Skip to main content
Log in

Stability, encapsulation and large-area fabrication of organic photovoltaics

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic photovoltaics (OPVs) have become a timely research topic for their advantages of light weight, low cost, low toxicity, environmental adaptability, flexibility, and large-area manufacture, especially after non-fullerene acceptor ITIC reported in 2015. The highest power conversion efficiency (PCE) is currently above 18% for OPV. However, there are still imparities in the efficiency of OPVs when compared with silicon-based photovoltaics, as well as in their shelf life. Compared with inorganic-based photovoltaics, the efficiency of large-area OPVs is lower and the life time of OPVs is shorter. Therefore, such inferior performance of large-area OPVs restricts the commercial development. Based on these constraints, this paper reviews the research work regarding OPVs into three aspects: stability, encapsulation technology, and recent large-area preparation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perez R, Perez M. The IEA SHC Solar Update, 2009, 50: 2

    Google Scholar 

  2. Chapin DM, Fuller CS, Pearson GL. J Appl Phys, 1954, 25: 676–677

    Article  CAS  Google Scholar 

  3. Ameri T, Khoram P, Min J, Brabec CJ. Adv Mater, 2013, 25: 4245–4266

    Article  CAS  PubMed  Google Scholar 

  4. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791

    Article  CAS  Google Scholar 

  5. Zhang Y, Samuel IDW, Wang T, Lidzey DG. Adv Sci, 2018, 5: 1800434

    Article  CAS  Google Scholar 

  6. Cui Y, Yao H, Hong L, Zhang T, Xu Y, Xian K, Gao B, Qin J, Zhang J, Wei Z, Hou J. Adv Mater, 2019, 31: 1808356

    Article  CAS  Google Scholar 

  7. Cheng YJ, Yang SH, Hsu CS. Chem Rev, 2009, 109: 5868–5923

    Article  CAS  PubMed  Google Scholar 

  8. Espinosa N, Hösel M, Angmo D, Krebs FC. Energy Environ Sci, 2012, 5: 5117–5132

    Article  CAS  Google Scholar 

  9. Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153–161

    Article  CAS  Google Scholar 

  10. Krebs FC, Espinosa N, Hösel M, Søndergaard RR, Jørgensen M. Adv Mater, 2014, 26: 29–39

    Article  CAS  PubMed  Google Scholar 

  11. Tang CW. Appl Phys Lett, 1986, 48: 183–185

    Article  CAS  Google Scholar 

  12. Lu H, Xu X, Bo Z. Sci China Mater, 2016, 59: 444–458

    Article  CAS  Google Scholar 

  13. Jena AK, Numata Y, Ikegami M, Miyasaka T. J Mater Chem A, 2018, 6: 2219–2230

    Article  CAS  Google Scholar 

  14. Finke CE, Omelchenko ST, Jasper JT, Lichterman MF, Read CG, Lewis NS, Hoffmann MR. Energy Environ Sci, 2019, 12: 358–365

    Article  CAS  PubMed  Google Scholar 

  15. Qiu L, Ono LK, Qi Y. Mater Today Energy, 2018, 7: 169–189

    Article  Google Scholar 

  16. Freitas AM, Gomes RAM, Ferreira RAM, Porto MP. Renew Energy, 2019, 135: 1004–1012

    Article  CAS  Google Scholar 

  17. Ye W, Yang Y, Zhang Z, Zhu Y, Ye L, Miao C, Lin Y, Zhang S. Sol RRL, 2020, 4: 2000258

    Article  CAS  Google Scholar 

  18. Liu F, Hou T, Xu X, Sun L, Zhou J, Zhao X, Zhang S. Macromol Rapid Commun, 2018, 39: 1700555

    Article  CAS  Google Scholar 

  19. Zheng B, Huo L, Li Y. NPG Asia Mater, 2020, 12: 3

    Article  CAS  Google Scholar 

  20. Sun L, Xu X, Song S, Zhang Y, Miao C, Liu X, Xing G, Zhang S. Macromol Rapid Commun, 2019, 40: 1900074

    Article  CAS  Google Scholar 

  21. Roncali J, Leriche P, Blanchard P. Adv Mater, 2014, 26: 3821–3838

    Article  CAS  PubMed  Google Scholar 

  22. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    Article  CAS  PubMed  Google Scholar 

