Skip to main content

Organic Photovoltaic Cells: Opportunities and Challenges

  • Chapter
  • First Online:
Nanomaterials for Innovative Energy Systems and Devices

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

In this chapter, the understanding of OPVs working mechanism and device structures (conventional and inverted) comprising of different types of layers is presented. Subsequently, we detailed the functioning of each layer, in the layer stack of OPVs, and the material characteristics for these layers are discussed. The active layer morphologies are detailed insight, along with their shortcomings and solution to improve them. The improvisation in optical absorption of the active layer by incorporation of plasmonic nanostructures in the different layers is also discussed. Furthermore, the use of nanotechnologies in each layer of the device is highlighted. The different types of loss-mechanism such as charge transfer loss, radiative and non-radiative recombinations are also been discussed in conjunction with the techniques to minimize these losses. Finally, the fabrication techniques, i.e., solution-processing and vacuum-processing, and roll-to-roll manufacturing of the OPVs are explained with their advantages and disadvantages. The chemical and physical degradation mechanisms leading to instabilities are also detailed insight. Along with this, the different encapsulation techniques to improve the stability of the device are elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asongu SA, Agboola MO, Alola AA, Bekun FV (2020) The criticality of growth, urbanization, electricity and fossil fuel consumption to environment sustainability in Africa. Sci Total Environ 712:136376. https://doi.org/10.1016/J.SCITOTENV.2019.136376

    Article  CAS  Google Scholar 

  2. Arutyunov VS, Lisichkin GV (2017) Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels. Russ Chem Rev 86:777. https://doi.org/10.1070/RCR4723

  3. Gielen D, Boshell F, Saygin D et al (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24:38–50. https://doi.org/10.1016/J.ESR.2019.01.006

    Article  Google Scholar 

  4. Sharma S, Jain KK, Sharma A (2015) Solar cells. In research and applications—a review. Mater Sci Appl 6:1145–1155. https://doi.org/10.4236/MSA.2015.612113

    Article  CAS  Google Scholar 

  5. Andreani LC, Bozzola A, Kowalczewski P et al (2018) Silicon solar cells: toward the efficiency limits. 4:1548305. https://doi.org/10.1080/23746149.2018.1548305

  6. Sopian K, Cheow SL, Zaidi SH (2017) An overview of crystalline silicon solar cell technology: past, present, and future. AIP Conf Proc 1877:020004. https://doi.org/10.1063/1.4999854

    Article  CAS  Google Scholar 

  7. Tyagi VV, Rahim NAA, Rahim NA, Selvaraj JAL (2013) Progress in solar PV technology: research and achievement. Renew Sustain Energy Rev 20:443–461. https://doi.org/10.1016/J.RSER.2012.09.028

    Article  CAS  Google Scholar 

  8. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945. https://doi.org/10.1557/JMR.2004.0252

    Article  CAS  Google Scholar 

  9. Antohe S, Iftimie S, Hrostea L et al (2017) A critical review of photovoltaic cells based on organic monomeric and polymeric thin film heterojunctions. Thin Solid Films 642:219–231. https://doi.org/10.1016/J.TSF.2017.09.041

    Article  CAS  Google Scholar 

  10. Vogelbaum HS, Sauvé G (2017) Recently developed high-efficiency organic photoactive materials for printable photovoltaic cells: a mini review. Synth Met 223:107–121. https://doi.org/10.1016/J.SYNTHMET.2016.12.011

    Article  CAS  Google Scholar 

  11. Idris NB, Norizan MN, Mohamad IS (2015) organic solar cell: an overview on performance and fabrication techniques. Appl Mech Mater 754–755:540–545. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.754-755.540

    Article  Google Scholar 

  12. Bernardo G, Lopes T, Lidzey DG, Mendes A (2021) Progress in upscaling organic photovoltaic devices. Adv Energy Mater 11:2100342. https://doi.org/10.1002/AENM.202100342

    Article  CAS  Google Scholar 

  13. Carlé JE, Krebs FC (2013) Technological status of organic photovoltaics (OPV). Sol Energy Mater Sol Cells 119:309–310. https://doi.org/10.1016/J.SOLMAT.2013.08.044

    Article  Google Scholar 

  14. Mayer AC, Scully SR, Hardin BE et al (2007) Polymer-based solar cells. Mater Today 10:28–33. https://doi.org/10.1016/S1369-7021(07)70276-6

    Article  CAS  Google Scholar 

  15. Fukuda K, Yu K, Someya T (2020) The future of flexible organic solar cells. Adv Energy Mater 10:2000765

    Article  CAS  Google Scholar 

  16. Kaçuş H, Biber M, Aydoğan Ş (2020) Role of the Au and Ag nanoparticles on organic solar cells based on P3HT:PCBM active layer. Appl Phys A Mater Sci Process 126:817. https://doi.org/10.1007/s00339-020-03992-7

    Article  CAS  Google Scholar 

  17. Feng L, Niu M, Wen Z, Hao X (2018) Recent advances of plasmonic organic solar cells: photophysical investigations. Polymers (Basel) 10:123

    Article  Google Scholar 

  18. Maake PJ, Bolokang AS, Arendse CJ et al (2020) Metal oxides and noble metals application in organic solar cells. Sol Energy 207:347–366

    Article  CAS  Google Scholar 

  19. Khan D, Ali Z, Asif D et al (2021) Incorporation of carbon nanotubes in photoactive layer of organic solar cells. Ain Shams Eng J 12:897–900. https://doi.org/10.1016/j.asej.2020.06.002

    Article  Google Scholar 

  20. Shin DH, Jang CW, Ko JS, Choi SH (2021) Enhancement of efficiency and stability in organic solar cells by employing MoS2 transport layer, graphene electrode, and graphene quantum dots-added active layer. Appl Surf Sci 538:148155. https://doi.org/10.1016/j.apsusc.2020.148155

    Article  CAS  Google Scholar 

  21. Chapin DM, Fuller CS, Pearson GL (2004) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25:676. https://doi.org/10.1063/1.1721711

    Article  Google Scholar 

  22. Best Research-Cell Efficiency Chart. Photovoltaic Research. NREL. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 13 Sept 2021

  23. Shirakawa H, Louis EJ, MacDiarmid AG et al (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 578–580. https://doi.org/10.1039/C39770000578

  24. Chiang CK, Fincher J CR, Park YW et al (1977) Electrical Conductivity in Doped Polyacetylene. Phys Rev Lett 39:1098. https://doi.org/10.1103/PhysRevLett.39.1098

  25. Coakley KM, McGehee MD (2004) Conjugated polymer photovoltaic cells. Chem Mater 16:4533–4542. https://doi.org/10.1021/CM049654N

  26. Yeh N, Yeh P (2013) Organic solar cells: their developments and potentials. Renew Sustain Energy Rev 21:421–431. https://doi.org/10.1016/J.RSER.2012.12.046

    Article  CAS  Google Scholar 

  27. Søndergaard R, Hösel M, Angmo D et al (2012) Roll-to-roll fabrication of polymer solar cells. Mater Today 15:36–49. https://doi.org/10.1016/S1369-7021(12)70019-6

    Article  CAS  Google Scholar 

  28. Kallmann H, Pope M (2004) Photovoltaic effect in organic crystals. J Chem Phys 30:585. https://doi.org/10.1063/1.1729992

    Article  Google Scholar 

  29. Marinova N, Valero S, Delgado JL (2017) Organic and perovskite solar cells: working principles, materials and interfaces. J Colloid Interface Sci 488:373–389. https://doi.org/10.1016/J.JCIS.2016.11.021

