Skip to main content
Log in

In situ/operando characterization techniques for electrochemical CO2 reduction

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Utilizing CO2 as a carbon feedstock for producing fuels and useful chemicals is attractive due to the advantages of being abundant, nontoxic, and economical. Electrochemical CO2 reduction (CO2RR) provides an avenue to close the anthropogenic carbon cycle. However, the reaction process of multi-electronic products of CO2RR is quite complex. It is hard to yield a target product with high selectivity, high current density, low overpotential, and good stability simultaneously. In recent years, in situ/operando characterization techniques have played important roles in the catalysis field via establishing the structure—reactivity/selectivity relationships of catalysts and thereby obtaining information about mechanisms. As a result, it is necessary to apply in situ/operando characterization technologies to clarify the reaction pathway of CO2RR. In this mini-review, we discuss recent progress on the in situ/operando characterizations for electrochemical CO2RR, including microscopies, infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption fine spectroscopy. Moreover, the capabilities of these in situ/operando characterizations and the remaining challenges are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shindell D, Smith CJ. Nature, 2019, 573: 408–411

    Article  CAS  Google Scholar 

  2. Lu L, Sun X, Ma J, Zhu Q, Wu C, Yang D, Han B. Sci China Chem, 2018, 61: 228–235

    Article  CAS  Google Scholar 

  3. Jiang X, Nie X, Guo X, Song C, Chen JG. Chem Rev, 2020, 120: 7984–8034

    Article  CAS  Google Scholar 

  4. Yang D, Zhu Q, Han B. Innovation, 2020, 1: 100016

    Google Scholar 

  5. Xu L, Ma X, Wu L, Tan X, Song X, Zhu Q, Chen C, Qian Q, Liu Z, Sun X, Liu S, Han B. Angew Chem Int Ed, 2022, 61: e202210375

    CAS  Google Scholar 

  6. He M, Sun Y, Han B. Angew Chem Int Ed, 2022, 61: e202112835

    CAS  Google Scholar 

  7. Tan X, Guo W, Liu S, Jia S, Xu L, Feng J, Yan X, Chen C, Zhu Q, Sun X, Han B. Chem Sci, 2022, 13: 11918–11925

    Article  CAS  Google Scholar 

  8. Zhang L, Dang Y, Zhou X, Gao P, Petrus van Bavel A, Wang H, Li S, Shi L, Yang Y, Vovk EI, Gao Y, Sun Y. Innovation, 2021, 2: 100170

    CAS  Google Scholar 

  9. Song X, Guo W, Ma X, Xu L, Tan X, Wu L, Jia S, Wu T, Ma J, Zhang F, Jia J, Sun X, Han B. Green Chem, 2022, 24: 1488–1493

    Article  CAS  Google Scholar 

  10. Ma X, Xu L, Liu S, Zhang L, Tan X, Wu L, Feng J, Liu Z, Sun X, Han B. Chem Catal, 2022, 2: 3207–3224

    Article  Google Scholar 

  11. Huang JE, Li F, Ozden A, Sedighian Rasouli A, García de Arquer FP, Liu S, Zhang S, Luo M, Wang X, Lum Y, Xu Y, Bertens K, Miao RK, Dinh CT, Sinton D, Sargent EH. Science, 2021, 372: 1074–1078

    Article  CAS  Google Scholar 

  12. Jiao X, Zheng K, Chen Q, Li X, Li Y, Shao W, Xu J, Zhu J, Pan Y, Sun Y, Xie Y. Angew Chem Int Ed, 2020, 59: 15497–15501

    Article  CAS  Google Scholar 

  13. Ren X, Liu S, Li H, Ding J, Liu L, Kuang Z, Li L, Yang H, Bai F, Huang Y, Zhang T, Liu B. Sci China Chem, 2020, 63: 1727–1733

    Article  CAS  Google Scholar 

  14. Gao D, Wei P, Li H, Lin L, Wang G, Bao X. Acta Physico Chim Sin, 2021, 37: 2009021

    Google Scholar 

  15. Wang H, Wu Y, Zhao Y, Liu Z. Acta Physico Chim Sin, 2021, 37: 2010022

    Google Scholar 

  16. Zhong D, Zhao ZJ, Zhao Q, Cheng D, Liu B, Zhang G, Deng W, Dong H, Zhang L, Li J, Li J, Gong J. Angew Chem Int Ed, 2021, 60: 4879–4885