  23. Xu X, Sun L, Shen K, Zhang S. Synth Met, 2019, 256: 116137

    Article  CAS  Google Scholar 

  24. Li G, Chang WH, Yang Y. Nat Rev Mater, 2017, 2: 17043

    Article  CAS  Google Scholar 

  25. Quintana MA, King DL, McMahon TJ, Osterwald CR. Commonly observed degradation in field-aged photovoltaic modules. In: Proceedings of the Photovoltaic Specialists Conference. Conference Record of the 29th IEEE. New Orleans, 2002. 1436–1439

  26. Wohlgemuth JH, Cunningham DW, Nguyen AM, Miller J. Long term reliability of PV modules. In: Proceedings of the Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on PV Energy Conversion. Waikoloa, 2006. 2050–2053

  27. Jørgensen M, Norrman K, Krebs FC. Sol Energy Mater Sol Cells, 2008, 92: 686–714

    Article  CAS  Google Scholar 

  28. Khenkin MV, Katz EA, Abate A, Bardizza G, Berry JJ, Brabec C, Brunetti F, Bulović V, Burlingame Q, Di Carlo A, Cheacharoen R, Cheng YB, Colsmann A, Cros S, Domanski K, Dusza M, Fell CJ, Forrest SR, Galagan Y, Di Girolamo D, Grätzel M, Hagfeldt A, von Hauff E, Hoppe H, Kettle J, Köbler H, Leite MS, Liu S, Loo YL, Luther JM, Ma CQ, Madsen M, Manceau M, Matheron M, McGehee M, Meitzner R, Nazeeruddin MK, Nogueira AF, Odabaşı Ç, Osherov A, Park NG, Reese MO, De Rossi F, Saliba M, Schubert US, Snaith HJ, Stranks SD, Tress W, Troshin PA, Turkovic V, Veenstra S, Visoly-Fisher I, Walsh A, Watson T, Xie H, Yıldırım R, Zakeeruddin SM, Zhu K, Lira-Cantu M. Nat Energy, 2020, 5: 35–49

    Article  Google Scholar 

  29. Reese MO, Gevorgyan SA, Jørgensen M, Bundgaard E, Kurtz SR, Ginley DS, Olson DC, Lloyd MT, Morvillo P, Katz EA, Elschner A, Haillant O, Currier TR, Shrotriya V, Hermenau M, Riede M, R. Kirov K, Trimmel G, Rath T, Inganäs O, Zhang F, Andersson M, Tvingstedt K, Lira-Cantu M, Laird D, McGuiness C, Gowrisanker SJ, Pannone M, Xiao M, Hauch J, Steim R, DeLongchamp DM, Rösch R, Hoppe H, Espinosa N, Urbina A, Yaman-Uzunoglu G, Bonekamp JB, van Breemen AJJM, Girotto C, Voroshazi E, Krebs FC. Sol Energy Mater Sol Cells, 2011, 95: 1253–1267

    Article  CAS  Google Scholar 

  30. Cao H, He W, Mao Y, Lin X, Ishikawa K, Dickerson JH, Hess WP. J Power Sources, 2014, 264: 168–183

    Article  CAS  Google Scholar 

  31. Roesch R, Faber T, von Hauff E, Brown TM, Lira-Cantu M, Hoppe H. Adv Energy Mater, 2015, 5: 1501407

    Article  CAS  Google Scholar 

  32. Greenbank W, Hirsch L, Chambon S. Sol Energy Mater Sol Cells, 2018, 178: 8–14

    Article  CAS  Google Scholar 

  33. Greenbank W, Rolston N, Destouesse E, Wantz G, Hirsch L, Dauskardt R, Chambon S. J Mater Chem A, 2017, 5: 2911–2919

    Article  CAS  Google Scholar 

  34. Engmann S, Singh CR, Turkovic V, Hoppe H, Gobsch G. Adv Energy Mater, 2013, 3: 1463–1472

    Article  CAS  Google Scholar 

  35. Zhang Z, Ding Z, Jones DJ, Wong WWH, Kan B, Bi Z, Wan X, Ma W, Chen Y, Long X, Dou C, Liu J, Wang L. Sci China Chem, 2018, 61: 1025–1033

