg-salt-based electrolytes like Mg(TFSI)2 in full cells. More importantly, it has been authenticated that the activation effect of second phase and phase boundary to Sn is also applicable to Pb and ZnO. Our findings may provide a favorable reference for the development of alloy-type anodes for MIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Tarascon JM, Armand M. Nature, 2001, 414: 359–367

    Article  CAS  PubMed  Google Scholar 

  2. Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D. Energy Environ Sci, 2013, 6: 2265–2279

    Article  CAS  Google Scholar 

  3. Nguyen DT, Horia R, Eng AYS, Song SW, Seh ZW. Mater Horiz, 2021, 8: 830–853

    Article  CAS  PubMed  Google Scholar 

  4. Regulacio MD, Nguyen DT, Horia R, Seh ZW. Small, 2021, 17: 2007683

    Article  CAS  Google Scholar 

  5. Aurbach D, Schechter A, Moshkovich M, Cohen Y. J Electrochem Soc, 2001, 148: A1004

    Article  CAS  Google Scholar 

  6. Ding MS, Diemant T, Behm RJ, Passerini S, Giffin GA. J Electrochem Soc, 2018, 165: A1983–A1990

    Article  CAS  Google Scholar 

  7. Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN. Prog Mater Sci, 2014, 66: 1–86

    Article  CAS  Google Scholar 

  8. Nguyen DT, Eng AYS, Ng MF, Kumar V, Sofer Z, Handoko AD, Subramanian GS, Seh ZW. Cell Rep Phys Sci, 2020, 1: 100265

    Article  CAS  Google Scholar 

  9. Nguyen DT, Eng AYS, Horia R, Sofer Z, Handoko AD, Ng MF, Seh ZW. Energy Storage Mater, 2022, 45: 1120–1132

    Article  Google Scholar 

  10. Horia R, Nguyen DT, Eng AYS, Seh ZW. Nano Lett, 2021, 21: 8220–8228

    Article  CAS  PubMed  Google Scholar 

  11. Ma Z, MacFarlane DR, Kar M. Batteries Supercaps, 2019, 2: 115–127

    Article  Google Scholar 

  12. Muldoon J, Bucur CB, Oliver AG, Zajicek J, Allred GD, Boggess WC. Energy Environ Sci, 2013, 6: 482–487

    Article  CAS  Google Scholar 

  13. Niu J, Zhang Z, Aurbach D. Adv Energy Mater, 2020, 10: 2000697

    Article  CAS  Google Scholar 

  14. Penki TR, Valurouthu G, Shivakumara S, Sethuraman VA, Munichandraiah N. New J Chem, 2018, 42: 5996–6004

    Article  CAS  Google Scholar 

  15. Ikhe AB, Han SC, Prabakar SJR, Park WB, Sohn KS, Pyo M. J Mater Chem A, 2020, 8: 14277–14286

    Article  CAS  Google Scholar 

  16. Shao Y, Gu M, Li X, Nie Z, Zuo P, Li G, Liu T, Xiao J, Cheng Y, Wang C, Zhang JG, Liu J. Nano Lett, 2014, 14: 255–260

    Article  CAS  PubMed  Google Scholar 

  17. Arthur TS, Singh N, Matsui M. Electrochem Commun, 2012, 16: 103–106

    Article  CAS  Google Scholar 

  18. Periyapperuma K, Tran TT, Purcell MI, Obrovac MN. Electrochim Acta, 2015, 165: 162–165

    Article  CAS  Google Scholar 

  19. Wang L, Welborn SS, Kumar H, Li M, Wang Z, Shenoy VB, Detsi E. Adv Energy Mater, 2019, 9: 1902086

    Article  CAS  Google Scholar 

  20. Niu J, Yin K, Gao H, Song M, Ma W, Peng Z, Zhang Z. Nanoscale, 2019, 11: 15279–15288

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Su Q, Shi J, Deng H, Yin GQ, Guan J, Wu MP, Zhou YL, Lou HL, Fu YQ. ACS Appl Mater Interfaces, 2014, 6: 6786–6789

    Article  CAS  PubMed  Google Scholar 

  22. Jin W, Wang Z. RSC Adv, 2017, 7: 44547–44551

    Article  CAS  Google Scholar 

  23. Parent LR, Cheng Y, Sushko PV, Shao Y, Liu J, Wang CM, Browning ND. Nano Lett, 2015, 15: 1177–1182

    Article  CAS  PubMed  Google Scholar 

  24. Singh N, Arthur TS, Ling C, Matsui M, Mizuno F. Chem Commun, 2013, 49: 149–151

    Article  CAS  Google Scholar 

  25. Yaghoobnejad-Asl H, Fu J, Kumar H, Welborn SS, Shenoy VB, Detsi E. Chem Mater, 2018, 30: 1815–1824

    Article  CAS  Google Scholar 

  26. Liao JY, Chabot V, Gu M, Wang C, Xiao X, Chen Z. Nano Energy, 2014, 9: 383–391

    Article  CAS  Google Scholar 

  27. Wu Q, Xu J, Yang X, Lu F, He S, Yang J, Fan HJ, Wu M. Adv Energy Mater, 2015, 5: 1401756

    Article  Google Scholar 

  28. Song M, Zhang T, Niu J, Gao H, Shi Y, Zhang Y, Ma W, Zhang Z. J Power Sources, 2020, 451: 227735

    Article  CAS  Google Scholar 

  29. Jung SC, Han YK. J Phys Chem C, 2018, 122: 17643–17649

    Article  CAS  Google Scholar 

  30. Tang RZ, Tian RZ. Binary Alloy Phase Diagrams and Crystal Structure of Intermediate Phase. Changsha: Center South University Press, 2009