    Article  CAS  Google Scholar 

  17. Tan X, Sun X, Han B. Natl Sci Rev, 2022, 9: nwab022

    Article  Google Scholar 

  18. Jin S, Hao Z, Zhang K, Yan Z, Chen J. Angew Chem Int Ed, 2021, 60: 20627–20648

    Article  CAS  Google Scholar 

  19. Xiong L, Zhang X, Chen L, Deng Z, Han S, Chen Y, Zhong J, Sun H, Lian Y, Yang B, Yuan X, Yu H, Liu Y, Yang X, Guo J, Rümmeli MH, Jiao Y, Peng Y. Adv Mater, 2021, 33: 2101741

    Article  CAS  Google Scholar 

  20. Zhao Y, Zu X, Chen R, Li X, Jiang Y, Wang Z, Wang S, Wu Y, Sun Y, Xie Y. J Am Chem Soc, 2022, 144: 10446–10454

    Article  CAS  Google Scholar 

  21. Li P, Bi J, Liu J, Zhu Q, Chen C, Sun X, Zhang J, Han B. Nat Commun, 2022, 13: 1965

    Article  CAS  Google Scholar 

  22. Wu Y, Chen C, Yan X, Sun X, Zhu Q, Li P, Li Y, Liu S, Ma J, Huang Y, Han B. Angew Chem Int Ed, 2021, 60: 20803–20810

    Article  CAS  Google Scholar 

  23. Wu Y, Cao S, Hou J, Li Z, Zhang B, Zhai P, Zhang Y, Sun L. Adv Energy Mater, 2020, 10: 2000588

    Article  CAS  Google Scholar 

  24. Zhang E, Wang T, Yu K, Liu J, Chen W, Li A, Rong H, Lin R, Ji S, Zheng X, Wang Y, Zheng L, Chen C, Wang D, Zhang J, Li Y. J Am Chem Soc, 2019, 141: 16569–16573

    Article  CAS  Google Scholar 

  25. Liang S, Huang L, Gao Y, Wang Q, Liu B. Adv Sci, 2021, 8: 2102886

    Article  CAS  Google Scholar 

  26. Li M, Garg S, Chang X, Ge L, Li L, Konarova M, Rufford TE, Rudolph V, Wang G. Small Methods, 2020, 4: 2000033

    Article  CAS  Google Scholar 

  27. Xie W, Li H, Cui G, Li J, Song Y, Li S, Zhang X, Lee JY, Shao M, Wei M. Angew Chem Int Ed, 2021, 60: 7382–7388

    Article  CAS  Google Scholar 

  28. Yi L, Chen J, Shao P, Huang J, Peng X, Li J, Wang G, Zhang C, Wen Z. Angew Chem Int Ed, 2020, 59: 20112–20119

    Article  CAS  Google Scholar 

  29. Peng H, Tang MT, Liu X, Lamoureux PS, Bajdich M, Abild-Pedersen F. Energy Environ Sci, 2021, 14: 473–482

    Article  CAS  Google Scholar 

  30. Li X, Wang S, Li L, Sun Y, Xie Y. J Am Chem Soc, 2020, 142: 9657–9581

    Google Scholar 

  31. Jiao X, Hu Z, Li L, Wu Y, Zheng K, Sun Y, Xie Y. Sci China Chem, 2022, 65: 428–440

    Article  CAS  Google Scholar 

  32. Zou Y, Wang S. Adv Sci, 2021, 8: 2003579

    Article  CAS  Google Scholar 

  33. Cao X, Tan D, Wulan B, Hui KS, Hui KN, Zhang J. Small Methods, 2021, 5: 2100700

    Article  CAS  Google Scholar 

  34. Vavra J, Shen TH, Stoian D, Tileli V, Buonsanti R. Angew Chem Int Ed, 2021, 60: 1347–1354

    Article  CAS  Google Scholar 

  35. Bañares MA. Catal Today, 2005, 100: 71–77

    Article  Google Scholar 

  36. Yang Y, Xiong Y, Zeng R, Lu X, Krumov M, Huang X, Xu W, Wang H, DiSalvo FJ, Brock JD, Muller DA, Abruña HD. ACS Catal, 2021, 11: 1136–1178