    Article  CAS  Google Scholar 

  36. Zhang Z, Miao J, Ding Z, Kan B, Lin B, Wan X, Ma W, Chen Y, Long X, Dou C, Zhang J, Liu J, Wang L. Nat Commun, 2019, 10: 3271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Vongsaysy U. Studies on Processing Additives Introduced to Increase the Efficiency of Organic Solar Cells: Selection and Mechanistic Effects. Dissertation for the Doctoral Degree. Waterloo: University of Waterloo, 2015

    Google Scholar 

  38. Vongsaysy U, Pavageau B, Wantz G, Bassani DM, Servant L, Aziz H. Adv Energy Mater, 2014, 4: 1300752

    Article  CAS  Google Scholar 

  39. Yang D, Löhrer FC, Körstgens V, Schreiber A, Cao B, Bernstorff S, Müller-Buschbaum P. Adv Sci, 2020, 7: 2001117

    Article  CAS  Google Scholar 

  40. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Nat Photon, 2012, 6: 591–595

    Article  CAS  Google Scholar 

  41. Chueh CC, Li CZ, Jen AKY. Energy Environ Sci, 2015, 8: 1160–1189

    Article  CAS  Google Scholar 

  42. Liu Y, Duzhko VV, Page ZA, Emrick T, Russell TP. Acc Chem Res, 2016, 49: 2478–2488

    Article  CAS  PubMed  Google Scholar 

  43. Zhang C, Heumueller T, Leon S, Gruber W, Burlafinger K, Tang X, Perea JD, Wabra I, Hirsch A, Unruh T, Li N, Brabec CJ. Energy Environ Sci, 2019, 12: 1078–1087

    Article  Google Scholar 

  44. Hung KE, Tsai CE, Chang SL, Lai YY, Jeng US, Cao FY, Hsu CS, Su CJ, Cheng YJ. ACS Appl Mater Interfaces, 2017, 9: 43861–43870

    Article  CAS  PubMed  Google Scholar 

  45. Hu Z, Zhong Z, Chen Y, Sun C, Huang F, Peng J, Wang J, Cao Y. Adv Funct Mater, 2016, 26: 129–136

    Article  CAS  Google Scholar 

  46. Sun C, Wu Z, Hu Z, Xiao J, Zhao W, Li HW, Li QY, Tsang SW, Xu YX, Zhang K, Yip HL, Hou J, Huang F, Cao Y. Energy Environ Sci, 2017, 10: 1784–1791

    Article  CAS  Google Scholar 

  47. Wang C, Luo Y, Zheng J, Liu L, Xie Z, Huang F, Yang B, Ma Y. ACS Appl Mater Interfaces, 2018, 10: 10270–10279

    Article  CAS  PubMed  Google Scholar 

  48. Li P, Wang G, Cai L, Ding B, Zhou D, Hu Y, Zhang Y, Xiang J, Wan K, Chen L, Alameh K, Song Q. Phys Chem Chem Phys, 2014, 16: 23792–23799

    Article  CAS  PubMed  Google Scholar 

  49. Mitchell VD, Jones DJ. Polym Chem, 2018, 9: 795–814

    Article  CAS  Google Scholar 

  50. Huang KT, Shih CC, Jiang BH, Jeng RJ, Chen CP, Chen WC. J Mater Chem C, 2019, 7: 12572–12579

    Article  CAS  Google Scholar 

  51. Su L, Huang H, Lin Y, Chen G, Chen W, Chen W, Wang L, Chueh C. Adv Funct Mater, 2021, 31: 2005753

    Article  CAS  Google Scholar 

  52. Lertngim A, Phiriyawirut M, Wootthikanokkhan J, Yuwawech K, Sangkhun W, Kumnorkaew P, Muangnapoh T. R Soc open sci, 2017, 4: 170792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Ahmad J, Bazaka K, Anderson LJ, White RD, Jacob MV. Energy Rev, 2013, 27: 104–117

    CAS  Google Scholar 

  54. Lungenschmied C, Dennler G, Czeremuszkin, Mohamed L, Helmut N, Serdar SN. Photon Solar Energy Syst, 2006, 6197

  55. Heuer H, Wenzel C, Herrmann D, Hübner R, Zhang ZL, Bartha JW. Thin Solid Films, 2006, 515: 1612–1617

    Article  CAS  Google Scholar 

  56. Wilski S, Wipperfürth J, Jaritz M, Kirchheim D, Mitschker F, Awakowicz P, Dahlmann R, Hopmann C. J Phys D-Appl Phys, 2017, 50: 425301