    Article  CAS  Google Scholar 

  30. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science (80-) 258:1474–1476. https://doi.org/10.1126/SCIENCE.258.5087.1474

  31. Brabec CJ, Zerza G, Cerullo G et al (2001) Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem Phys Lett 340:232–236. https://doi.org/10.1016/S0009-2614(01)00431-6

    Article  CAS  Google Scholar 

  32. Braun CL (1998) Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J Chem Phys 80:4157. https://doi.org/10.1063/1.447243

    Article  Google Scholar 

  33. Goliber TE, Perlstein JH (1998) Analysis of photogeneration in a doped polymer system in terms of a kinetic model for electric-field-assisted dissociation of charge-transfer states. J Chem Phys 80:4162. https://doi.org/10.1063/1.447244

    Article  Google Scholar 

  34. Elumalai NK, Uddin A (2016) Open circuit voltage of organic solar cells: an in-depth review. Energy Environ Sci 9:391–410. https://doi.org/10.1039/C5EE02871J

    Article  CAS  Google Scholar 

  35. Coropceanu V, Cornil J, da Silva Filho DA et al (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952. https://doi.org/10.1021/CR050140X

  36. Shockley W, Queisser HJ (2004) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510. https://doi.org/10.1063/1.1736034

    Article  Google Scholar 

  37. Chen L-M, Hong Z, Li G, Yang Y (2009) Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells. Adv Mater 21:1434–1449. https://doi.org/10.1002/ADMA.200802854

    Article  CAS  Google Scholar 

  38. Deibel C, Dyakonov V (2010) Polymer–fullerene bulk heterojunction solar cells. Reports Prog Phys 73:096401. https://doi.org/10.1088/0034-4885/73/9/096401

    Article  CAS  Google Scholar 

  39. Shrotriya V, Wu EH-E, Li G et al (2006) Efficient light harvesting in multiple-device stacked structure for polymer solar cells. Appl Phys Lett 88:064104. https://doi.org/10.1063/1.2172741

    Article  CAS  Google Scholar 

  40. Shaheen SE, Brabec CJ, Sariciftci NS et al (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841. https://doi.org/10.1063/1.1345834

  41. Hou J, Guo X (2013) Active layer materials for organic solar cells. Green Energy Technol 128:17–42. https://doi.org/10.1007/978-1-4471-4823-4_2

    Article  Google Scholar 

  42. Lin Y, Li Y, Zhan X (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev 41:4245–4272. https://doi.org/10.1039/C2CS15313K

    Article  CAS  Google Scholar 

  43. Mishra A, Bäuerle P (2012) Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew Chemie Int Ed 51:2020–2067. https://doi.org/10.1002/ANIE.201102326

    Article  CAS  Google Scholar 

  44. Albrecht S, Schäfer S, Lange I et al (2012) Light management in PCPDTBT:PC70BM solar cells: a comparison of standard and inverted device structures. Org Electron 13:615–622. https://doi.org/10.1016/J.ORGEL.2011.12.019

    Article  CAS  Google Scholar 

  45. Choi JH, Son K-I, Kim T et al (2009) Thienyl-substituted methanofullerene derivatives for organic photovoltaic cells. J Mater Chem 20:475–482. https://doi.org/10.1039/B916597E

    Article  Google Scholar 

  46. Brabec CJ, Cravino A, Meissner D et al, Origin of the open circuit voltage of plastic solar cells. https://doi.org/10.1002/1616-3028

  47. Li Y (2013) Fullerene-Bisadduct acceptors for polymer solar cells. Chem—An Asian J 8:2316–2328. https://doi.org/10.1002/ASIA.201300600

  48. Anthony JE (2010) Small-molecule, nonfullerene acceptors for polymer bulk heterojunction organic photovoltaics. Chem Mater 23:583–590. https://doi.org/10.1021/CM1023019

    Article  Google Scholar 

  49. Anthony JE, Facchetti A, Heeney M et al (2010) n-type organic semiconductors in organic electronics. Adv Mater 22:3876–3892. https://doi.org/10.1002/ADMA.200903628

    Article  CAS  Google Scholar 

  50. Chamberlain GA (1983) Organic solar cells: a review. Sol Cells 8:47–83. https://doi.org/10.1016/0379-6787(83)90039-X

    Article  CAS  Google Scholar 

  51. Blom PWM, Mihailetchi VD, Koster LJA, Markov DE (2007) Device physics of polymer: fullerene bulk heterojunction solar cells. Adv Mater 19:1551–1566. https://doi.org/10.1002/ADMA.200601093

    Article  CAS  Google Scholar 

  52. Halls JJM, Pichler K, Friend RH et al (1998) Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl Phys Lett 68:3120. https://doi.org/10.1063/1.115797

    Article  Google Scholar 

  53. Markov DE, Amsterdam E, Blom PWM et al (2005) Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. J Phys Chem A 109:5266–5274. https://doi.org/10.1021/JP0509663

  54. Mikhnenko OV, Azimi H, Scharber M et al (2012) Exciton diffusion length in narrow bandgap polymers. Energy Environ Sci 5:6960–6965. https://doi.org/10.1039/C2EE03466B

    Article  CAS  Google Scholar 

  55. Seo JH, Jin Y, Brzezinski JZ et al (2009) Exciton binding energies in conjugated polyelectrolyte films. ChemPhysChem 10:1023–1027. https://doi.org/10.1002/CPHC.200800751

    Article  CAS  Google Scholar 

  56. Brédas J-L, Norton JE, Cornil J, Coropceanu V (2009) Molecular understanding of organic solar cells: the challenges. Acc Chem Res 42:1691–1699. https://doi.org/10.1021/AR900099H

    Article  Google Scholar 

  57. Clarke TM, Durrant JR (2010) Charge Photogeneration in organic solar cells. Chem Rev 110:6736–6767. https://doi.org/10.1021/CR900271S

    Article  CAS  Google Scholar 

  58. Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM (2004) Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys Rev Lett 93:216601. https://doi.org/10.1103/PhysRevLett.93.216601

    Article  CAS  Google Scholar 

  59. Tang CW (1998) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183. https://doi.org/10.1063/1.96937

    Article  Google Scholar 

  60. Granström M, Petritsch K, Arias AC et al (1998) Laminated fabrication of polymeric photovoltaic diodes. Nat 395(6699):257–260. https://doi.org/10.1038/26183

    Article  Google Scholar 

  61. Gregg BA (1996) Bilayer molecular solar cells on spin-coated TiO2 substrates. Chem Phys Lett 258:376–380. https://doi.org/10.1016/0009-2614(96)00681-1

    Article  CAS  Google Scholar 

  62. Liu F, Shao S, Guo X et al (2010) Efficient polymer photovoltaic cells using solution-processed MoO3 as anode buffer layer. Sol Energy Mater Sol Cells 94:842–845. https://doi.org/10.1016/J.SOLMAT.2010.01.004

    Article  CAS  Google Scholar 

  63. Krebs FC (2009) All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org Electron 10:761–768. https://doi.org/10.1016/J.ORGEL.2009.03.009

    Article  CAS  Google Scholar 

  64. Dennler G, Sariciftci NS (2005) Flexible conjugated polymer-based plastic solar cells: from basics to applications. Proc IEEE 93:1429–1439. https://doi.org/10.1109/JPROC.2005.851491