    Article  CAS  Google Scholar 

  37. Handoko AD, Wei F, Jenndy F, Yeo BS, Seh ZW. Nat Catal, 2018, 1: 922–934

    Article  CAS  Google Scholar 

  38. Li J, Gong J. Energy Environ Sci, 2020, 13: 3748–3779

    Article  CAS  Google Scholar 

  39. Grosse P, Gao D, Scholten F, Sinev I, Mistry H, Roldan Cuenya B. Angew Chem Int Ed, 2018, 57: 6192–6197

    Article  CAS  Google Scholar 

  40. Phan TH, Banjac K, Cometto FP, Dattila F, García-Muelas R, Raaijman SJ, Ye C, Koper MTM, López N, Lingenfelder M. Nano Lett, 2021, 21: 2059–2065

    Article  CAS  Google Scholar 

  41. Wang X, Klingan K, Klingenhof M, Möller T, Ferreira de Araújo J, Martens I, Bagger A, Jiang S, Rossmeisl J, Dau H, Strasser P. Nat Commun, 2021, 12: 794

    Article  CAS  Google Scholar 

  42. Jacobse L, Huang YF, Koper MTM, Rost MJ. Nat Mater, 2018, 17: 277–282

    Article  CAS  Google Scholar 

  43. Pfisterer JHK, Liang Y, Schneider O, Bandarenka AS. Nature, 2017, 549: 74–77

    Article  CAS  Google Scholar 

  44. Wang X, Cai ZF, Wang YQ, Feng YC, Yan HJ, Wang D, Wan LJ. Angew Chem Int Ed, 2020, 59: 16098–16103

    Article  CAS  Google Scholar 

  45. Gao D, Zhang Y, Zhou Z, Cai F, Zhao X, Huang W, Li Y, Zhu J, Liu P, Yang F, Wang G, Bao X. J Am Chem Soc, 2017, 139: 5652–5655

    Article  CAS  Google Scholar 

  46. Beermann V, Holtz ME, Padgett E, de Araujo JF, Muller DA, Strasser P. Energy Environ Sci, 2019, 12: 2476–2485

    Article  CAS  Google Scholar 

  47. Arán-Ais RM, Rizo R, Grosse P, Algara-Siller G, Dembélé K, Plodinec M, Lunkenbein T, Chee SW, Cuenya BR. Nat Commun, 2020, 11: 3489

    Article  Google Scholar 

  48. Simon GH, Kley CS, Roldan Cuenya B. Angew Chem Int Ed, 2021, 60: 2561–2568

    Article  CAS  Google Scholar 

  49. Dang S, Qin B, Yang Y, Wang H, Cai J, Han Y, Li S, Gao P, Sun Y. Sci Adv, 2020, 6: eaaz2060

    Article  CAS  Google Scholar 

  50. Zhang CC, Shi J, Hartlaub S, Palamara JP, Petrovic I, Yilmaz B. Catal Commun, 2021, 150: 106273

    Article  CAS  Google Scholar 

  51. Wei X, Yin Z, Lyu K, Li Z, Gong J, Wang G, Xiao L, Lu J, Zhuang L. ACS Catal, 2020, 10: 4103–4111

    Article  CAS  Google Scholar 

  52. Zhang G, Zhao ZJ, Cheng D, Li H, Yu J, Wang Q, Gao H, Guo J, Wang H, Ozin GA, Wang T, Gong J. Nat Commun, 2021, 12: 5745

    Article  CAS  Google Scholar 

  53. Pérez-Gallent E, Figueiredo MC, Calle-Vallejo F, Koper MTM. Angew Chem Int Ed, 2017, 56: 3621–3624

    Article  Google Scholar 

  54. Ma W, Xie S, Liu T, Fan Q, Ye J, Sun F, Jiang Z, Zhang Q, Cheng J, Wang Y. Nat Catal, 2020, 3: 478–487

    Article  CAS  Google Scholar 

  55. Zhu S, Jiang B, Cai WB, Shao M. J Am Chem Soc, 2017, 139: 15664–15667

    Article  CAS  Google Scholar 

  56. Chen S, Li WH, Jiang W, Yang J, Zhu J, Wang L, Ou H, Zhuang Z, Chen M, Sun X, Wang D, Li Y. Angew Chem Int Ed, 2022, 61: e202114450

