Skip to main content
Log in

Arylazopyrazole-functionalized photoswitchable octanuclear Zn(II)-silsesquioxane nanocage

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Photoswitchable organic materials have shown significant advancement for photonic applications, however, the polynuclear metal clusters conjugated with photoswitching properties are still formidable. Herein, a novel octanuclear Zn(II) nanocage {[Zn8-(Me4Si4O8)2(azopz)8]·4CH2Cl2·MeOH·MeCN} (SD/Zn8) (Hazopz=3,5-dimethyl-4-(phenyldiazenyl)-1H-pyrazole), based on multidentate silsesquioxane and pyrazole modified by photoisomerizable azo group has been designed and synthesized to realize the reversible photoswitching behavior. X-ray crystallographic study reveals that the unique metal core consists of two annular Me4Si4O84− sandwiching a ring of eight Zn atoms where the pyrazole end of azopz bridges them together. The azopz ligands diverge above and below the plane defined by eight Zn atoms. Importantly, SD/Zn8 shows quick trans-to-cis transformation upon 365 nm light irradiation, which can be easily changed back by 450 nm light, but slow cis-to-trans reversibility at room temperature as confirmed by UV-Vis and 1H NMR spectroscopies. This process, which presumably regulates the spaces, acts like a pump and is completely repetitive. As such, it can be considered as a molecular pump energized by light. Importantly, the molecule is an energy reservoir where it absorbs the light energy and releases it slowly with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerkman MA, Sinha S, Warner JH, Han GGD. ACS Nano, 2019, 13: 87–96