    Article  CAS  Google Scholar 

  65. Muhammad FF, Sulaiman K (2011) Photovoltaic performance of organic solar cells based on DH6T/PCBM thin film active layers. Thin Solid Films 519:5230–5233. https://doi.org/10.1016/J.TSF.2011.01.165

    Article  CAS  Google Scholar 

  66. Heremans P, Cheyns D, Rand BP (2009) Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc Chem Res 42:1740–1747. https://doi.org/10.1021/AR9000923

    Article  CAS  Google Scholar 

  67. Kuo CY, Tang WC, Gau C et al (2008) Ordered bulk heterojunction solar cells with vertically aligned TiO2 nanorods embedded in a conjugated polymer. Appl Phys Lett 93:033307. https://doi.org/10.1063/1.2937472

    Article  CAS  Google Scholar 

  68. Borzdun NI, Ramazanov RR, Glova AD et al (2021) Model carboxyl-containing asphaltenes as potential acceptor materials for bulk heterojunction solar cells. Energy Fuels 35:8423–8429. https://doi.org/10.1021/ACS.ENERGYFUELS.1C00253

    Article  CAS  Google Scholar 

  69. Halls JJM, Walsh CA, Greenham NC et al (1995) Efficient photodiodes from interpenetrating polymer networks. Nat 376(6540):498–500. https://doi.org/10.1038/376498a0

    Article  CAS  Google Scholar 

  70. Smestad GP, Krebs FC, Lampert CM et al (2008) Reporting solar cell efficiencies in solar energy materials and solar cells. Sol Energy Mater Sol Cells 92:371–373. https://doi.org/10.1016/J.SOLMAT.2008.01.003

    Article  CAS  Google Scholar 

  71. Ren X, Cheng J, Zhang S et al (2016) High efficiency organic solar cells achieved by the simultaneous plasmon-optical and plasmon-electrical effects from plasmonic asymmetric modes of gold nanostars. Small 12:5200–5207. https://doi.org/10.1002/SMLL.201601949

    Article  CAS  Google Scholar 

  72. Bhatia R, Kumar L (2017) Functionalized carbon nanotube doping of P3HT:PCBM photovoltaic devices for enhancing short circuit current and efficiency. J Saudi Chem Soc 21:366–376. https://doi.org/10.1016/J.JSCS.2016.11.003

    Article  CAS  Google Scholar 

  73. Kou P, Yang L, Chang C, He S (2017) Improved flexible transparent conductive electrodes based on silver nanowire networks by a simple sunlight illumination approach. Sci Rep 7(1):1–11. https://doi.org/10.1038/srep42052

  74. Yao M, Shen P, Liu Y et al (2016) Performance improvement of polymer solar cells by surface-energy-induced dual plasmon resonance. ACS Appl Mater Interfaces 8:6183–6189. https://doi.org/10.1021/ACSAMI.6B00297

    Article  CAS  Google Scholar 

  75. Nardes AM, Ahn S, Rourke D et al (2016) Integrating nanostructured electrodes in organic photovoltaic devices for enhancing near-infrared photoresponse. Org Electron 39:59–63. https://doi.org/10.1016/J.ORGEL.2016.09.011

    Article  CAS  Google Scholar 

  76. Wu J, Becerril HA, Bao Z et al (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302. https://doi.org/10.1063/1.2924771

    Article  CAS  Google Scholar 

  77. Gollu SR, Sharma R, Srinivas G et al (2016) Incorporation of silver and gold nanostructures for performance improvement in P3HT: PCBM inverted solar cell with rGO/ZnO nanocomposite as an electron transport layer. Org Electron 29:79–87. https://doi.org/10.1016/J.ORGEL.2015.11.015

    Article  CAS  Google Scholar 

  78. Lim EL, Yap CC, Mat Teridi MA et al (2016) A review of recent plasmonic nanoparticles incorporated P3HT: PCBM organic thin film solar cells. Org Electron 36:12–28. https://doi.org/10.1016/J.ORGEL.2016.05.029

    Article  CAS  Google Scholar 

  79. Kaçuş H, Biber M, Aydoğan Ş (2020) Role of the Au and Ag nanoparticles on organic solar cells based on P3HT:PCBM active layer. Appl Phys A 126(10):1–9. https://doi.org/10.1007/S00339-020-03992-7

  80. Wang D-D, Ge C-W, Wu G-A et al (2017) A sensitive red light nano-photodetector propelled by plasmonic copper nanoparticles. J Mater Chem C 5:1328–1335. https://doi.org/10.1039/C6TC05117K

    Article  CAS  Google Scholar 

  81. Hamed MSG, Mola GT (2020) Highly stable thin film organic solar cells using poly crystallized silver doped LaPO4. Sol Energy 207:157–164. https://doi.org/10.1016/J.SOLENER.2020.06.009

    Article  CAS  Google Scholar 

  82. Lu L, Luo Z, Xu T, Yu L (2012) Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett 13:59–64. https://doi.org/10.1021/NL3034398

    Article  Google Scholar 

  83. Li X, Ren X, Xie F et al (2015) High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects. Adv Opt Mater 3:1220–1231. https://doi.org/10.1002/ADOM.201500107

    Article  CAS  Google Scholar 

  84. Ji T, Peng L, Zhu Y et al (2015) Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers. Appl Phys Lett 106:161107. https://doi.org/10.1063/1.4919106

    Article  CAS  Google Scholar 

  85. Chirumamilla M, Gopalakrishnan A, Toma A et al (2014) Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering. Nanotechnology 25:235303. https://doi.org/10.1088/0957-4484/25/23/235303

    Article  CAS  Google Scholar 

  86. Kozanoglu D, Apaydin DH, Cirpan A, Esenturk EN (2013) Power conversion efficiency enhancement of organic solar cells by addition of gold nanostars, nanorods, and nanospheres. Org Electron 14:1720–1727. https://doi.org/10.1016/J.ORGEL.2013.04.008

    Article  CAS  Google Scholar 

  87. Hornich J, Pflaum C, Brabec C, Forberich K (2016) Numerical study of plasmonic absorption enhancement in semiconductor absorbers by metallic nanoparticles. J Appl Phys 120:113102. https://doi.org/10.1063/1.4962459

    Article  CAS  Google Scholar 

  88. Stylianakis MM, Konios D, Petridis C et al (2017) Ternary solution-processed organic solar cells incorporating 2D materials. 2D Mater 4:042005. https://doi.org/10.1088/2053-1583/AA8440

  89. Malureanu R, Lavrinenko A (2015) Ultra-thin films for plasmonics: a technology overview. Nanotechnol Rev 4:259–275. https://doi.org/10.1515/NTREV-2015-0021

    Article  Google Scholar 

  90. Sun Q, Zhang F, Wang J et al (2015) A two-step strategy to clarify the roles of a solution processed PFN interfacial layer in highly efficient polymer solar cells. J Mater Chem A 3:18432–18441. https://doi.org/10.1039/C5TA05117G

    Article  CAS  Google Scholar 

  91. Tsai C-E, Liao M-H, Chen Y-L et al (2015) Triarylamine-based crosslinked hole-transporting material with an ionic dopant for high-performance PEDOT:PSS-free polymer solar cells. J Mater Chem C 3:6158–6165. https://doi.org/10.1039/C5TC00714C

    Article  CAS  Google Scholar 

  92. Cai W, Musumeci C, Ajjan FN et al (2016) Self-doped conjugated polyelectrolyte with tuneable work function for effective hole transport in polymer solar cells. J Mater Chem A 4:15670–15675. https://doi.org/10.1039/C6TA04989C