    Article  CAS  Google Scholar 

  57. Tropsha YG, Harvey NG. J Phys Chem B, 1997, 101: 2259–2266

    Article  CAS  Google Scholar 

  58. Kiese S, Kücükpinar E, Miesbauer O, Langowski HC. Thin Solid Films, 2019, 672: 199–205

    Article  CAS  Google Scholar 

  59. Saha D, Samal SK, Biswal M, Mohanty S, Nayak SK. Polym Int, 2019, 68: 164–172

    Article  CAS  Google Scholar 

  60. Nisato G, Bouten PCP, Slikkerveer PJ, Bennett WD, Graff GL, Rutherford N, Wiese L. Proc Int Display Workshop/Asia Display, 2001, 61: 1435–1438

    Google Scholar 

  61. Boldrighini P, Fauveau A, Thérias S, Gardette JL, Hidalgo M, Cros S. Rev Sci Instrum, 2019, 90: 014710

    Article  CAS  PubMed  Google Scholar 

  62. Carcia PF, McLean RS, Reilly MH, Groner MD, George SM. Appl Phys Lett, 2006, 89: 031915

    Article  CAS  Google Scholar 

  63. Nisato G, Klumbies H, Fahlteich J, Müller-Meskamp L, van de Weijer P, Bouten P, Boeffel C, Leunberger D, Graehlert W, Edge S, Cros S, Brewer P, Kucukpinar E, de Girolamo J, Srinivasan P. Org Electron, 2014, 15: 3746–3755

    Article  CAS  Google Scholar 

  64. Matsudaira T, Kitaoka S, Shibata N, Ikuhara Y, Takeuchi M, Ogawa T. Acta Mater, 2018, 151: 21–30

    Article  CAS  Google Scholar 

  65. Zhang W, Wu Z, Dong J, Yan X, Gao W, Ma R, Hou X. Phys Status Solidi A, 2018, 215: 1800326

    Article  CAS  Google Scholar 

  66. Yan J, Yang J, Dong S, Huang K, Ruan J, Hu J, Zhou H, Zhu Q, Zhang X, Ding Y. Nanotechnology, 2019, 30: 275602

    Article  CAS  PubMed  Google Scholar 

  67. Li P. Mater Res Express, 2019, 6: 076559

    Article  CAS  Google Scholar 

  68. Li D, Wu Y, Zhang X, Liu C, Qi H, Jiang M. Optik, 2017, 130: 864–871

    Article  CAS  Google Scholar 

  69. Arshad MA, Maaroufi AK. Physica B-Condensed Matter, 2018, 545: 465–474

    Article  CAS  Google Scholar 

  70. Yi SM, Choi IS, Kim BJ, Joo YC. Electron Mater Lett, 2018, 14: 387–404

    Article  CAS  Google Scholar 

  71. Bundgaard E, Helgesen M, Carlé JE, Krebs FC, Jørgensen M. Macromol Chem Phys, 2013, 214: 1546–1558

    Article  CAS  Google Scholar 

  72. Nguyen TP, Renaud C, Reisdorffer F, Wang L. J Photon Energy, 2012, 2: 021013-1

    Article  CAS  Google Scholar 

  73. Kim SH, Son HJ, Park SH, Hahn JS, Kim DH. Sol Energy Mater Sol Cells, 2016, 144: 187–193

    Article  CAS  Google Scholar 

  74. Fluhr D, Züfle S, Muhsin B, Öttking R, Seeland M, Roesch R, Schubert US, Ruhstaller B, Krischok S, Hoppe H. Phys Status Solidi A, 2018, 215: 1800474

    Article  CAS  Google Scholar 

  75. Dennler G, Lungenschmied C, Neugebauer H, Sariciftci NS, Latrèche M, Czeremuszkin G, Wertheimer MR. Thin Solid Films, 2006, 511–512: 349–353

    Article  CAS  Google Scholar 

  76. Lee HJ, Kim HP, Kim HM, Youn JH, Nam DH, Lee YG, Lee JG, Mohd Yusoff AR, Jang J. Sol Energy Mater Sol Cells, 2013, 111: 97–101

    Article  CAS  Google Scholar 

  77. Cros S, de Bettignies R, Berson S, Bailly S, Maisse P, Lemaitre N, Guillerez S. Sol Energy Mater Sol Cells, 2011, 95: S65–S69