    CAS  PubMed  Google Scholar 

  2. Einaga Y. J Photochem Photobiol C-Photochem Rev, 2006, 7: 69–88

    CAS  Google Scholar 

  3. Natansohn A, Rochon P. Adv Mater, 1999, 11: 1387–1391

    CAS  Google Scholar 

  4. Pianowski ZL, Karcher J, Schneider K. Chem Commun, 2016, 52: 3143–3146

    CAS  Google Scholar 

  5. Bandara HMD, Burdette SC. Chem Soc Rev, 2012, 41: 1809–1825

    CAS  PubMed  Google Scholar 

  6. Park J, Sun LB, Chen YP, Perry Z, Zhou HC. Angew Chem Int Ed, 2014, 53: 5842–5846

    CAS  Google Scholar 

  7. Jiang Y, Park J, Tan P, Feng L, Liu XQ, Sun LB, Zhou HC. J Am Chem Soc, 2019, 141: 8221–8227

    CAS  PubMed  Google Scholar 

  8. Meng H, Zhao C, Nie M, Wang C, Wang T. ACS Appl Mater Interfaces, 2018, 10: 32607–32612

    CAS  PubMed  Google Scholar 

  9. Telleria A, van Leeuwen PWNM, Freixa Z. Dalton Trans, 2017, 46: 3569–3578

    CAS  PubMed  Google Scholar 

  10. Kume S, Nishihara H. Dalton Trans, 2008, 3260

  11. Haldar R, Heinke L, Wöll C. Adv Mater, 2020, 32: 1905227

    CAS  Google Scholar 

  12. Schwartz HA, Olthof S, Schaniel D, Meerholz K, Ruschewitz U. Inorg Chem, 2017, 56: 13100–13110

    CAS  PubMed  Google Scholar 

  13. Moustafa ME, McCready MS, Puddephatt RJ. Organometallics, 2012, 31: 6262–6269

    CAS  Google Scholar 

  14. Moustafa ME, McCready MS, Puddephatt RJ. Organometallics, 2013, 32: 2552–2557

    CAS  Google Scholar 

  15. Kaiser M, Leitner SP, Hirtenlehner C, List M, Gerisch A, Monkowius U. Dalton Trans, 2013, 42: 14749–14756

    CAS  PubMed  Google Scholar 

  16. Deo C, Bogliotti N, Métivier R, Retailleau P, Xie J. Organometallics, 2015, 34: 5775–5784

    CAS  Google Scholar 

  17. Ghebreyessus K, Cooper Jr. SM. Organometallics, 2017, 36: 3360–3370

    CAS  Google Scholar 

  18. Han M, Hirade T, Hara M. New J Chem, 2010, 34: 2887–2891

    CAS  Google Scholar 

  19. Samanta S, Ghosh P, Goswami S. Dalton Trans, 2012, 41: 2213–2226

    CAS  PubMed  Google Scholar 

  20. Moustafa ME, Boyle PD, Puddephatt RJ. New J Chem, 2020, 44: 2882–2889

    CAS  Google Scholar 

  21. Weston CE, Richardson RD, Haycock PR, White AJP, Fuchter MJ. J Am Chem Soc, 2014, 136: 11878–11881

    CAS  PubMed  Google Scholar 

  22. Wang YT, Liu XY, Cui G, Fang WH, Thiel W. Angew Chem Int Ed, 2016, 55: 14009–14013

    CAS  Google Scholar 

  23. Devi S, Saraswat M, Grewal S, Venkataramani S. J Org Chem, 2018, 83: 4307–4322

    CAS  PubMed  Google Scholar 

  24. Calbo J, Weston CE, White AJP, Rzepa HS, Contreras-García J, Fuchter MJ. J Am Chem Soc, 2017, 139: 1261–1274

    CAS  PubMed  Google Scholar 

  25. Zhan SZ, Li M, Zhou XP, Wang JH, Yang JR, Li D. Chem Commun, 2011, 47: 12441–12443

    CAS  Google Scholar 

  26. Xiao Q, Zheng J, Li M, Zhan SZ, Wang JH, Li D. Inorg Chem, 2014, 53: 11604–11615

    CAS  PubMed  Google Scholar 

  27. Dias HVR, Diyabalanage HVK, Eldabaja MG, Elbjeirami O, Rawashdeh-Omary MA, Omary MA. J Am Chem Soc, 2005, 127: 7489–7501

    CAS  PubMed  Google Scholar 

  28. Halcrow MA. Chem Soc Rev, 2011, 40: 4119–4142

    CAS  PubMed  Google Scholar 

  29. Halcrow MA. Coord Chem Rev, 2009, 253: 2493–2514

    CAS  Google Scholar 

  30. Ward MD, Hunter CA, Williams NH. Acc Chem Res, 2018, 51: 2073–2082

    CAS  PubMed  Google Scholar 

  31. Liu ZJ, Wang XL, Qin C, Zhang ZM, Li YG, Chen WL, Wang EB. Coord Chem Rev, 2016, 313: 94–110

    CAS  Google Scholar 

  32. Zhang M, Saha ML, Wang M, Zhou Z, Song B, Lu C, Yan X, Li X, Huang F, Yin S, Stang PJ. J Am Chem Soc, 2017, 139: 5067–5074

    CAS  PubMed  Google Scholar 

  33. Chen W, Liao P, Yu Y, Zheng Z, Chen X, Zheng Y. Angew Chem Int Ed, 2016, 55: 9375–9379

    CAS  Google Scholar 

  34. Sun QF, Iwasa J, Ogawa D, Ishido Y, Sato S, Ozeki T, Sei Y, Yamaguchi K, Fujita M. Science, 2010, 328: 1144–1147

    CAS  PubMed  Google Scholar 

  35. Fujita D, Ueda Y, Sato S, Mizuno N, Kumasaka T, Fujita M. Nature, 2016, 540: 563–566

    CAS  PubMed  Google Scholar 

  36. Levitsky MM, Zubavichus YV, Korlyukov AA, Khrustalev VN, Shubina ES, Bilyachenko AN. J Clust Sci, 2019, 30: 1283–1316