    Article  CAS  Google Scholar 

  93. Xu H, Fu X, Cheng X et al (2017) Highly and homogeneously conductive conjugated polyelectrolyte hole transport layers for efficient organic solar cells. J Mater Chem A 5:14689–14696. https://doi.org/10.1039/C7TA02590D

    Article  CAS  Google Scholar 

  94. Eom SH, Senthilarasu S, Uthirakumar P et al (2009) Polymer solar cells based on inkjet-printed PEDOT:PSS layer. Org Electron 10:536–542. https://doi.org/10.1016/J.ORGEL.2009.01.015

    Article  CAS  Google Scholar 

  95. Chi D, Lu S, Xu R et al (2015) Fully understanding the positive roles of plasmonic nanoparticles in ameliorating the efficiency of organic solar cells. Nanoscale 7:15251–15257. https://doi.org/10.1039/C5NR04069H

  96. Zhang G, Hawks SA, Ngo C et al (2015) Extensive penetration of evaporated electrode metals into fullerene films: intercalated metal nanostructures and influence on device architecture. ACS Appl Mater Interfaces 7:25247–25258. https://doi.org/10.1021/ACSAMI.5B06944

    Article  CAS  Google Scholar 

  97. Mokkapati S, Beck FJ, de Waele R et al (2011) Resonant nano-antennas for light trapping in plasmonic solar cells. J Phys D Appl Phys 44:185101. https://doi.org/10.1088/0022-3727/44/18/185101

    Article  CAS  Google Scholar 

  98. Usmani B, Ranjan R, Prateek, et al (2021) Inverted PTB7-Th:PC71BM organic solar cells with 11.8% PCE via incorporation of gold nanoparticles in ZnO electron transport layer. Sol Energy 214:220–230. https://doi.org/10.1016/J.SOLENER.2020.11.071

  99. Li S, Li Z, Zhang X et al (2016) Performance enhancement of organic photovoltaic devices enabled by Au nanoarrows inducing surface plasmonic resonance effect. Phys Chem Chem Phys 18:24285–24289. https://doi.org/10.1039/C6CP04302J

    Article  CAS  Google Scholar 

  100. Hu T, Li L, Xiao S et al (2016) In situ implanting carbon nanotube-gold nanoparticles into ZnO as efficient nanohybrid cathode buffer layer for polymer solar cells. Org Electron 38:350–356. https://doi.org/10.1016/J.ORGEL.2016.09.015

    Article  CAS  Google Scholar 

  101. Marikkannu S, Kashif M, Sethupathy N et al (2014) Effect of substrate temperature on indium tin oxide (ITO) thin films deposited by jet nebulizer spray pyrolysis and solar cell application. Mater Sci Semicond Process 27:562–568. https://doi.org/10.1016/J.MSSP.2014.07.036

    Article  CAS  Google Scholar 

  102. Lee D, Ki Bae W, Park I et al (2011) Transparent electrode with ZnO nanoparticles in tandem organic solar cells. Sol Energy Mater Sol Cells 95:365–368. https://doi.org/10.1016/J.SOLMAT.2010.04.020

    Article  CAS  Google Scholar 

  103. Ullah I, Shah SK, Wali S et al (2017) Enhanced efficiency of organic solar cells by using ZnO as an electron-transport layer. Mater Res Express 4:125505. https://doi.org/10.1088/2053-1591/AA9DC9

    Article  Google Scholar 

  104. Hatem D, Belkaid MS (2013) SnO2 thin films prepared by APCVD for organic solar cells application. Adv Mater Res 685:166–173. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.685.166

    Article  Google Scholar 

  105. Song M, Park JH, Kim CS et al (2014) Highly flexible and transparent conducting silver nanowire/ZnO composite film for organic solar cells. Nano Res 7(9):1370–1379. https://doi.org/10.1007/S12274-014-0502-3

    Article  CAS  Google Scholar 

  106. Son SY, Yang SL, Lee S et al (2020) Eco-friendly cellulose-derived transparent carbon nanosheet electrodes. Mater Res Bull 132:110999. https://doi.org/10.1016/J.MATERRESBULL.2020.110999

    Article  CAS  Google Scholar 

  107. Shen JJ (2021) Recently-explored top electrode materials for transparent organic solar cells. Synth Met 271:116582. https://doi.org/10.1016/J.SYNTHMET.2020.116582

    Article  CAS  Google Scholar 

  108. Cao W, Li J, Chen H, Xue J (2014) Transparent electrodes for organic optoelectronic devices: a review 4:040990. https://doi.org/10.1117/1.JPE.4.040990

  109. Wang X, Zhi L, Tsao N et al (2008) Transparent carbon films as electrodes in organic solar cells. Angew Chemie Int Ed 47:2990–2992. https://doi.org/10.1002/ANIE.200704909

    Article  CAS  Google Scholar 

  110. Kim S-S, Na S-I, Jo J et al (2008) Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl Phys Lett 93:073307. https://doi.org/10.1063/1.2967471

    Article  CAS  Google Scholar 

  111. Ochiai S, Kumar P, Santhakumar K, Shin P-K (2013) Examining the effect of additives and thicknesses of hole transport layer for efficient organic solar cell devices. Electron Mater Lett 9(4):399–403. https://doi.org/10.1007/S13391-013-0013-5

  112. Xu G, Shen L, Cui C et al (2017) High-performance colorful semitransparent polymer solar cells with ultrathin hybrid-metal electrodes and fine-tuned dielectric mirrors. Adv Funct Mater 27:1605908. https://doi.org/10.1002/ADFM.201605908

    Article  Google Scholar 

  113. Suk JW, Kitt A, Magnuson CW et al (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5:6916–6924. https://doi.org/10.1021/NN201207C

    Article  CAS  Google Scholar 

  114. Liu Z, Li J, Yan F (2013) Package-free flexible organic solar cells with graphene top electrodes. Adv Mater 25:4296–4301. https://doi.org/10.1002/ADMA.201205337

    Article  CAS  Google Scholar 

  115. Liu Z, You P, Liu S, Yan F (2015) Neutral-color semitransparent organic solar cells with all-graphene electrodes. ACS Nano 9:12026–12034. https://doi.org/10.1021/ACSNANO.5B04858

    Article  CAS  Google Scholar 

  116. Galagan Y, Fledderus H, Gorter H et al (2015) Roll-to-roll slot-die coated organic photovoltaic (opv) modules with high geometrical fill factors. Energy Technol 3:834–842. https://doi.org/10.1002/ENTE.201500150

    Article  CAS  Google Scholar 

  117. Kaltenbrunner M, White MS, Głowacki ED et al (2012) Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun 3(1):1–7. https://doi.org/10.1038/ncomms1772

    Article  CAS  Google Scholar 

  118. Müller-Meskamp L, Kim YH, Roch T et al (2012) Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning. Adv Mater 24:906–910. https://doi.org/10.1002/ADMA.201104331

    Article  Google Scholar 

  119. Chakanga K, Siepmann O, Sergeev O et al (2014) Laser textured substrates for light in-coupling in thin-film solar cells 4:044598. https://doi.org/10.1117/1.JPE.4.044598

  120. Park Y, Berger J, Tang Z et al (2016) Flexible, light trapping substrates for organic photovoltaics. Appl Phys Lett 109:093301. https://doi.org/10.1063/1.4962206