    CAS  Google Scholar 

  57. Wang J, Tan HY, Zhu Y, Chu H, Chen HM. Angew Chem Int Ed, 2021, 60: 17254–17267

    Article  CAS  Google Scholar 

  58. Zhou X, Shan J, Chen L, Xia BY, Ling T, Duan J, Jiao Y, Zheng Y, Qiao SZ. J Am Chem Soc, 2022, 144: 2079–2084

    Article  CAS  Google Scholar 

  59. Ko YJ, Kim JY, Lee WH, Kim MG, Seong TY, Park J, Jeong YJ, Min BK, Lee WS, Lee DK, Oh HS. Nat Commun, 2022, 13: 2205

    Article  CAS  Google Scholar 

  60. Dutta A, Montiel IZ, Kiran K, Rieder A, Grozovski V, Gut L, Broekmann P. ACS Catal, 2021, 11: 4988–5003

    Article  CAS  Google Scholar 

  61. Chernyshova IV, Somasundaran P, Ponnurangam S. Proc Natl Acad Sci USA, 2018, 115: E9261–E9270

    Article  CAS  Google Scholar 

  62. Gao J, Zhang H, Guo X, Luo J, Zakeeruddin SM, Ren D, Grätzel M. J Am Chem Soc, 2019, 141: 18704–18714

    Article  CAS  Google Scholar 

  63. Zhan C, Dattila F, Rettenmaier C, Bergmann A, Kühl S, García-Muelas R, López N, Cuenya BR. ACS Catal, 2021, 11: 7694–7701

    Article  CAS  Google Scholar 

  64. Guo W, Tan X, Bi J, Xu L, Yang D, Chen C, Zhu Q, Ma J, Tayal A, Ma J, Huang Y, Sun X, Liu S, Han B. J Am Chem Soc, 2021, 143: 6877–6885

    Article  CAS  Google Scholar 

  65. Chen C, Sun X, Yan X, Wu Y, Liu M, Liu S, Zhao Z, Han B. Green Chem, 2020, 22: 1572–1576

    Article  CAS  Google Scholar 

  66. Su X, Jiang Z, Zhou J, Liu H, Zhou D, Shang H, Ni X, Peng Z, Yang F, Chen W, Qi Z, Wang D, Wang Y. Nat Commun, 2022, 13: 1322

    Article  CAS  Google Scholar 

  67. Karapinar D, Huan NT, Ranjbar Sahraie N, Li J, Wakerley D, Touati N, Zanna S, Taverna D, Galvão Tizei LH, Zitolo A, Jaouen F, Mougel V, Fontecave M. Angew Chem Int Ed, 2019, 58: 15098–15103

    Article  CAS  Google Scholar 

  68. Weng Z, Wu Y, Wang M, Jiang J, Yang K, Huo S, Wang XF, Ma Q, Brudvig GW, Batista VS, Liang Y, Feng Z, Wang H. Nat Commun, 2018, 9: 415

    Article  Google Scholar 

  69. Yang HB, Hung SF, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang HY, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen HM, Li CM, Zhang T, Liu B. Nat Energy, 2018, 3: 140–147

    Article  CAS  Google Scholar 

  70. Gu J, Hsu CS, Bai L, Chen HM, Hu X. Science, 2019, 364: 1091–1094

    Article  CAS  Google Scholar 

  71. Zheng Y, Vasileff A, Zhou X, Jiao Y, Jaroniec M, Qiao SZ. J Am Chem Soc, 2019, 141: 7646–7659

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (22002172, 22121002), Beijing Natural Science Foundation (J210020), National Key Research and Development Program of China (2020YFA0710203), Chinese Academy of Sciences (QYZDY-SSW-SLH013) and Photon Science Center for Carbon Neutrality.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofu Sun or Buxing Han.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Xu, L., Sun, X. et al. In situ/operando characterization techniques for electrochemical CO2 reduction. Sci. China Chem. 66, 315–323 (2023). https://doi.org/10.1007/s11426-021-1463-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1463-6

Keywords

Navigation