    Article  CAS  Google Scholar 

  78. Shah SK, Hayat K, Ali K. Mater Res Express, 2019, 6: 065102

    Article  CAS  Google Scholar 

  79. Kang H, Kim G, Kim J, Kwon S, Kim H, Lee K. Adv Mater, 2016, 28: 7821–7861

    Article  CAS  PubMed  Google Scholar 

  80. Chen Y, Ye Y, Chen ZR. J Mater Sci, 2019, 54: 5907–5917

    Article  CAS  Google Scholar 

  81. Jang YS, Shin SM, Yi S, Hong MP. Thin Solid Films, 2019, 674: 52–57

    Article  CAS  Google Scholar 

  82. Puurunen RL. J Appl Phys, 2005, 97: 121301

    Article  CAS  Google Scholar 

  83. Wang L, Ruan C, Li M, Zou J, Tao H, Peng J, Xu M. J Mater Chem C, 2017, 5: 4017–4024

    Article  CAS  Google Scholar 

  84. Jeong EG, Jeon Y, Cho SH, Choi KC. Energy Environ Sci, 2019, 12: 1878–1889

    Article  CAS  Google Scholar 

  85. Kwon JH, Jeong EG, Jeon Y, Kim DG, Lee S, Choi KC. ACS Appl Mater Interfaces, 2019, 11: 3251–3261

    Article  CAS  PubMed  Google Scholar 

  86. Chawla V, Ruoho M, Weber M, Chaaya AA, Taylor AA, Charmette C, Miele P, Bechelany M, Michler J, Utke I. Nanomaterials, 2019, 9: 88

    Article  PubMed Central  CAS  Google Scholar 

  87. Klumbies H, Müller-Meskamp L, Nehm F, Leo K. Rev Sci Instrum, 2014, 85: 016104

    Article  CAS  PubMed  Google Scholar 

  88. Kim LH, Kim K, Park S, Jeong YJ, Kim H, Chung DS, Kim SH, Park CE. ACS Appl Mater Interfaces, 2014, 6: 6731–6738

    Article  CAS  PubMed  Google Scholar 

  89. Kim HG, Lee JG, Kim SS. Org Electron, 2017, 50: 239–246

    Article  CAS  Google Scholar 

  90. Yun SJ, Abidov A, Kim S, Choi JS, Cho BS, Chung SC. Vacuum, 2018, 148: 33–40

    Article  CAS  Google Scholar 

  91. Taylor A, Drahokoupil J, Fekete L, Klimša L, Kopeček J, Purkrt A, Remeš Z, Čtvrtlík R, Tomáštík J, Frank O, Janíček P, Mistrík J, Mortet V. Diamond Related Mater, 2016, 69: 13–18

    Article  CAS  Google Scholar 

  92. Kim SJ, Kim T, Kang BH, Lee GH, Ju BK. RSC Adv, 2018, 8: 39083–39089

    Article  CAS  Google Scholar 

  93. Andrady AL, Pandey KK, Heikkilä AM. Photochem Photobiol Sci, 2019, 18: 804–825

    Article  CAS  PubMed  Google Scholar 

  94. Green MA. Prog Photovolt-Res Appl, 2009, 17: 183–189

    Article  CAS  Google Scholar 

  95. Gevorgyan SA, Madsen MV, Roth B, Corazza M, Hösel M, Søndergaard RR, Jørgensen M, Krebs FC. Adv Energy Mater, 2016, 6: 1501208