    Article  CAS  Google Scholar 

  121. Quiroz-Sánchez JC, Cabrera-Arenas V, Villa-Angulo C (2015) Optimization of organic photovoltaic device performance via exciton generation profile adjustment 5:052098. https://doi.org/10.1117/1.JPE.5.052098

  122. Jeon II, Matsuo Y (2015) Vertical phase separation and light-soaking effect improvements by photoactive layer spin coating initiation time control in air-processed inverted organic solar cells. Sol Energy Mater Sol Cells 140:335–343. https://doi.org/10.1016/J.SOLMAT.2015.04.017

    Article  CAS  Google Scholar 

  123. Zhang F, Xu X, Tang W et al (2011) Recent development of the inverted configuration organic solar cells. Sol Energy Mater Sol Cells 95:1785–1799. https://doi.org/10.1016/J.SOLMAT.2011.02.002

    Article  CAS  Google Scholar 

  124. Sharma N, Negi CMS, Yadav V et al (2019) Inverted organic solar cells based on PTB7:PC70BM bulk heterojunction. AIP Conf Proc 2100:020061. https://doi.org/10.1063/1.5098615

    Article  CAS  Google Scholar 

  125. Jørgensen M, Norrman K, Krebs FC (2008) Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells 92:686–714. https://doi.org/10.1016/J.SOLMAT.2008.01.005

    Article  Google Scholar 

  126. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93:394–412. https://doi.org/10.1016/J.SOLMAT.2008.10.004

    Article  CAS  Google Scholar 

  127. Huang Y-C, Cha H-C, Chen C-Y, Tsao C-S (2017) A universal roll-to-roll slot-die coating approach towards high-efficiency organic photovoltaics. Prog Photovoltaics Res Appl 25:928–935. https://doi.org/10.1002/PIP.2907

    Article  CAS  Google Scholar 

  128. Välimäki M, Apilo P, Po R et al (2015) R2R-printed inverted OPV modules—towards arbitrary patterned designs. Nanoscale 7:9570–9580. https://doi.org/10.1039/C5NR00204D

    Article  CAS  Google Scholar 

  129. Jørgensen M, Norrman K, Gevorgyan SA et al (2012) Stability of polymer solar cells. Adv Mater 24:580–612. https://doi.org/10.1002/ADMA.201104187

    Article  Google Scholar 

  130. Norrman K, Madsen MV, Gevorgyan SA, Krebs FC (2010) Degradation patterns in water and oxygen of an inverted polymer solar cell. J Am Chem Soc 132:16883–16892. https://doi.org/10.1021/JA106299G

    Article  CAS  Google Scholar 

  131. Rivaton A, Tournebize A, Gaume J et al (2014) Photostability of organic materials used in polymer solar cells. Polym Int 63:1335–1345. https://doi.org/10.1002/PI.4656

    Article  CAS  Google Scholar 

  132. Hermenau M, Riede M, Leo K et al (2011) Water and oxygen induced degradation of small molecule organic solar cells. Sol Energy Mater Sol Cells 95:1268–1277. https://doi.org/10.1016/J.SOLMAT.2011.01.001

    Article  CAS  Google Scholar 

  133. Krebs FC (2006) Encapsulation of polymer photovoltaic prototypes. Sol Energy Mater Sol Cells 90:3633–3643. https://doi.org/10.1016/J.SOLMAT.2006.06.055

    Article  CAS  Google Scholar 

  134. Gaddam SK, Pothu R, Boddula R (2021) Advanced polymer encapsulates for photovoltaic devices—a review. J Mater 7:920–928. https://doi.org/10.1016/J.JMAT.2021.04.004

    Article  Google Scholar 

  135. Kovrov A, Helgesen M, Boeffel C et al (2020) Novel acrylic monomers for organic photovoltaics encapsulation. Sol Energy Mater Sol Cells 204:110210. https://doi.org/10.1016/J.SOLMAT.2019.110210

    Article  CAS  Google Scholar 

  136. Adams J, Salvador M, Lucera L et al (2015) Water ingress in encapsulated inverted organic solar cells: correlating infrared imaging and photovoltaic performance. Adv Energy Mater 5:1501065. https://doi.org/10.1002/AENM.201501065

    Article  Google Scholar 

  137. Jens Adams D, Spyropoulos G, Salvador M et al (2014) Air-processed organic tandem solar cells on glass: toward competitive operating lifetimes. Energy Environ Sci 8:169–176. https://doi.org/10.1039/C4EE02582B

    Article  CAS  Google Scholar 

  138. Classen A, Heumueller T, Wabra I et al (2019) Revealing hidden UV instabilities in organic solar cells by correlating device and material stability. Adv Energy Mater 9:1902124. https://doi.org/10.1002/AENM.201902124

    Article  CAS  Google Scholar 

  139. Kimura H, Fukuda K, Jinno H et al (2019) High operation stability of ultraflexible organic solar cells with ultraviolet-filtering substrates. Adv Mater 31:1808033. https://doi.org/10.1002/ADMA.201808033

    Article  Google Scholar 

  140. Jeong C, Coburn C, Idris M et al (2019) Understanding molecular fragmentation in blue phosphorescent organic light-emitting devices. Org Electron 64:15–21. https://doi.org/10.1016/J.ORGEL.2018.10.001

    Article  CAS  Google Scholar 

  141. Heeger AJ (2014) 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv Mater 26:10–28. https://doi.org/10.1002/ADMA.201304373

    Article  CAS  Google Scholar 

  142. Peters CH, Sachs-Quintana IT, Mateker WR et al (2012) The mechanism of burn-in loss in a high efficiency polymer solar cell. Adv Mater 24:663–668. https://doi.org/10.1002/ADMA.201103010

    Article  CAS  Google Scholar 

  143. Distler A, Sauermann T, Egelhaaf H-J et al (2014) The effect of PCBM dimerization on the performance of bulk heterojunction solar cells. Adv Energy Mater 4:1300693. https://doi.org/10.1002/AENM.201300693

    Article  Google Scholar 

  144. Zhang H, Borgschulte A, Castro FA et al (2015) Photochemical transformations in fullerene and molybdenum oxide affect the stability of bilayer organic solar cells. Adv Energy Mater 5:1400734. https://doi.org/10.1002/AENM.201400734

    Article  Google Scholar 

  145. Wang N, Tong X, Burlingame Q et al (2014) Photodegradation of small-molecule organic photovoltaics. Sol Energy Mater Sol Cells 125:170–175. https://doi.org/10.1016/J.SOLMAT.2014.03.005

    Article  CAS  Google Scholar 

  146. Burlingame Q, Tong X, Hankett J et al (2015) Photochemical origins of burn-in degradation in small molecular weight organic photovoltaic cells. Energy Environ Sci 8:1005–1010. https://doi.org/10.1039/C4EE03444A

    Article  CAS  Google Scholar 

  147. Tummala NR, Bruner C, Risko C et al (2015) Molecular-scale understanding of cohesion and fracture in P3HT: fullerene blends. ACS Appl Mater Interfaces 7:9957–9964. https://doi.org/10.1021/ACSAMI.5B02202

    Article  CAS  Google Scholar 

  148. Müller C, Bergqvist J, Vandewal K et al (2011) Phase behaviour of liquid-crystalline polymer/fullerene organic photovoltaic blends: thermal stability and miscibility. J Mater Chem 21:10676–10684. https://doi.org/10.1039/C1JM11239B

    Article  Google Scholar 

  149. Bertho S, Haeldermans I, Swinnen A et al (2007) Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells. Sol Energy Mater Sol Cells 91:385–389. https://doi.org/10.1016/J.SOLMAT.2006.10.008