    Google Scholar 

  31. Aminzadeh A, Sarikhani-fard H. SpectroChim Acta Part A-Mol Biomol Spectr, 1999, 55: 1421–1425

    Article  Google Scholar 

  32. Mysen BO, Virgo D, Kushiro I. Am Mineral, 1981, 66: 678–701

    CAS  Google Scholar 

  33. Peng XS, Zhang LD, Meng GW, Tian YT, Lin Y, Geng BY, Sun SH. J Appl Phys, 2002, 93: 1760–1763

    Article  Google Scholar 

  34. Kang Z, Zhang X, Liu H, Qiu J, Yeung KL. Chem Eng J, 2013, 218: 425–432

    Article  CAS  Google Scholar 

  35. Olijnyk H. Phys Rev B, 1992, 46: 6589–6591

    Article  CAS  Google Scholar 

  36. DiLeo RA, Zhang Q, Marschilok AC, Takeuchi KJ, Takeuchi ES. ECS Electrochem Lett, 2015, 4: A10–A14

    Article  CAS  Google Scholar 

  37. Zhang H, Ye K, Zhu K, Cang R, Yan J, Cheng K, Wang G, Cao D. Chem Eur J, 2017, 23: 17118–17126

    Article  CAS  PubMed  Google Scholar 

  38. Du H, Zhang Z, He J, Cui Z, Chai J, Ma J, Yang Z, Huang C, Cui G. Small, 2017, 13: 1702277

    Article  Google Scholar 

  39. Buchenauer CJ, Cardona M. Phys Rev B, 1971, 3: 2504–2507

    Article  Google Scholar 

  40. Song M, Niu J, Gao H, Kou T, Wang Z, Zhang Z. J Mater Chem A, 2020, 8: 13572–13584

    Article  CAS  Google Scholar 

  41. Murgia F, Weldekidan ET, Stievano L, Monconduit L, Berthelot R. Electrochem Commun, 2015, 60: 56–59

    Article  CAS  Google Scholar 

  42. Nguyen GTH, Nguyen DT, Song SW. Adv Mater Interfaces, 2018, 5: 1801039

    Article  Google Scholar 

  43. Nguyen DT, Song SW. J Power Sources, 2017, 368: 11–17

    Article  CAS  Google Scholar 

  44. Murgia F, Monconduit L, Stievano L, Berthelot R. Electrochim Acta, 2016, 209: 730–736

    Article  CAS  Google Scholar 

  45. Nacimiento F, Cabello M, Pérez-Vicente C, Alcántara R, Lavela P, Ortiz GF, Tirado JL. Nanomaterials, 2018, 8: 501

    Article  PubMed Central  Google Scholar 

  46. Nguyen DT, Tran XM, Kang J, Song SW. ChemElectroChem, 2016, 3: 1813–1819

    Article  CAS  Google Scholar 

  47. Liu Z, Lee J, Xiang G, Glass HFJ, Keyzer EN, Dutton SE, Grey CP. Chem Commun, 2017, 53: 743–746

    Article  CAS  Google Scholar 

  48. Cheng Y, Shao Y, Parent LR, Sushko ML, Li G, Sushko PV, Browning ND, Wang C, Liu J. Adv Mater, 2015, 27: 6598–6605

    Article  CAS  PubMed  Google Scholar 

  49. Song M, Niu J, Cui W, Bai Q, Zhang Z. J Mater Chem A, 2021, 9: 17019–17029

    Article  CAS  Google Scholar 

  50. Wang J, Jiang Y, Ma A, Jiang J, Chen J, Li M, Feng J, Li Z, Zou Z. Appl Catal B-Environ, 2019, 244: 502–510

    Article  CAS  Google Scholar 

  51. Legrain F, Manzhos S. J Power Sources, 2015, 274: 65–70

    Article  CAS  Google Scholar 

  52. Legrain F, Manzhos S. J Chem Phys, 2017, 146: 034706

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51871133), the support of Taishan Scholar Foundation of Shandong Province, the Key Research and Development Program of Shandong Province (2021ZLGX01) and the program of Jinan Science and Technology Bureau (2019GXRC001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Zhang.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest

The authors declare no conflict of interest.

The online version of the original article can be found at https://doi.org/10.1007/s11426-022-1393-1

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Wang, Y., Si, C. et al. Phase-boundary regulation boosting electrochemical reactivity of tin-based anodes for magnesium-ion batteries. Sci. China Chem. 65, 1433–1444 (2022). https://doi.org/10.1007/s11426-022-1293-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1293-2

Keywords

Navigation