    Article  CAS  Google Scholar 

  96. Angmo D, Krebs FC. Energy Tech, 2015, 3: 774–783

    Article  CAS  Google Scholar 

  97. Pearson AJ, Hopkinson PE, Couderc E, Domanski K, Abdi-Jalebi M, Greenham NC. Org Electron, 2016, 30: 225–236

    Article  CAS  Google Scholar 

  98. Madsen MV, Gevorgyan SA, Pacios R, Ajuria J, Etxebarria I, Kettle J, Bristow ND, Neophytou M, Choulis SA, Stolz Roman L, Yohannes T, Cester A, Cheng P, Zhan X, Wu J, Xie Z, Tu WC, He JH, Fell CJ, Anderson K, Hermenau M, Bartesaghi D, Jan Anton Koster L, Machui F, González-Valls I, Lira-Cantu M, Khlyabich PP, Thompson BC, Gupta R, Shanmugam K, Kulkarni GU, Galagan Y, Urbina A, Abad J, Roesch R, Hoppe H, Morvillo P, Bobeico E, Panaitescu E, Menon L, Luo Q, Wu Z, Ma C, Hambarian A, Melikyan V, Hambsch M, Burn PL, Meredith P, Rath T, Dunst S, Trimmel G, Bardizza G, Müllejans H, Goryachev AE, Misra RK, Katz EA, Takagi K, Magaino S, Saito H, Aoki D, Sommeling PM, Kroon JM, Vangerven T, Manca J, Kesters J, Maes W, Bobkova OD, Trukhanov VA, Paraschuk DY, Castro FA, Blakesley J, Tuladhar SM, Alexander Röhr J, Nelson J, Xia J, Parlak EA, Tumay TAı, Egelhaaf HJ, Tanenbaum DM, Mae Ferguson G, Carpenter R, Chen H, Zimmermann B, Hirsch L, Wantz G, Sun Z, Singh P, Bapat C, Offermans T, Krebs FC. Sol Energy Mater Sol Cells, 2014, 130: 281–290

    Article  CAS  Google Scholar 

  99. Gu X, Shaw L, Gu K, Toney MF, Bao Z. Nat Commun, 2018, 9: 534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Hösel M, Dam HF, Krebs FC. Energy Tech, 2015, 3: 281

    Article  Google Scholar 

  101. Krebs FC. Sol Energy Mater Sol Cells, 2009, 93: 1636–1641

    Article  CAS  Google Scholar 

  102. Søndergaard RR, Hösel M, Krebs FC. J Polym Sci B Polym Phys, 2013, 51: 16–34

    Article  CAS  Google Scholar 

  103. Logothetidis S. Mater Sci Eng-B, 2008, 152: 96–104

    Article  CAS  Google Scholar 

  104. Galagan Y, de Vries IG, Langen AP, Andriessen R, Verhees WJH, Veenstra SC, Kroon JM. Chem Eng Proc, 2011, 50: 454–461

    Article  CAS  Google Scholar 

  105. Krebs FC, Tromholt T, Jørgensen M. Nanoscale, 2010, 2: 873–886

    Article  CAS  PubMed  Google Scholar 

  106. Jung M, Kim J, Noh J, Lim N, Lim C, Lee G, Kim J, Kang H, Jung K, Leonard AD, Tour JM, Cho G. IEEE Trans Electron Devices, 2010, 57: 571–580

    Article  CAS  Google Scholar 

  107. Koyama H, Fukada K, Murakami Y, Inoue S, Shimoda T. IEICE Trans Electron, 2014, E97.C: 1042–1047

    Article  Google Scholar 

  108. Ahn SH, Guo LJ. Adv Mater, 2008, 20: 2044–2049

    Article  CAS  Google Scholar 

  109. Mäkelä T, Haatainen T, Majander P, Ahopelto J, Lambertini V. Jpn J Appl Phys, 2008, 47: 5142–5144

    Article  CAS  Google Scholar 

  110. Bikas H, Stavropoulos P, Chryssolouris G. Int J Adv Manuf Technol, 2016, 83: 389–405

    Article  Google Scholar 

  111. Newman ST, Zhu Z, Dhokia V, Shokrani A. CIRP Ann, 2015, 64: 467–470

    Article  Google Scholar 

  112. Butala P, Sluga A. Adv Eng Inf, 2002, 16: 127–133

    Article  Google Scholar 

  113. Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28: 9423–9429

    Article  CAS  PubMed  Google Scholar 

  114. Wan Q, Guo X, Wang Z, Li W, Guo B, Ma W, Zhang M, Li Y. Adv Funct Mater, 2016, 26: 6635–6640

    Article  CAS  Google Scholar 

  115. Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J. Sci China Chem, 2015, 58: 248–256

    Article  CAS  Google Scholar 

  116. Zhao W, Zhang S, Hou J. Sci China Chem, 2016, 59: 1574–1582

    Article  CAS  Google Scholar 

  117. Lin Y, Dong S, Li Z, Zheng W, Yang J, Liu A, Cai W, Liu F, Jiang Y, Russell TP, Huang F, Wang E, Hou L. Nano Energy, 2018, 46: 428–435