    Article  CAS  Google Scholar 

  150. Conings B, Bertho S, Vandewal K et al (2010) Modeling the temperature induced degradation kinetics of the short circuit current in organic bulk heterojunction solar cells. Appl Phys Lett 96:163301. https://doi.org/10.1063/1.3391669

    Article  CAS  Google Scholar 

  151. Müller C (2015) On the glass transition of polymer semiconductors and its impact on polymer solar cell stability. Chem Mater 27:2740–2754. https://doi.org/10.1021/ACS.CHEMMATER.5B00024

    Article  Google Scholar 

  152. Duan L, Uddin A (2020) Progress in stability of organic solar cells. Adv Sci 7:1903259. https://doi.org/10.1002/ADVS.201903259

    Article  CAS  Google Scholar 

  153. Liu H-W, Chang D-Y, Chiu W-Y et al (2012) Fullerene bisadduct as an effective phase-separation inhibitor in preparing poly(3-hexylthiophene)–[6,6]-phenyl-C61-butyric acid methyl ester blends with highly stable morphology. J Mater Chem 22:15586–15591. https://doi.org/10.1039/C2JM32444J

    Article  CAS  Google Scholar 

  154. Chen C-Y, Tsao C-S, Huang Y-C et al (2013) Mechanism and control of the structural evolution of a polymer solar cell from a bulk heterojunction to a thermally unstable hierarchical structure. Nanoscale 5:7629–7638. https://doi.org/10.1039/C3NR00864A

    Article  CAS  Google Scholar 

  155. Richards JJ, Rice AH, Nelson RD et al (2013) Modification of PCBM crystallization via incorporation of C60 in polymer/fullerene solar cells. Adv Funct Mater 23:514–522. https://doi.org/10.1002/ADFM.201201100

    Article  CAS  Google Scholar 

  156. Lindqvist C, Bergqvist J, Feng C-C et al (2014) Fullerene nucleating agents: a route towards thermally stable photovoltaic blends. Adv Energy Mater 4:1301437. https://doi.org/10.1002/AENM.201301437

    Article  Google Scholar 

  157. Santo Y, Jeon I, Yeo KS et al (2013) Mixture of [60] and [70]PCBM giving morphological stability in organic solar cells. Appl Phys Lett 103:073306. https://doi.org/10.1063/1.4818726

    Article  CAS  Google Scholar 

  158. Yan C, Barlow S, Wang Z et al (2018) Non-fullerene acceptors for organic solar cells. Nat Rev Mater 3(3):1–19. https://doi.org/10.1038/natrevmats.2018.3

    Article  CAS  Google Scholar 

  159. Liu T, Luo Z, Chen Y et al (2019) A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy Environ Sci 12:2529–2536. https://doi.org/10.1039/C9EE01030K

    Article  CAS  Google Scholar 

  160. Gasparini N, Salvador M, Strohm S et al (2017) Burn-in free nonfullerene-based organic solar cells. Adv Energy Mater 7:1700770. https://doi.org/10.1002/AENM.201700770

    Article  Google Scholar 

  161. Baran D, Ashraf RS, Hanifi DA et al (2016) Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat Mater 16(3):363–369. https://doi.org/10.1038/nmat4797

    Article  CAS  Google Scholar 

  162. Ahmad J, Bazaka K, Anderson LJ et al (2013) Materials and methods for encapsulation of OPV: a review. Renew Sustain Energy Rev 27:104–117. https://doi.org/10.1016/J.RSER.2013.06.027

    Article  CAS  Google Scholar 

  163. Uddin A, Upama MB, Yi H, Duan L (2019) Encapsulation of organic and perovskite solar cells: a review. Coatings 9:65. https://doi.org/10.3390/COATINGS9020065

  164. Hauch JA, Schilinsky P, Choulis SA et al (2008) The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells. Appl Phys Lett 93:103306. https://doi.org/10.1063/1.2975185

    Article  CAS  Google Scholar 

  165. Burlingame Q, Huang X, Liu X et al (2019) Intrinsically stable organic solar cells under high-intensity illumination. Nat 5737774(573):394–397. https://doi.org/10.1038/s41586-019-1544-1

    Article  CAS  Google Scholar 

  166. Channa IA, Distler A, Zaiser M et al (2019) Thin film encapsulation of organic solar cells by direct deposition of polysilazanes from solution. Adv Energy Mater 9:1900598. https://doi.org/10.1002/AENM.201900598

    Article  Google Scholar 

  167. Giannouli M, Drakonakis VM, Savva A et al (2015) Methods for improving the lifetime performance of organic photovoltaics with low-costing encapsulation. ChemPhysChem 16:1134–1154. https://doi.org/10.1002/CPHC.201402749

    Article  CAS  Google Scholar 

  168. Morlier A, Cros S, Garandet JP, Alberola N (2013) Gas barrier properties of solution processed composite multilayer structures for organic solar cells encapsulation. Sol Energy Mater Sol Cells 115:93–99. https://doi.org/10.1016/J.SOLMAT.2013.03.033

    Article  CAS  Google Scholar 

  169. Guillemoles J-F, Kirchartz T, Cahen D, Rau U (2021) Reply to ‘Ideal solar cell efficiencies.’ Nat Photonics 15(3):165–166. https://doi.org/10.1038/s41566-021-00775-1

  170. Rau U, Paetzold UW, Kirchartz T (2014) Thermodynamics of light management in photovoltaic devices. Phys Rev B 90:035211. https://doi.org/10.1103/PhysRevB.90.035211

    Article  CAS  Google Scholar 

  171. Liu Y, Zhao J, Li Z et al (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5(1):1–8. https://doi.org/10.1038/ncomms6293

    Article  CAS  Google Scholar 

  172. Cui Y, Yao H, Zhang J et al (2019) Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat Commun 10(1):1–8. https://doi.org/10.1038/s41467-019-10351-5

    Article  CAS  Google Scholar 

  173. Park SH, Roy A, Beaupré S et al (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3(5):297–302. https://doi.org/10.1038/nphoton.2009.69

    Article  CAS  Google Scholar 

  174. Queisser HJ (2009) Detailed balance limit for solar cell efficiency. Mater Sci Eng B 159–160:322–328. https://doi.org/10.1016/J.MSEB.2008.06.033

    Article  Google Scholar 

  175. Izawa S, Shintaku N, Kikuchi M, Hiramoto M (2019) Importance of interfacial crystallinity to reduce open-circuit voltage loss in organic solar cells. Appl Phys Lett 115:153301. https://doi.org/10.1063/1.5114670

    Article  CAS  Google Scholar 

  176. Burke TM, Sweetnam S, Vandewal K, McGehee MD (2015) Beyond Langevin recombination: how equilibrium between free carriers and charge transfer states determines the open-circuit voltage of organic solar cells. Adv Energy Mater 5:1500123. https://doi.org/10.1002/AENM.201500123

    Article  Google Scholar 

  177. Cai Y, Li Y, Wang R et al (2021) A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%. Adv Mater 33:2101733. https://doi.org/10.1002/ADMA.202101733

  178. Liu F, Zhou L, Liu W et al (2021) Organic solar cells with 18% efficiency enabled by an alloy acceptor: a two-in-one strategy. Adv Mater 33:2100830. https://doi.org/10.1002/ADMA.202100830