    CAS  Google Scholar 

  37. Levitsky MM, Yalymov AI, Kulakova AN, Petrov AA, Bilyachenko AN. J Mol Catal A-Chem, 2017, 426: 297–304

    CAS  Google Scholar 

  38. Levitsky MM, Bilyachenko AN, Shul’pin GB. J Organomet Chem, 2017, 849–850: 201–218

    Google Scholar 

  39. Bilyachenko AN, Levitsky MM, Yalymov AI, Korlyukov AA, Vologzhanina AV, Kozlov YN, Shul’pina LS, Nesterov DS, Pombeiro AJL, Lamaty F, Bantreil X, Fetre A, Liu D, Martinez J, Long J, Larionova J, Guari Y, Trigub AL, Zubavichus YV, Golub IE, Filippov OA, Shubina ES, Shul’pin GB. RSC Adv, 2016, 6: 48165–48180

    CAS  Google Scholar 

  40. Bilyachenko AN, Levitsky MM, Yalymov AI, Korlyukov AA, Khrustalev VN, Vologzhanina AV, Shul’pina LS, Ikonnikov NS, Trigub AE, Dorovatovskii PV, Bantreil X, Lamaty F, Long J, Larionova J, Golub IE, Shubina ES, Shul’pin GB. Angew Chem Int Ed, 2016, 55: 15360–15363

    CAS  Google Scholar 

  41. Bilyachenko AN, Yalymov AI, Levitsky MM, Korlyukov AA, Es’kova MA, Long J, Larionova J, Guari Y, Shul’pina LS, Ikonnikov NS, Trigub AL, Zubavichus YV, Golub IE, Shubina ES, Shul’pin GB. Dalton Trans, 2016, 45: 13663–13666

    CAS  PubMed  Google Scholar 

  42. Bilyachenko AN, Yalymov AI, Korlyukov AA, Long J, Larionova J, Guari Y, Zubavichus YV, Trigub AL, Shubina ES, Eremenko IL, Efimov NN, Levitsky MM. Chem Eur J, 2015, 21: 18563–18565

    CAS  PubMed  Google Scholar 

  43. Bilyachenko AN, Yalymov A, Dronova M, Korlyukov AA, Vologzhanina AV, Es’kova MA, Long J, Larionova J, Guari Y, Dorovatovskii PV, Shubina ES, Levitsky MM. Inorg Chem, 2017, 56: 12751–12763

    CAS  PubMed  Google Scholar 

  44. Bilyachenko AN, Yalymov AI, Korlyukov AA, Long J, Larionova J, Guari Y, Vologzhanina AV, Es’kova MA, Shubina ES, Levitsky MM. Dalton Trans, 2016, 45: 7320–7327

    CAS  PubMed  Google Scholar 

  45. Kulakova AN, Bilyachenko AN, Korlyukov AA, Long J, Levitsky MM, Shubina ES, Guari Y, Larionova J. Dalton Trans, 2018, 47: 6893–6897

    CAS  PubMed  Google Scholar 

  46. Tan G, Yang Y, Chu C, Zhu H, Roesky HW. J Am Chem Soc, 2010, 132: 12231–12233

    CAS  PubMed  Google Scholar 

  47. Bilyachenko AN, Kulakova AN, Levitsky MM, Petrov AA, Korlyukov AA, Shul’pina LS, Khrustalev VN, Dorovatovskii PV, Vologzhanina AV, Tsareva US, Golub IE, Gulyaeva ES, Shubina ES, Shul’pin GB. Inorg Chem, 2017, 56: 4093–4103

    CAS  PubMed  Google Scholar 

  48. Bilyachenko AN, Khrustalev VN, Zubavichus YV, Vologzhanina AV, Astakhov GS, Gutsul EI, Shubina ES, Levitsky MM. Cryst Growth Des, 2018, 18: 2452–2457

    CAS  Google Scholar 

  49. Bilyachenko AN, Levitsky MM, Khrustalev VN, Zubavichus YV, Shul’pina LS, Shubina ES, Shul’pin GB. Organometallics, 2018, 37: 168–171