    Article  CAS  Google Scholar 

  118. Roth B, Søndergaard RR, Krebs FC. Handbook of Flexible Organic Electronics. Amsterdam: Elsevier Ltd., 2015. 171–197

    Book  Google Scholar 

  119. Zhang Y, Griffin J, Scarratt NW, Wang T, Lidzey DG. Prog Photovolt-Res Appl, 2016, 24: 275–282

    Article  CAS  Google Scholar 

  120. Park JD, Lim S, Kim H. Thin Solid Films, 2015, 586: 70–75

    Article  CAS  Google Scholar 

  121. Sico G, Montanino M, De Girolamo Del Mauro A, Imparato A, Nobile G, Minarini C. Org Electron, 2016, 28: 257–262

    Article  CAS  Google Scholar 

  122. Montanino M, Sico G, Prontera CT, De Girolamo Del Mauro A, Aprano S, Maglione MG, Minarini C. Express Polym Lett, 2017, 11: 518–523

    Article  CAS  Google Scholar 

  123. Fung CM, Lloyd JS, Samavat S, Deganello D, Teng KS. Sens Actuat B-Chem, 2017, 247: 807–813

    Article  CAS  Google Scholar 

  124. Yonezawa K, Yamamoto K, Shahiduzzaman M, Furumoto Y, Hamada K, Ripolles TS, Karakawa M, Kuwabara T, Takahashi K, Hayase S, Taima T. Jpn J Appl Phys, 2017, 56: 04CS11

    Article  Google Scholar 

  125. Yang F, Shtein M, Forrest SR. J Appl Phys, 2005, 98: 014906

    Article  CAS  Google Scholar 

  126. Green MA. Prog Photovolt-Res Appl, 2005, 13: 447–455

    Article  Google Scholar 

  127. Bundgaard E, Krebs F. Sol Energy Mater Sol Cells, 2007, 91: 1019–1025

    Article  CAS  Google Scholar 

  128. You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y. Nat Commun, 2013, 4: 1446

    Article  CAS  PubMed  Google Scholar 

  129. Che X, Xiao X, Zimmerman JD, Fan D, Forrest SR. Adv Energy Mater, 2014, 4: 1400568

    Article  CAS  Google Scholar 

  130. Tipnis R, Bernkopf J, Jia S, Krieg J, Li S, Storch M, Laird D. Sol Energy Mater Sol Cells, 2009, 93: 442–446

    Article  CAS  Google Scholar 

  131. Xiao X, Lee K, Forrest SR. Appl Phys Lett, 2015, 106: 213301

    Article  CAS  Google Scholar 

  132. Lewis JE, Lafalce E, Toglia P, Jiang X. Sol Energy Mater Sol Cells, 2011, 95: 2816–2822

    Article  CAS  Google Scholar 

  133. Wu F, Ye F, Chen Z, Cui Y, Yang D, Li Z, Zhao X, Yang X. Org Electron, 2015, 26: 48–54

    Article  CAS  Google Scholar 

  134. Shrotriya V, Li G, Yao Y, Chu CW, Yang Y. Appl Phys Lett, 2006, 88: 073508

    Article  CAS  Google Scholar 

  135. Han S, Shin WS, Seo M, Gupta D, Moon SJ, Yoo S. Org Electron, 2009, 10: 791–797

    Article  CAS  Google Scholar 

  136. Sun Y, Takacs CJ, Cowan SR, Seo JH, Gong X, Roy A, Heeger AJ. Adv Mater, 2011, 23: 2226–2230

    Article  CAS  PubMed  Google Scholar 

  137. Zheng D, Huang W, Fan P, Zheng Y, Huang J, Yu J. ACS Appl Mater Interfaces, 2017, 9: 4898–4907

    Article  CAS  PubMed  Google Scholar 

  138. Li H, Li S, Wang Y, Sarvari H, Zhang P, Wang M, Chen Z. Sol Energy, 2016, 126: 243–251

    Article  CAS  Google Scholar 

  139. Ji R, Zheng D, Zhou C, Cheng J, Yu J, Li L. Materials, 2017, 10: 820

    Article  PubMed Central  CAS  Google Scholar 

  140. Lyu HK, Sim JH, Woo SH, Kim KP, Shin JK, Han YS. Sol Energy Mater Sol Cells, 2011, 95: 2380–2383

    Article  CAS  Google Scholar 

  141. Cha HC, Huang YC, Hsu FH, Chuang CM, Lu DH, Chou CW, Chen CY, Tsao CS. Sol Energy Mater Sol Cells, 2014, 130: 191–198