    Article  CAS  Google Scholar 

  179. Coropceanu V, Chen X-K, Wang T et al (2019) Charge-transfer electronic states in organic solar cells. Nat Rev Mater 4(11):689–707. https://doi.org/10.1038/s41578-019-0137-9

    Article  Google Scholar 

  180. Vandewal K (2016) Interfacial charge transfer states in condensed phase systems 67:113–133. https://doi.org/10.1146/ANNUREV-PHYSCHEM-040215-112144

  181. Yao H, Cui Y, Qian D et al (2019) 14.7% efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference. J Am Chem Soc 141:7743–7750. https://doi.org/10.1021/JACS.8B12937

    Article  CAS  Google Scholar 

  182. Sun C, Qin S, Wang R et al (2020) High efficiency polymer solar cells with efficient hole transfer at zero highest occupied molecular orbital offset between methylated polymer donor and brominated acceptor. J Am Chem Soc 142:1465–1474. https://doi.org/10.1021/JACS.9B09939

    Article  CAS  Google Scholar 

  183. Liu J, Chen S, Qian D et al (2016) Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat Energy 1(7):1–7. https://doi.org/10.1038/nenergy.2016.89

    Article  CAS  Google Scholar 

  184. Nikolis VC, Benduhn J, Holzmueller F et al (2017) Reducing voltage losses in cascade organic solar cells while maintaining high external quantum efficiencies. Adv Energy Mater 7:1700855. https://doi.org/10.1002/AENM.201700855

    Article  Google Scholar 

  185. Chen S, Wang Y, Zhang L et al (2018) Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer. Adv Mater 30:1804215. https://doi.org/10.1002/ADMA.201804215

    Article  Google Scholar 

  186. Fu H, Wang Y, Meng D et al (2018) Suppression of recombination energy losses by decreasing the energetic offsets in perylene diimide-based nonfullerene organic solar cells. ACS Energy Lett 3:2729–2735. https://doi.org/10.1021/ACSENERGYLETT.8B01665

    Article  CAS  Google Scholar 

  187. Vandewal K, Widmer J, Heumueller T et al (2014) Increased open-circuit voltage of organic solar cells by reduced donor-acceptor interface area. Adv Mater 26:3839–3843. https://doi.org/10.1002/ADMA.201400114

    Article  CAS  Google Scholar 

  188. Yin A, Zhang D, Wang J et al (2020) Mediated non-geminate recombination in ternary organic solar cells through a liquid crystal guest donor. Front Chem 21. https://doi.org/10.3389/FCHEM.2020.00021

  189. Proctor CM, Kuik M, Nguyen TQ (2013) Charge carrier recombination in organic solar cells. Prog Polym Sci 38:1941–1960. https://doi.org/10.1016/J.PROGPOLYMSCI.2013.08.008

    Article  CAS  Google Scholar 

  190. Ross RT (2004) Some thermodynamics of photochemical systems. J Chem Phys 46:4590. https://doi.org/10.1063/1.1840606

    Article  Google Scholar 

  191. Ullbrich S, Benduhn J, Jia X et al (2019) Emissive and charge-generating donor–acceptor interfaces for organic optoelectronics with low voltage losses. Nat Mater 18(5):459–464. https://doi.org/10.1038/s41563-019-0324-5

    Article  CAS  Google Scholar 

  192. Sumaiya S, Kardel K, El-Shahat A (2017) Organic solar cell by inkjet printing—an overview. Technol 5:53. https://doi.org/10.3390/TECHNOLOGIES5030053

  193. Venkateswararao A, Wong K-T (2020) Small molecules for vacuum-processed organic photovoltaics: past, current status, and prospect 94:812–838. https://doi.org/10.1246/BCSJ.20200330

  194. Chen C-H, Ting H-C, Li Y-Z et al (2019) New D-A–A-configured small-molecule donors for high-efficiency vacuum-processed organic photovoltaics under ambient light. ACS Appl Mater Interfaces 11:8337–8349. https://doi.org/10.1021/ACSAMI.8B20415

    Article  CAS  Google Scholar 

  195. Galagan Y, Andriesse R (2012) Organic photovoltaics: technologies and manufacturing. In: Third generation photovoltaics. InTech

    Google Scholar 

  196. Ameri T, Dennler G, Lungenschmied C, Brabec CJ (2009) Organic tandem solar cells: a review. Energy Environ Sci 2:347–363. https://doi.org/10.1039/B817952B

    Article  CAS  Google Scholar 

  197. Yu G, Heeger AJ (1998) Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J Appl Phys 78:4510. https://doi.org/10.1063/1.359792

    Article  Google Scholar 

  198. Emslie AG, Bonner FT, Peck LG (2004) Flow of a viscous liquid on a rotating disk. J Appl Phys 29:858. https://doi.org/10.1063/1.1723300

    Article  Google Scholar 

  199. Dandapat BS, Santra B, Kitamura A (2005) Thermal effects on film development during spin coating. Phys Fluids 17:062102. https://doi.org/10.1063/1.1927525

    Article  CAS  Google Scholar 

  200. Mouhamad Y, Mokarian-Tabari P, Clarke N et al (2014) Dynamics of polymer film formation during spin coating. J Appl Phys 116:123513. https://doi.org/10.1063/1.4896674

    Article  CAS  Google Scholar 

  201. Meyerhofer D (2008) Characteristics of resist films produced by spinning. J Appl Phys 49:3993. https://doi.org/10.1063/1.325357

    Article  Google Scholar 

  202. Padinger F, Brabec CJ, Fromherz T et al (2000) Fabrication of large area photovoltaic devices containing various blends of polymer and fullerene derivatives by using the doctor blade technique. Opto—Electron Rev 8(4):280–283

    CAS  Google Scholar 

  203. Brabec CJ, Padinger F, Hummelen JC et al (1999) Realization of large area flexible fullerene—conjugated polymer photocells: a route to plastic solar cells. Synth Met 102:861–864. https://doi.org/10.1016/S0379-6779(98)00366-X

    Article  CAS  Google Scholar 

  204. Schilinsky P, Waldauf C, Brabec CJ (2006) Performance analysis of printed bulk heterojunction solar cells. Adv Funct Mater 16:1669–1672. https://doi.org/10.1002/ADFM.200500581

    Article  CAS  Google Scholar 

  205. Liu F, Ferdous S, Schaible E et al (2015) Fast printing and in situ morphology observation of organic photovoltaics using slot-die coating. Adv Mater 27:886–891. https://doi.org/10.1002/ADMA.201404040

    Article  Google Scholar 

  206. Vak D, Kim S-S, Jo J et al (2007) Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation. Appl Phys Lett 91:081102. https://doi.org/10.1063/1.2772766

    Article  CAS  Google Scholar 

  207. Aziz F, Ismail AF (2015) Spray coating methods for polymer solar cells fabrication: a review. Mater Sci Semicond Process 39:416–425. https://doi.org/10.1016/J.MSSP.2015.05.019

    Article  CAS  Google Scholar 

  208. Wang T, Scarratt NW, Yi H et al (2013) Fabricating high performance, donor-acceptor copolymer solar cells by spray-coating in air. Adv Energy Mater 3:505–512. https://doi.org/10.1002/AENM.201200713

    Article  CAS  Google Scholar 

  209. Girotto C, Moia D, Rand BP, Heremans P (2011) High-performance organic solar cells with spray-coated hole-transport and active layers. Adv Funct Mater 21:64–72. https://doi.org/10.1002/ADFM.201001562