    CAS  Google Scholar 

  50. Dronova MS, Bilyachenko AN, Yalymov AI, Kozlov YN, Shul’pina LS, Korlyukov AA, Arkhipov DE, Levitsky MM, Shubina ES, Shul’pin GB. Dalton Trans, 2014, 43: 872–882

    CAS  PubMed  Google Scholar 

  51. Korlyukov AA, Vologzhanina AV, Buzin MI, Sergienko NV, Zavin BG, Muzafarov AM. Cryst Growth Des, 2016, 16: 1968–1977

    CAS  Google Scholar 

  52. Sergienko NV, Korlyukov AA, Arkhipov DE, Novikov VV, Eskova MA, Zavin BG. Mendeleev Commun, 2016, 26: 344–346

    CAS  Google Scholar 

  53. Gavioli G, Battistuzzi R, Santi P, Zucchi C, Pályi G, Pályi G, Ugo R, Vizi-Orosz A, Shchegolikhina OI, Pozdniakova YA, Lindeman SV, Zhdanov AA. J Organomet Chem, 1995, 485: 257–266

    CAS  Google Scholar 

  54. Astakhov GS, Bilyachenko AN, Levitsky MM, Korlyukov AA, Zubavichus YV, Dorovatovskii PV, Khrustalev VN, Vologzhanina AV, Shubina ES. Cryst Growth Des, 2018, 18: 5377–5384

    CAS  Google Scholar 

  55. Levitsky MM, Bilyachenko AN. Coord Chem Rev, 2016, 306: 235–269

    CAS  Google Scholar 

  56. Liu YN, Hou JL, Wang Z, Gupta RK, Jagličić Z, Jagodič M, Wang WG, Tung CH, Sun D. Inorg Chem, 2020, 59: 5683–5693

    CAS  PubMed  Google Scholar 

  57. Liu YN, Su HF, Li YW, Liu QY, Jagličić Z, Wang WG, Tung CH, Sun D. Inorg Chem, 2019, 58: 4574–4582

    CAS  PubMed  Google Scholar 

  58. Schax F, Braun B, Limberg C. Eur J Inorg Chem, 2014, 2014: 2124–2130

    CAS  Google Scholar 

  59. Pinkert D, Demeshko S, Schax F, Braun B, Meyer F, Limberg C. Angew Chem Int Ed, 2013, 52: 5155–5158

    CAS  Google Scholar 

  60. Jones MD, Keir CG, Johnson AL, Mahon MF. Polyhedron, 2010, 29: 312–316

    CAS  Google Scholar 

  61. Anantharaman G, Roesky HW, Schmidt HG, Noltemeyer M, Pinkas J. Inorg Chem, 2003, 42: 970–973

    CAS  PubMed  Google Scholar 

  62. Joshi NK, Fuyuki M, Wada A. J Phys Chem B, 2014, 118: 1891–1899

    CAS  Google Scholar 

  63. Peng S, Guo Q, Hartley PG, Hughes TC. J Mater Chem C, 2014, 2: 8303–8312

    CAS  Google Scholar 

  64. Angelini G, Canilho N, Emo M, Kingsley M, Gasbarri C. J Org Chem, 2015, 80: 7430–7434

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91961105, 21822107, 21571115, 21827801), the Natural Science Foundation of Shandong Province (ZR2019ZD45, JQ201803, ZR2017MB061), the Taishan Scholar Project of Shandong Province of China (tsqn201812003, ts20190908), the Qilu Youth Scholar Funding of Shandong University, the Project for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province (2019KJC028, 2019KJJ009) and the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF18019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rakesh Kumar Gupta or Di Sun.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, K., Liu, YN., Gupta, R.K. et al. Arylazopyrazole-functionalized photoswitchable octanuclear Zn(II)-silsesquioxane nanocage. Sci. China Chem. 64, 419–425 (2021). https://doi.org/10.1007/s11426-020-9886-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9886-5

Keywords

Navigation