    Article  CAS  Google Scholar 

  142. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098

    Article  CAS  PubMed  Google Scholar 

  143. Andersen TR, Dam HF, Hösel M, Helgesen M, Carlé JE, Larsen-Olsen TT, Gevorgyan SA, Andreasen JW, Adams J, Li N, Machui F, Spyropoulos GD, Ameri T, Lemaître N, Legros M, Scheel A, Gaiser D, Kreul K, Berny S, Lozman OR, Nordman S, Välimäki M, Vilkman M, Søndergaard RR, Jørgensen M, Brabec CJ, Krebs FC. Energy Environ Sci, 2014, 7: 2925–2933

    Article  CAS  Google Scholar 

  144. Hong S, Yi M, Kang H, Kong J, Lee W, Kim JR, Lee K. Sol Energy Mater Sol Cells, 2014, 126: 107–112

    Article  CAS  Google Scholar 

  145. Kutsarov DI, New E, Bausi F, Zoladek-Lemanczyk A, Castro FA, Silva SRP. Sol Energy Mater Sol Cells, 2017, 161: 388–396

    Article  CAS  Google Scholar 

  146. Välimäki M, Apilo P, Po R, Jansson E, Bernardi A, Ylikunnari M, Vilkman M, Corso G, Puustinen J, Tuominen J, Hast J. Nanoscale, 2015, 7: 9570–9580

    Article  CAS  PubMed  Google Scholar 

  147. Kapnopoulos C, Mekeridis ED, Tzounis L, Polyzoidis C, Zachariadis A, Tsimikli S, Gravalidis C, Laskarakis A, Vouroutzis N, Logothetidis S. Sol Energy Mater Sol Cells, 2016, 144: 724–731

    Article  CAS  Google Scholar 

  148. Vak D, Weerasinghe H, Ramamurthy J, Subbiah J, Brown M, Jones DJ. Sol Energy Mater Sol Cells, 2016, 149: 154–161

    Article  CAS  Google Scholar 

  149. Zhou X, Xu H, Cheng J, Zhao N, Chen SC. Sci Rep, 2015, 5: 10402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Lucera L, Machui F, Kubis P, Schmidt HD, Adams J, Strohm S, Ahmad T, Forberich K, Egelhaaf HJ, Brabec CJ. Energy Environ Sci, 2016, 9: 89–94

    Article  Google Scholar 

  151. Strohm S, Machui F, Langner S, Kubis P, Gasparini N, Salvador M, McCulloch I, Egelhaaf HJ, Brabec CJ. Energy Environ Sci, 2018, 11: 2225–2234

    Article  CAS  Google Scholar 

  152. Parchine M, Kohoutek T, Bardosova M, Pemble ME. Sol Energy Mater Sol Cells, 2018, 185: 158–165

    Article  CAS  Google Scholar 

  153. Jung YH, Chang TH, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park DW, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z. Nat Commun, 2015, 6: 7170

    Article  PubMed  Google Scholar 

  154. Haward M. Nat Commun, 2018, 9: 667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Jayaraman E, Iyer SSK. Adv Mater Technol, 2020, 5: 2000664

    Article  CAS  Google Scholar 

  156. Distler A, Brabec CJ, Egelhaaf H. Prog Photovolt Res Appl, 2021, 29: 24–31

    Article  Google Scholar 

  157. Bauer S. Nat Mater, 2013, 12: 871–872

    Article  CAS  PubMed  Google Scholar 

  158. Park S, Vosguerichian M, Bao Z. Nanoscale, 2013, 5: 1727–1752

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of “Strategic Advanced Electronic Materials” (2016YFB0401100), the National Natural Science Foundation of China (61574077), the Major Program of Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (19KJA460005) and the Natural Science Foundation of Jiangsu Province (BK20170961). Dedicated to the 100th anniversary of Chemistry at Nankai University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guichuan Xing or Shiming Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Lu, J., Ye, W. et al. Stability, encapsulation and large-area fabrication of organic photovoltaics. Sci. China Chem. 64, 1441–1459 (2021). https://doi.org/10.1007/s11426-020-1021-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-1021-x

Keywords

Navigation