    Article  CAS  Google Scholar 

  210. Colella S, Mazzeo M, Melcarne G et al (2013) Spray coating fabrication of organic solar cells bypassing the limit of orthogonal solvents. Appl Phys Lett 102:203307. https://doi.org/10.1063/1.4807464

    Article  CAS  Google Scholar 

  211. Lewis JE, Lafalce E, Toglia P, Jiang X (2011) Over 30% transparency large area inverted organic solar array by spray. Sol Energy Mater Sol Cells 95:2816–2822. https://doi.org/10.1016/J.SOLMAT.2011.05.037

    Article  CAS  Google Scholar 

  212. Kang JW, Kang YJ, Jung S et al (2012) Fully spray-coated inverted organic solar cells. Sol Energy Mater Sol Cells 103:76–79. https://doi.org/10.1016/J.SOLMAT.2012.04.027

    Article  CAS  Google Scholar 

  213. Huang YC, Lu DH, Li CF et al (2019) Printed silver grid incorporated with PEIE doped ZnO as an auxiliary layer for high-efficiency large-area sprayed organic photovoltaics. IEEE J Photovoltaics 9:1297–1301. https://doi.org/10.1109/JPHOTOV.2019.2925552

    Article  Google Scholar 

  214. Krantz J, Stubhan T, Richter M et al (2013) Spray-coated silver nanowires as top electrode layer in semitransparent P3HT:PCBM-based organic solar cell devices. Adv Funct Mater 23:1711–1717. https://doi.org/10.1002/ADFM.201202523

    Article  CAS  Google Scholar 

  215. Naito K, Inuzuka R, Yoshinaga N, Mei W (2018) Transparent conducting films composed of graphene oxide/Ag nanowire/graphene oxide/PET. Synth Met 237:50–55. https://doi.org/10.1016/J.SYNTHMET.2018.02.004

    Article  CAS  Google Scholar 

  216. Søndergaard RR, Hösel M, Krebs FC (2013) Roll-to-Roll fabrication of large area functional organic materials. J Polym Sci Part B Polym Phys 51:16–34. https://doi.org/10.1002/POLB.23192

    Article  Google Scholar 

  217. Riemer DE (1989) The theoretical fundamentals of the screen printing process. Microelectron Int 6:8–17. https://doi.org/10.1108/EB044350

    Article  Google Scholar 

  218. Kim J, Duraisamy N, Lee TM et al (2015) Screen printed silver top electrode for efficient inverted organic solar cells. Mater Res Bull 70:412–415. https://doi.org/10.1016/J.MATERRESBULL.2015.04.052

    Article  CAS  Google Scholar 

  219. Krebs FC, Søndergaard R, Jørgensen M (2011) Printed metal back electrodes for R2R fabricated polymer solar cells studied using the LBIC technique. Sol Energy Mater Sol Cells 95:1348–1353. https://doi.org/10.1016/J.SOLMAT.2010.11.007

    Article  CAS  Google Scholar 

  220. Zhang B, Chae H, Cho SM (2009) Screen-printed polymer: fullerene bulk-heterojunction solar cells. Jpn J Appl Phys 48:020208. https://doi.org/10.1143/JJAP.48.020208

    Article  CAS  Google Scholar 

  221. Hübler A, Trnovec B, Zillger T et al (2011) Printed paper photovoltaic cells. Adv Energy Mater 1:1018–1022. https://doi.org/10.1002/AENM.201100394

    Article  Google Scholar 

  222. Hösel M, Søndergaard RR, Jørgensen M, Krebs FC (2013) Fast inline roll-to-roll printing for indium-tin-oxide-free polymer solar cells using automatic registration. Energy Technol 1:102–107. https://doi.org/10.1002/ENTE.201200029

    Article  Google Scholar 

  223. Kopola P, Aernouts T, Sliz R et al (2011) Gravure printed flexible organic photovoltaic modules. Sol Energy Mater Sol Cells 95:1344–1347. https://doi.org/10.1016/J.SOLMAT.2010.12.020

    Article  CAS  Google Scholar 

  224. Koidis C, Logothetidis S, Kassavetis S et al (2013) Effect of process parameters on the morphology and nanostructure of roll-to-roll printed P3HT:PCBM thin films for organic photovoltaics. Sol Energy Mater Sol Cells 112:36–46. https://doi.org/10.1016/J.SOLMAT.2012.12.044

    Article  CAS  Google Scholar 

  225. Voigt MM, MacKenzie RCI, Yau CP et al (2011) Gravure printing for three subsequent solar cell layers of inverted structures on flexible substrates. Sol Energy Mater Sol Cells 95:731–734. https://doi.org/10.1016/J.SOLMAT.2010.10.013

    Article  CAS  Google Scholar 

  226. Lamont CA, Eggenhuisen TM, Coenen MJJ et al (2015) Tuning the viscosity of halogen free bulk heterojunction inks for inkjet printed organic solar cells. Org Electron 17:107–114. https://doi.org/10.1016/J.ORGEL.2014.10.052

    Article  CAS  Google Scholar 

  227. Hermerschmidt F, Papagiorgis P, Savva A et al (2014) Inkjet printing processing conditions for bulk-heterojunction solar cells using two high-performing conjugated polymer donors. Sol Energy Mater Sol Cells 130:474–480. https://doi.org/10.1016/J.SOLMAT.2014.07.050

    Article  CAS  Google Scholar 

  228. Eggenhuisen TM, Galagan Y, Coenen EWC et al (2015) Digital fabrication of organic solar cells by Inkjet printing using non-halogenated solvents. Sol Energy Mater Sol Cells 134:364–372. https://doi.org/10.1016/J.SOLMAT.2014.12.014

    Article  CAS  Google Scholar 

  229. Weng K, Ye L, Zhu L et al (2020) Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nat Commun 11(1):1–9. https://doi.org/10.1038/s41467-020-16621-x

  230. Chen G, Ling Z, Wei B et al (2018) Comparison of the solution and vacuum-processed squaraine: fullerene small-molecule bulk heterojunction solar cells. Front Chem 412. https://doi.org/10.3389/FCHEM.2018.00412

  231. Kronenberg NM, Steinmann V, Bürckstümmer H et al (2010) Direct comparison of highly efficient solution- and vacuum-processed organic solar cells based on merocyanine dyes. Adv Mater 22:4193–4197. https://doi.org/10.1002/ADMA.201000800

    Article  CAS  Google Scholar 

  232. Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nat 428(6986):911–918. https://doi.org/10.1038/nature02498

  233. Gritsenko KP, Krasovsky AM (2003) Thin-film deposition of polymers by vacuum degradation. Chem Rev 103:3607–3649. https://doi.org/10.1021/CR010449Q

  234. Burrows PE, Forrest SR, Sapochak LS et al (1995) Organic vapor phase deposition: a new method for the growth of organic thin films with large optical non-linearities. J Cryst Growth 156:91–98. https://doi.org/10.1016/0022-0248(95)00310-X

    Article  CAS  Google Scholar 

  235. Rusu M, Gasiorowski J, Wiesner S et al (2008) Fine tailored interpenetrating donor–acceptor morphology by OVPD for organic solar cells. Thin Solid Films 516:7160–7166. https://doi.org/10.1016/J.TSF.2007.12.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, M.P., Amir, M. (2022). Organic Photovoltaic Cells: Opportunities and Challenges. In: Khan, Z.H. (eds) Nanomaterials for Innovative Energy Systems and Devices. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-19-0553-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0553-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0552-0

  • Online ISBN: 978-981-19-0553-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics